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A A Theoretical Framework for Locus of Control

A.1 The concept of locus of control

Since the seminal works of Mincer (1958) and Becker (1964), human capital is defined

as the stock of knowledge and personal abilities an individual possesses, and is per-

ceived as a factor of production that can be improved through education, training and

experience. The focus usually lies on estimating returns to education, training, expe-

rience or cognitive skills (Psacharopoulos, 1981; Card, 1999; Heckman et al., 2006a).1

However, this concept mainly refers to the cognitive abilities, while more recently other

facets of human capital have come to the forefront. Bowles and Gintis (1976) were

among the first to point out what seems intuitively obvious: economic success is only

partly determined by cognitive abilities and knowledge acquired in schools. Personal-

ity, incentive-enhancing preferences and socialization are other important components

of human capital (Heckman et al., 2006b; Heineck and Anger, 2010).2 Furthermore, a

vast literature in behavioral economics is currently emerging, which analyzes the eco-

nomic impact of risk aversion, reciprocity, self-confidence and time preference (Dohmen

et al., 2010; Falk et al., 2006; Frey and Meier, 2004).

Originally, locus of control is a psychological concept, generally attributed to Rot-

ter (1966), that measures the attitude regarding the nature of the causal relationship

between one’s own behavior and its consequences. In this concept, which is related to

self-efficacy, people who believe that they have control over their lives are called inter-

nalizers. People who believe that fate, luck, or other people determine their lives, are

termed externalizers. Generally, externalizers (in this taxonomy, the low return person-

ality types) do not have much confidence in their ability to influence their environment,

and do not see themselves as responsible for their lives. Therefore, these individuals

are generally less likely to trust their own abilities or to push themselves through dif-

ficult situations. Conversely, internalizers (the high return personality types) perceive

themselves as more capable of altering their economic situation.

1See Gebel and Pfeiffer (2010), Pischke and Von Wachter (2008), Lauer and Steiner (2000), Floss-
mann and Pohlmeier (2006) for estimates of returns to education or skills in the German context.

2For an overview of the interrelationships between different psychological and economic concepts,
see Borghans et al. (2008).
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A.2 Stability of locus of control in the literature

Endogeneity bias only arises if an individual’s personality is not fixed at birth, but

responsive to positive or negative life experiences.3 Behavioral geneticists argue that

about 50% of the phenotypic variation in personality can be ascribed to genes, while

the other half is shaped by environmental factors (Krueger and Johnson, 2008). The

fact that personality traits can be altered has also been shown in a recent body of

literature, which argues that personality is much more malleable than for example

cognition (for a summary of the literature see Almlund et al., 2011; Heckman and Kautz,

2013). Concerning the evolution of locus of control, Furnham and Steele (1993) explain

that it is “partially but not wholly the product of causal attributional beliefs about

past events” and Furnham et al. (1992) point out that positive (negative) experiences

reinforce tendencies toward internal control, which in turn increase (decrease) initiative

and motivation for success. Cobb-Clark and Schurer (2013) show that overall stability of

locus of control is high at adult ages, but lower for young and very old individuals. They

also find that both men and women who improve their finances become more internal,

and that females become more internal in response to a job promotion. However, they

also report that even large shocks to locus of control only change wage returns by about

5% for men and by 3% for women. Furthermore, Boyce et al. (2013) and Roberts et al.

(2003) have confirmed that personality changes in general and that it does so especially

for young individuals and in response to early labor market experiences. Similarly,

Gottschalk (2005) provides evidence from a randomized control trial which shows that

working at a job has positive effects on locus of control.

A.3 A theoretical framework

In the following, we present a theoretical framework for how pre-market external locus

of control may affect labor market returns. We assume that the role of external locus

of control for wages is potentially twofold. First, it may indirectly affect wages through

its effect on education decisions, and second, it may have a direct influence on labor

market returns after the education decision is controlled for.

In our study, we focus on the external dimension of locus of control (see Section 6.1.1

in paper). We assume that external locus of control is represented by a latent variable θ

that is continuously distributed in the range (−∞,+∞), where smaller values represent

3With “changes” in personality, we mean intra-individual changes as opposed to mean-level con-
sistency or rank-order consistency.
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a more external locus and larger values a less external locus of control. We assume that

an individual’s psychic costs of education and wage are both functions of θ. Hence,

individuals with low levels of θ are likely to have higher psychic costs of education and

earn lower wages, while individuals with high levels of θ incur lower costs of obtaining

a degree and earn more.

In a typical model of human capital investment, individuals decide on the level

of education based on the expected returns to the respective choice, net of the costs

associated with this choice. In this framework, external locus of control likely increases

the perceived psychic costs of education independent of the actual work effort. One

reason for that may be that individuals with a more external locus of control believe ex

ante that they would need to work harder than internalizers to feel well-prepared for

the exams. Another reason may be that externalizers believe that no matter how hard

they work, their education outcomes will depend on fate or luck. As a consequence

this may induce them to work less than internalizers, but will increase their fear of

failure.4 We call differences in education investments due to the perceived psychic costs

of education the behavioral impact of locus of control. Furthermore, external locus of

control may be viewed as a skill with a direct impact on wages, for example because

employers value having employees who exhibit a higher locus of control. This is what

we term the productive impact of locus of control.

Assume that there are two education levels, denoted by S = 0, 1, and that agents

maximize the latent net present value associated with education to make their decision.

Let U∗ denote the latent present value function. The arguments of this function will

be specified later. Hence, individuals attend higher education, S = 1, if:

U∗ ≥ 0,

and S = 0 otherwise. The latent present value from obtaining higher education is a

function of discounted future earnings and of education costs. If wages wst in period t

conditional on schooling s, as well as the costs of education C, can all be modeled in

an additively separable manner, we can specify:

w0
t = Xwtβ0 + θα0 + ε0t,

w1
t = Xwtβ1 + θα1 + ε1t,

4Individuals who score higher on neuroticism, a concept related to locus of control, are also more
likely to exhibit test anxiety (Moutafi et al., 2006).
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C = XCβC + θαC + εC ,

with E(ε1 | Xwt, θ) = E(ε0 | Xwt, θ) = E(εC | XC , θ) = 0. Here αs, βs (with s ∈ {0, 1})
and αC , βC measure the impact of pre-market locus of control θ and observable charac-

teristics (Xwt, XC) on wages and education costs, respectively. Since locus of control is

determined before the individual enters the labor market, it does not depend on time t

in our model. Moreover, εst and εC are random and independent idiosyncratic shocks.

The total net present value from education, accounting for the discounted flow of ex

post earnings, is then:

U∗(Xw, XC , θ, δ, t1) =
T∑
t=t1

δt (Xwtβ1 + θα1 + ε1t)

−
T∑
t=0

δt (Xwtβ0 + θα0 + ε0t)

− (XCβC + θαC + εC) ,

(1)

where Xw = (Xw1, . . . , XwT ), t1 represents the time required to achieve higher edu-

cation, T is the life horizon, and δ denotes the discount rate, which for simplicity is

assumed to be constant over time.

By differentiating Eq. (1) with respect to θ, it appears that a ceteris paribus change

in locus of control affects education decisions as follows:

∂U∗(Xw, XC , θ, t1)

∂θ
= α1

T∑
t=t1

δt − α0

T∑
t=0

δt − αC .

Given that α1 and α0 are independent of t, and making use of revealed education

choices, our goal is to identify α1, α0 and αC . More precisely, we are investigating

whether locus of control enters the education decision and outcomes both directly as a

skill, in which case we would have α1 > 0 and α0 > 0, or only indirectly via the costs

of education, in which case αC < 0. We cannot identify αC directly, because we do

not observe education costs. However, we can make inference on the overall impact of

locus of control on education choices, and given the identification of α1 and α0, we can

retrieve αC . More specifically, if we find for example that α1 = α0 = 0 or if we find

that α1 = 0 and α0 > 0 , we know that any impact of locus of control on education

choices must work through αC .

4



The empirical model we estimate is an approximation to this very simple theoretical

framework. By combining different subsamples and using revealed schooling decisions,

we are able to identify the impact of pre-market locus of control on wages, and thus to

make inferences about its productive or behavioral impact, respectively.
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B General Identification of the Factor Model

The combination of continuous and discrete variables in the framework of a factor

structure model raises nontrivial problems. This section outlines the main steps of the

identification strategy, and discusses the type of information that can be extracted from

the observed variables to properly identify the model. To facilitate the exposition, we

assume that all variables are observed for all the individuals of the sample. The missing

data problem and its implications for identification are then discussed in Section 3.2 of

the paper.

Although techniques to deal with ordinal variables in latent variable models have

a long history in statistics (see Jöreskog and Moustaki, 2001, for a survey of different

approaches), a widespread approach in empirical research consists of ignoring ordinality

and treating the manifest items as continuous. This simplification, however, may distort

the results, especially when the number of categories is limited, and/or the distribution

of the answers is skewed or shows high kurtosis (Muthén and Kaplan, 1985; Rhemtulla

et al., 2012). In this paper, on the contrary, we assume that the discrete variables

are generated by an underlying latent process. Additional identifying restrictions are

therefore required to fully identify the model.

The identification of factor models is well documented in the literature (Anderson

and Rubin, 1956) and many different strategies have been applied in practice to achieve

it (see, for instance, Carneiro et al., 2003). First, some assumptions are required on the

latent factor:

E(θ) = 0, V(θ) = σ2
θ �∞, θ ⊥⊥ X,

where the first two ones ensure that the factor is centered with finite variance, while the

last one completes the independence assumptions (see Eq. (5) in paper) to guarantee

that θ represents the only source of unobserved correlation between the observed vari-

ables. Using the independence assumptions, the identification of the factor loadings is

straightforward to achieve if the variables (S?, {D?
s , Ys}s=0,1, {M?

k}k=1,...,K) are observed

for all individuals. In this case, following Carneiro et al. (2003), identification comes

from the covariance matrix:

Ω? ≡ V(S?, D?, Y,M? | X) , (2)
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where each single covariance depends on the corresponding factor loadings and on the

variance of the factor, e.g., Cov(S?;M?
1 | X) = αSαM1σ

2
θ . Assuming nonzero covari-

ances, the ratios of the observed covariances therefore identify the ratios of the corre-

sponding factor loadings, as for example:5

Cov(M?
1 ;M?

2 | X)

Cov(M?
2 ;M?

3 | X)
=
αM1

αM3

. (3)

As a consequence, the factor loadings are identified up to a common proportionality

constant. This scaling issue arises because it is always possible to transform the model

by multiplying all factor loadings by a constant δ ∈ R and simultaneously dividing the

latent factor by the same constant, without changing the structure of the covariance

matrix. For instance, Cov(M?
1 ;M?

2 ) = (δαM1)(δαM2)(σ
2
θ/δ

2) = αM1αM2σ
2
θ is unchanged,

and the unrestricted variance of the factor is scaled by the inverse of δ2, i.e., V(θ/δ) =

σ2
θ/δ

2. This is the well-known rotation problem. To set the scale of the latent factor

and thereby solve this issue, either a factor loading or the variance of the factor has to

be set to a fixed value. The latter approach (setting σ2
θ = 1) does not completely solve

the rotation problem, as it is still possible to switch the signs of the factor loadings

and of the latent factors simultaneously (using δ = −1) without affecting the likelihood

function. Using the covariance matrix Ω?, it is straightforward to see that only the

squares of the factor loadings can be identified in that case, as for example:

Cov(M?
1 ;M?

2 | X) Cov(M?
1 ;M?

3 | X)

Cov(M?
2 ;M?

3 | X)
= (αM1)

2,

which identifies the factor loading αM1 up to its sign. The former identification approach

(setting αM1 = 1) addresses this sign-switching problem. In Eq. (3), fixing αM1 to 1

automatically identifies the inverse of αM3 . It also has the benefit of giving a metric to

the latent factor, by anchoring it to a given variable of interest (Cunha et al., 2010).

It is important to emphasize that both normalizations are innocuous for the results.

In our application, we fix the variance of the factor to 1 and address the sign-switching

issue a posteriori in the framework of our Bayesian analysis.6 Hence, we implicitly

assume that the scale of the factor is the same across different groups, but that the

5Note that in the following, the identification strategy is described for the general case. Identi-
fication would be easier in our framework, since the variances of the error terms are set to 1 in the
measurement system, implying that V(M?

k | XM ) = α2
Mk

+ 1 (assuming σ2
θ = 1). This would only be

possible, however, if the latent variables M?
k were observed.

6See Section C.2 for details.
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impact of the factor on the variables might differ. For instance, females and males

might react differently to a given psychometric question measuring locus of control.

This restriction will thus facilitate comparisons across groups.

Since we are working with a combination of continuous and discrete variables, the

covariance matrix Ω? defined in Eq. (2) cannot be directly observed. It can, however, be

estimated if additional distributional assumptions are made on the unobservables of the

model. When multivariate normality is assumed, it can be shown that the correlations

between all underlying latent variables and manifest continuous variables are identified.

More specifically, the polychoric correlations are identified in the measurement system

(Olsson, 1979a;b; Jöreskog, 1994) and can thus be used to identify the factor loadings

based on the strategy outlined above. How well this identification strategy works in

practice depends on the amount of information that can be extracted from the observed

discrete variables. Intuitively, the larger the number of categories of the Likert scale

used for the measurements, and the more scattered the answers on this scale, the more

informative the data. This information allows a better empirical identification of the

factor model. Section 5 of the paper (see also Section D for the experimental setup)

investigates how much information can be extracted from the observed variables to

identify the model.

The presence of discrete variables does not usually hinder the nonparametric iden-

tification of the factor model, as long as some minimal conditions are fulfilled. Cunha

et al. (2010) show how the distribution of the latent factor and of the error terms can be

nonparametrically identified in a general framework. Unfortunately, at least two con-

tinuous variables are required to achieve nonparametric identification, whereas most of

the variables are discrete in our model. This is why we have to rely on a parametric

approach, and assume normality of the unobservables for this purpose:

θ ∼ N
(
0; σ2

θ

)
, (εS, ε

0
D, ε

1
D, εM1 , . . . , εMK

)′ ∼ N (0; Σ) , (4)

where σ2
θ = 1 and Σ = IK+3. For the error terms of the wage equation, we relax

normality by specifying a mixture of Hs normal distributions with zero mean:

εsY ∼
Hs∑
h=1

πshN
(
µsh; (ωsh)

2
)
, E(εsY ) =

Hs∑
h=1

πsh µ
s
h = 0, (5)
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for s = 0, 1, where ϑsh = (πsh, µ
s
h, ω

s
h) denotes, respectively, the weight, mean and

standard deviation of mixture component h for outcome Ys, and ϑ = (ϑ0, ϑ1) with

ϑs = (ϑs1, . . . , ϑ
s
Hs

). Mixtures of normals are widely used as a flexible semiparametric

approach to density estimation (Ferguson, 1983; Escobar and West, 1995). These mix-

tures allow us to capture unobserved heterogeneity that arises because individuals work

in different sectors of the labor market.7

7In a frequentist approach, Dagsvik et al. (2011) find that Gaussian mixtures improve the fit of
heavy-tailed log earnings distributions compared to normal distributions.
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C Bayesian Inference

This section presents the prior specification of our model (Section C.1), discusses some

challenging aspects of the sampling scheme in our particular framework (Section C.2),

and provides a complete description of the algorithm (Section C.3).

C.1 Prior specification

The posterior distributions of the parameters are obtained by combining the likeli-

hood function to their prior distributions through the application of Bayes’ theorem.

Therefore, the first step of the analysis consists of specifying prior distributions for all

parameters. All the distributions we rely on are conjugate priors and are commonly

used in the literature.

Conjugate normal prior distributions are used for the factor loadings and the re-

gression coefficients:

α ∼ N (a0; A0) , for α = αS, α
0
D, α

1
D, α

0
Y , α

1
Y , αM1 , . . . , αMK

,

β ∼ N (b0 ι; B0 I) , for β = βS, β
0
D, β

1
D, β

0
Y , β

1
Y , βM1 , . . . , βMK

,

with A0 > 0 and B0 > 0, and where I and ι denote, respectively, the identity matrix

and the vector of ones of dimensions corresponding to the length of the vector β.

The latent factor θ has been specified to be normally distributed in Eq. (4) for iden-

tification purposes, which, in our Bayesian framework, represents the prior distribution

of this latent variable.

For the mixture of normals in the wage equations, we use a Dirichlet distribution

for the weights, a normal for the means and an inverse-Gamma distribution for the

variances of the mixture components:

πs = (πs1, . . . , π
s
Hs

) ∼ Dir(p, . . . , p) , µsh ∼ N (m0; M0) , (ωsh)
2 ∼ G−1(g0; G0) ,

with p > 0, M0 > 0, g0 > 0 and G0 > 0, for h = 1, . . . , Hs, except for the mean of the

last component that is assumed to be µsHs
= −

∑Hs−1
h=1 πshµ

s
h/π

s
Hs

to guarantee that the

mean of the mixture is equal to zero (see Eq. (5)).

The last ingredient is the prior on the thresholds of the ordinal variables for the

measurement equations. For each cutoff point γk,c, we assume a uniform prior on the

10



interval delimited by the previous and the next thresholds, to guarantee the ordering:

γk,c ∼ U(γk,c−1; γk,c+1) , for k = 1, . . . , K and c = 2, . . . , Ck − 1,

where γk,1 is set to zero for identification purpose, while γk,0 = −∞ and γk,Ck
= +∞.

Table C.1 shows the values of the prior parameters specified in our Monte Carlo

study presented in Section 5 of the paper. None of these distributions impose a lot of

prior knowledge on the model, so as to remain as general as possible.

Table C.1: Prior Parameter Specification

Model parameters Prior parameters

Factor loadings a0 = 0.0 A0 = 3.0
Regression coefficients b0 = 0.0 B0 = 10.0
Mixture components for wage equations:

Weights p = 1.0
Means m0 = 0.0 M0 = 1.0
Variances g0 = 2.0 G0 = 1.0

C.2 MCMC sampling: special features of our algorithm

We implement a Gibbs sampler that draws the parameters and the latent variables

iteratively from their posterior distributions (Casella and George, 1992; Smith and

Roberts, 1993). Starting with random values, each parameter is sampled conditional

on the current values of the other parameters, and the procedure is repeated until

convergence to the stationary distribution is achieved. The values obtained from the

first iterations are discarded (“burn-in period”), and only the last ones corresponding

to the target distribution are saved for posterior inference. The detailed steps of the

algorithm with the corresponding conditional distributions are presented in Section C.3.

Bayesian inference for ordinal variable models. The standard approach pro-

posed by Albert and Chib (1993), which consists of drawing the thresholds sequentially

from their uniform conditional distributions, generates Markov chains that are highly

correlated, which can prevent the algorithm to explore the whole posterior distribu-

tion of the parameters. As noted by Cowles (1996), the high correlation between the

cutpoints γ and the latent response variable M? results in a slow convergence and in

11



a poor mixing of the Markov chain for the parameters of the ordinal equations. In

the end, this can bias the inference if the algorithm fails to generate a sample that is

representative of the posterior distribution of interest.

To remedy this problem, several technical improvements have been proposed. Cowles

(1996) introduced a Hastings-within-Gibbs step in the algorithm to draw the cut-points

and the latent response variable simultaneously, while Nandram and Chen (1996) pro-

posed a simple reparameterization that proves to be particularly effective, especially in

the three-category case. More recent approaches based on parameter expansion (Liu

and Wu, 1999) or marginal data augmentation (van Dyk and Meng, 2001; van Dyk,

2010) can be applied as well for this purpose. Alternatively, we opt for the approach

introduced by Liu and Sabatti (2000a), which consists of applying group transforma-

tions in the sample space of the parameters to improve the efficiency of the sampler,

without affecting the target distribution of the parameters.8 This procedure speeds up

convergence and enhances the mixing of the chain, while being less computationally

burdensome than other methods.

Missing data problem: To sample or not to sample? The missing data prob-

lem results in an unbalanced sample, where for some individuals only the measurements

and the schooling decision are observed, while for others only schooling and outcomes

are available. Section 3.2 of the paper explains how to integrate out the unobserved

variables to deal with this issue. From a Bayesian perspective, two different approaches

can be adopted to achieve this goal: The missing variables can either be integrated

out analytically or numerically. In the former case, any left-hand side variable that is

not observed disappears from the likelihood function, and as a consequence the sam-

pler only uses the available information to draw the corresponding parameters of each

equation. For example, to sample the factor loadings in the outcome equations, only

the individuals with non-missing outcomes – but possibly missing measurements – are

used. In the latter case, the missing variables are simulated during sampling to do the

integration numerically. This is done by adding one step to the algorithm, where each

of the missing variables is sampled from its conditional distribution for the correspond-

ing individuals. This procedure represents another application of data augmentation

methods. It restores the balance of the sample, as it makes the number of available

values the same for all variables (a combination of observed and simulated values).

8In our case, one separate group transformation is applied for each ordinal equation Mk, for
k = 1, . . . ,K.
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Which of the two approaches should be favored in practice? The answer to this

question depends on the objectives of the analyst. Both methods are equivalent and

provide the same numerical results, but the resulting Markov chains have different

statistical properties. The analytical integration is more efficient, as it gets rid of any

missing information that would otherwise have to be simulated. The simulation of

the missing values can indeed be unattractive from a statistical point of view, as it

increases the level of autocorrelation between the parameters. Intuitively, during the

iterative process the missing variables are simulated conditional on the parameters, and

the parameters are subsequently sampled conditional on the simulated variables. This

can hinder convergence, and compromise the mixing of the Markov chain. For these

reasons, some authors advocate to “collapse” the Gibbs sampler, i.e., to integrate out

analytically any parameters or variables that are not relevant for the analysis, whenever

possible (Liu, 1994; Liu et al., 1994; van Dyk and Park, 2008).

In some cases, however, the analyst might be interested in recovering the missing

values, for instance to study the distribution of counterfactual outcomes.9 In this

scenario, the numerical integration based on data augmentation should be used, as

the benefits of simulating the missing values clearly outweigh the loss of efficiency

introduced by the procedure. Longer Markov chains (i.e., more MCMC iterations) are

one solution to address this issue.

C.3 MCMC sampler

The Gibbs sampler draws the parameters and the augmented data of the model se-

quentially from their conditional distributions (see Casella and George, 1992; Smith

and Roberts, 1993). At each step, each parameter is updated conditionally on the data

and on the current values of the other parameters. We provide below the correspond-

ing posterior distributions, omitting to specify the conditioning sets to simplify the

notation.

As discussed in Section C.2, the unobserved measurements and outcomes can either

be integrated out analytically or numerically. In the latter case, additional steps are

added to the algorithm to sample the missing values. In both cases, we denote IY the

set of indices corresponding to the individuals included in the analysis to update the

9Counterfactuals are the potential outcomes the individuals would have received had they been in
the other schooling group, which can never be observed in practice, but simulated in the framework of
our analysis.
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corresponding parameters of equation Y (i.e., IY = {1, . . . , N} when data augmentation

is implemented for the numerical integration of the missing values, and IY is the subset

of individuals for whom Y is observed in the case of the analytic integration).

Starting with some initial values (either fixed to some pre-specified values or drawn

randomly), the Gibbs sampler proceeds by drawing the parameters and the augmented

variables sequentially from the following conditional distributions, until practical con-

vergence is achieved:

1. Update the mixtures of normals for the error terms of the wage equa-

tions. Data augmentation is applied through the introduction of binary variables

zsih to indicate group membership h = 1, . . . , Hs of each individual i = 1, . . . , N ,

for each potential wage s = 0, 1 (see Diebolt and Robert, 1994). Let zsih = 1 if

individual i belongs to mixture group h, and to zero otherwise.

(a) Update the group indicators. Each individual i ∈ IYs is allocated to

mixture component h = 1, . . . , Hs with probability:

Pr(zsih = 1) =
πsh φ

(
Ỹsi;µ

s
h, (ω

s
h)

2
)

∑Hs

l=1 π
s
l φ
(
Ỹsi;µsl , (ω

s
l )

2
) ,

where φ
(
Ỹsi;µ

s
h, (ω

s
h)

2
)

is the probability density function of the normal

distribution with mean µsh and variance (ωsh)
2 evaluated at Ỹsi, with Ỹsi =

Ysi − XY iβ
s
Y − θiα

s
Y , denoting XY i the ith row of the matrix of covariates

XY .

(b) Mixture weights:

πs ∼ Dir
(
p+ ns1, . . . , p+ nsHs

)
,

where nsh =
∑

i∈IYs
zsih is the number of individuals in mixture group h.

(c) Update the mixture variances:

(ωsh)
2 ∼ G−1

g0 +
nsh
2

; G0 +
1

2

∑
i∈IYs
zsih=1

(Ỹsi)
2

 .
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(d) Update the mixture means. To satisfy the zero mean restriction of the

mixture, sample the first Hs − 1 mixture means as:

(µs1, . . . , µ
s
Hs−1) ∼ N

(
µ̃s; Ω̃s

)
,

with:

Ω̃−1
s = diag Hs−1

h=1

{
nsh(ω

s
h)
−2 +M−1

0

}
+
π−Hsπ

′
−Hs

πHs

{
nsHs

(ωsHs
)−2 +M−1

0

}
,

µ̃s = Ω̃s vecHs−1
h=1

(ωsh)
−2
∑
i∈IYs
zsih=1

Ỹsi +
m0

M0

− πsh
πsHs

(ωsHs
)−2

∑
i∈IYs
zsiHs

=1

Ỹsi +
m0

M0


 ,

where π−Hs = (πs1, . . . , π
s
Hs−1)′, and diag {·} (resp., vec {·}) is the matrix

operator that creates a diagonal matrix (resp., a column vector) with the

corresponding elements specified.

Compute the last mixture mean as µsHs
= −

∑Hs−1
h=1 πshµ

s
h/π

s
Hs

.

(e) Transform the variables of the wage equations as follows, for all i ∈ IYs :

Y mix

si ← (Ysi − µsgsi )/ωsgsi , Xmix

Y i ← XY i/ω
s
gsi , θmix

i ← θi/ω
s
gsi , (6)

where gsi =
∑Hs

h=1 h z
s
ih denotes the group membership of individual i. With

these transformed variables, the conditional distribution of wages (Y mix
s ) be-

comes a normal distribution conditional on group membership of the indi-

viduals, which simplifies the sampling of the other parameters.

2. Update the factor loadings. For each equationW = S,D0, D0, Y0, Y1,M1, . . . ,MK :

αW ∼ N (aαW
; AαW

) , A−1
αW

=
∑
i∈IW

θ2
i + A−1

0 ,

aαW
= AαW

(∑
i∈IW

θiW̃i +
a0

A0

)
,

for each loading αW = αS, α
0
D, α

1
D, α

0
Y , α

1
Y , αM1 , . . . , αMK

, where W̃i = W ?
i −

XWiβW for the corresponding covariates XW = XS, XD, XY , XM . Note that in

the wage equations, the transformed variables Y mix
s , Xmix

Y and θmix obtained from

Eq. (6) are used to deal with the mixture of normals.
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3. Update the regression coefficients. For each equation W = S,D0, D0, Y0, Y1,

M1, . . . ,MK :

βW ∼ N (bβW ; BβW ) , B−1
βW

=
∑
i∈IW

X ′WiXWi +B−1
0 I,

bβW = BβW

(∑
i∈IW

X ′Wi(W
?
i − θiαW ) +

a0

A0

ι

)
,

where βW = βS, β
0
D, β

1
D, β

0
Y , β

1
Y , βM1 , . . . , βMK

is the vector of regression coeffi-

cients corresponding to the covariates XW = XS, XD, XY , XM , and in the wage

equations the transformed variables Y mix
s , Xmix

Y and θmix are used to deal with the

mixture of normals (see Eq. (6)).

4. Update the latent variables underlying the variables:

W ?
i ∼ T N[Wi] (XWiβW + θiαW ; 1) , for i ∈ IW ,

for each equation W = S,D0, D0,M1, . . . ,MK , using the corresponding factor

loadings αW = αS, α
0
D, α

1
D, αM1 , . . . , αMK

, the covariates XW = XS, XD, XM , and

the regression coefficients βW = βS, β
0
D, β

1
D, βM1 , . . . , βMK

. The normal distribu-

tion is truncated to the intervalWi that depends on the type and on the observed

value of the corresponding variable Wi, for each individual i = 1, . . . , N : In the

binary case (schooling and labor market participation), Wi = (−∞; 0] if Wi = 0

andWi = (0; +∞) if Wi = 1. In the ordinal case (measurements),Wi = (γc−1, γc)

if Wi = c.

Note that if the missing values are integrated out numerically, they are automat-

ically sampled from their conditional distributions (since IW is the set of indices

of all included individuals, including those with missing values in the case of nu-

merical integration). In this case, there is no truncation, i.e., Wi = (−∞,+∞).

If necessary (i.e., if the missing values of the wages are integrated out numerically),

impute the missing wages from the following mixture of normals, for s = 0, 1:

Ysi ∼
Hs∑
h=1

πshN
(
µsh +XY iβ

s
Y + θiα

s
Y ; (ωsh)

2
)
.
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5. Update the thresholds of the ordinal equations in the measurement

system. For each measurement Mk, k = 1, . . . , K, update each cutoff points as

follows, conditional on all the other cutoff points (see Albert and Chib, 1993):

γk,c ∼ U

max

max
i∈IMk
Mki=c

(M?
ki); γk,c−1

 ; min

 min
i∈IMk

Mki=c+1

(M?
ki); γk,c+1


 ,

for each c = 2, . . . , Ck − 1 (remember that γk,1 = 0 for identification, and γk,0 =

−∞ and γk,Ck
= +∞).

6. Apply the Liu and Sabatti (2000b) transformation to the ordinal equa-

tions to boost sampling. For each equation Mk of the measurement system,

k = 1, . . . , K, consider the following group transformation that rescales the un-

derlying latent part:

Γνk =
{(

[δkM
?
ki]i∈IMk

, δkβMk
, δkαMk

, δkγk

)
, δk > 0

}
,

where νk is the number of parameters to transform, i.e., νk = Nk + pk + Ck − 1,

where Nk = card(IMk
) is the number of included individuals for whom the latent

variable M?
ki needs to be rescaled, pk is the number of regression coefficients in

βMk
, Ck−2 is the number of unrestricted cutoff points, and there is a single factor

loading.

The (squared) transformation parameter δ2
k is sampled from the following Gamma

distribution:

δ2
k ∼ G

νk + 1

2
;

1

2

 ∑
i∈IMk

(M?
ki −XMiβMk

− θiαMk
)2 +

α2
Mk

A0

+
β′Mk

βMk

B0

 ,

and the parameters and latent variables are then rescaled as follows:

M?
ki ← δkM

?
ki, βMk

← δkβMk
, αMk

← δkαMk
, γk ← δkγk.
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7. Update the latent factor. Denote Ỹ ?
i the vector of demeaned variables and αi

the vector of factor loadings for individual i:

Ỹ ?
i =



S?i −XSiβS

D?
0i −XDiβD0

D?
1i −XDiβD1

(Y0i −XY iβY0 − µ0
g0i

)/ω0
g0i

(Y1i −XY iβY1 − µ0
g1i

)/ω1
g1i

M?
1i −XMiβM1

...

M?
Ki −XMiβMK


, α̃i =



αS

αD0

αD1

αY0/ω
0
g0i

αY1/ω
1
g1i

αM1

...

αMK


,

where for the wage equations the variables and factor loadings are transformed

appropriately to take into account the mixtures of normals, considering that indi-

vidual i belongs to mixture group gsi , for s = 0, 1. Using this notation, the latent

factor θi is sampled from:

θi ∼ N

(
α̃′iỸ

?
i

α̃′iα̃i + 1/σ2
θ

;
1

α̃′iα̃i + 1/σ2
θ

)
,

where in our case σ2
θ = 1 for identification purpose (see Section B of the paper).

When the missing values are integrated out numerically (e.g., missing measure-

ments for the adults), only the subvectors of Ỹ ?
i and α̃i corresponding to the

observed variables for individual i are considered to sample the latent factor. For

example, the latent factor of an individual from the adult sample who achieved

higher education would be updated using the three corresponding equations:

Ỹ ?
i =


S?i −XSiβS

D?
1i −XDiβD1

(Y1i −XY iβY1 − µ0
g1i

)/ω1
g1i

 , α̃i =


αS

αD1

αY1/ω
1
g1i

 .

8. Update the variance of the latent factor. Note that this step is not required

in our analysis, since we are assuming σ2
θ = 1 to set the scale of the factor (see

Section B of the paper). We provide it here for the sake of completeness.
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Assuming that the variance σ2
θ is a priori following an inverse-Gamma distribution

with shape parameter gθ0 and scale parameter Gθ
0, the posterior distribution is:

σ2
θ ∼ G−1

(
gθ0 +

N

2
; Gθ

0 +
1

2

N∑
i=1

θ2
i

)
.

Note on the potential label-switching problem affecting the mixture of nor-

mals in the wages equations. The prior specification on the mixture of normals

used in the paper does not secure the identification of the individual mixture param-

eters, as the mixture components might be switched without affecting the likelihood.

This label-switching problem has drawn a lot of interest in the literature on mixture

modeling (Celeux, 1998; Stephens, 2000a;b), and solutions have been proposed to solve

it (for a review, see Frühwirth-Schnatter, 2006, Section 3.5.5). However, it is not a

concern in our case, as we only use the mixture to estimate the distribution of the

error terms in a flexible ways. This distribution is identified, even if the single mixture

components are not. For this reason, we do not add any additional restrictions.
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D Monte Carlo Study: Experimental Setup

Data generation. We run several experiments using synthetic data generated from

the model described in Section 3.1 of the paper. Each of the data sets contains five

ordinal measurements (M), one schooling equation (S) and two potential outcome

equations (Y ). The variables are censored to create two distinct subsamples: a youth

sample where only M and S are observed, and an adult sample where only S and Y are

observed. Therefore, the schooling equation links the two subsamples. We also allow

the subsamples to overlap, and look at four scenarios: full overlap (i.e., no missing

data problem), no overlap (no individuals with M , S and Y observed simultaneously),

and partial overlap (all variables available for 40% or 13% of the individuals, where

the latter case corresponds to our empirical application).10 The schooling equation is

specified either as binary or as continuous,11 so as to better apprehend the role played

by this equation in linking the two data sets.

In this simplified model, the youth sample allows to fully identify the measurement

system M and the schooling equation S, but not the outcome system Y . The adult sam-

ple, on the contrary, does not allow to identify the measurement system. Remarkably,

this second sample does not identify the outcome system either, as two covariances are

not enough to identify three factor loadings: only Cov(S?;Y0 | X) and Cov(S?;Y1 | X)

are available, since the covariance between the two potential outcomes Cov(Y0;Y1 | X)

can neither be observed nor estimated, but this is not enough to identify αS, α0
Y , α1

Y .

However, the combination of both samples, as well the overlap sample, provide enough

information to solve the missing data problem.

We vary in different ways the amount of information that is available from the data

to identify the distribution of the latent factor. The more overlap between the two

samples, or the larger the number of observations, the easier it should be to extract

information to proxy the factor, thus the more precisely we should be able to measure

its impact on the outcomes. Similarly, the inference should be facilitated when the

schooling equation is continuous rather than binary, as continuous variables bring more

information to the table.

10The subsamples are balanced (same number of observations in both subsamples) in all cases except
the 13% overlap case that is simulated to mimic the data of our empirical application: 39% in the
adult sample only, 48% in the youth sample only, and the remaining 13% in the overlap sample (see
Table 2 in paper).

11In the continuous schooling case, the potential outcomes are observed based on the sign of the
schooling variable.
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For the latent part of the model, we specify the factor loadings as follows:

α =
(
αS α0

Y α1
Y αM1 . . . αM5

)
=
(

0.4 −0.3 0.3 1.0 0.9 0.8 0.7 0.6
)
,

and simulate the unobservables from normal distributions, for s = 0, 1 and k = 1, . . . , 5:

θ ∼ N (0; 1) , εS ∼ N (0; 1) , εsY ∼ N (0; 0.2) , εMk
∼ N (0; 1) .

The same variance is used for the error term of the schooling equation in the binary

case and in the continuous case, even if in most applications the idiosyncratic variance

would typically be much lower in the continuous case. Keeping the same signal-to-noise

ratio allows us to better compare the results across the two specifications.

In each equation, we include an intercept term and four covariates simulated inde-

pendently from standard normal distributions, i.e., XS = XY = XM ≡ X =
(
ι X̃

)
where X̃i ∼ N (0; I4) for i = 1, . . . , N . The corresponding regression coefficients are

simulated as:

βS =
(

0.5 β̃S

)
, βsY =

(
0.5 β̃sY

)
, βMk

=
(

2.0 β̃Mk

)
,

β̃S ∼ N (0; I4) , β̃sY ∼ N (0; I4) , β̃Mk
∼ N (0; I4) ,

for s = 0, 1 and k = 1, . . . , 5. The latent utilities of the measurements are discretized

using the thresholds γk = (−∞, 0, 2, 4,+∞), for k = 1, . . . , 5, creating ordinal variables

on a 4-category Likert scale (Ck = 4).

We generate data sets of dimensions N = 1, 500 (similar to our empirical applica-

tion) and N = 10, 000, and replicate the simulations 100 times for each Monte Carlo

experiment. The model parameters specified above (factor loadings, regression coeffi-

cients, idiosyncratic variances and thresholds) are fixed across Monte Carlo replications,

only the latent factor, the covariates and the error terms are resampled, thus generating

new measurements, schooling and potential outcomes. With this parameter specifica-

tion, the proportion of treated individual is equal to 0.58 in the binary schooling case,

and to 0.50 in the continuous case.

MCMC Sampling. The formal identification of the factor model is achieved by fixing

the variance of the latent factor to 1. The MCMC sampler is run without any additional

restrictions, which implies that a sign-switching problem of the factor loadings can arise.
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We solve this problem a posteriori by processing the draws to restore the correct signs.

This post-processing is based on the factor loading of the first measurement equation,

αM1 , which is assumed to be always positive.12 The prior parameters are specified in

Table C.1. Markov chains with 30, 000 iterations are simulated for each experiment,

where the first 10, 000 iterations are discarded as burn-in period.

In some cases, the factor loading of the schooling equation converges to zero, and

the loadings in the outcome system are nonsensical. The same phenomenon can be

observed in our empirical application. This appears to be a symptom that the data

combination strategy fails to empirically identify the full model. In these particular

cases, the algorithm gets trapped in an area of the parameter space where the latent

factor captures two different traits in the two subsamples, and these two interpretations

cannot not be reconciled in the common schooling equation – thus resulting in a zero

factor loading αS. Clearly, the bridge between the two subsamples is broken and the

data combination fails. Fortunately, these ill-behaved cases can easily be detected and

discarded by re-running the algorithm with different starting values, and checking that

αS converges to a nonzero value.

12A posteriori, for each MCMC iteration r = 1, . . . , R, set α(r) ← −α(r) if α
(r)
M1

< 0. Frühwirth-
Schnatter and Lopes (2010), Conti et al. (2014) use a similar posterior approach to solve the sign-
switching problem.
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E Data Addendum

Our data come from the German Socioeconomic Panel (SOEP), a representative lon-

gitudinal micro-data set that contains a wide range of socio-economic information on

individuals in Germany, comprising follow-ups for the years 1984-2011. Information

was first collected from about 12,200 randomly selected adult respondents in West Ger-

many in 1984. After German reunification in 1990, the SOEP was extended to around

4,500 persons from East Germany, and subsequently supplemented and expanded by

additional samples. The data are well suited for our analysis in that they allow us

to exploit information on a wide range of background variables, locus of control and

wages, for a representative panel of individuals. Furthermore, the inclusion of a special

youth survey, comprising information on 17-year-old individuals, allows us to obtain

background variables and locus of control measures for individuals who have not yet

entered the labor market.

E.1 Combining samples

Our focus is to analyze the impact of locus of control and to purge our estimates

of measurement error and endogeneity problems. Hence, to investigate how locus of

control affects schooling decisions and wages, respectively, we would ideally need a

sample of individuals for whom locus of control measures are collected at several points

in time: first, prior to schooling, then at the time when individuals make education

decisions, and third, at a time just before they start working on the labor market.

However, we only have access to one measure of what we term ‘pre-market’ locus

of control. This measure is taken when individuals are 17 years of age, just after

compulsory schooling, but before they enter the labor market.13 We then combine the

sample of youth for which we have ‘pre-market’ locus of control measures with a sample

of young adults for whom we observe labor market outcomes. We draw our samples on

the basis of selection criteria that are explained in the following.

E.1.1 Youth sample

Our youth sample is composed of 1,901 individuals born between 1984 and 1994, all

of which are children of SOEP panel members. A comprehensive set of background

13Locus of control measures have also been collected for a cross section of young adults in 2005
and 2010. We use this information to compare distributions of locus of control and to investigate how
much these locus of control measures are flawed by previous labor market experience.
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variables, schooling choices, as well as locus of control measures of these individuals,

have been collected in the years 2001-2011, when the subjects were 17 years of age.

After the first interview at age 17, all subjects are subsequently interviewed on a yearly

basis until early adulthood. For example, in 2011, the oldest youth are 27 years of age.

An exception to the age rule was made for the 2001 wave, such that some subjects

were already 18 or 19 years of age when first completing the questionnaire. We exclude

these individuals from our sample. To ensure that our results are not flawed by post

1991 schooling and labor market adjustments, all individuals who went to school in

East Germany (the former German Democratic Republic) have been excluded. Last,

we exclude all individuals with missing locus of control measures, missing schooling

information, or missing information among the covariates.

E.1.2 Adult sample

The adult sample used for our analysis comprises information on 1,606 individuals, aged

26-35, who are drawn from all West German representative subsamples We construct

a cross-section of individuals based on the most recent information available from the

waves 2004-2011. Hence, most of our information on the adult sample stems from the

2011 wave. However, if some important pieces of information on certain individuals in

that wave are missing, they are filled up with information from 2010. If the information

in the 2009 wave is also missing, information from 2006 is used, and so on.

We want to ensure that labor market outcomes and cognitive measures are not

related to language problems, post 1991 adjustments, or discrimination. Hence, we

exclude non-German citizens, individuals who did not live in West Germany at the time

of reunification, as well as individuals whose parents do not speak German as a mother

tongue. We also exclude handicapped individuals and individuals in vocational training.

Furthermore, we exclude individuals with missing schooling information, because the

schooling equation is crucial as it links our two samples and ensures identification. Also,

individuals with missings among the control variables are dropped from the sample.

E.2 ‘Pre-market’ locus of control

In the SOEP, locus of control is measured by a 10-item questionnaire. However, the

number of possible answers differs between the years 2001-2005, where a 7-point scale

was used, and the years 2006-2011, where a 4-point item scale was used. To make the

questionnaire comparable across samples, we transform the 7-point scale into a 4-point
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scale by assigning the middle category (4) either to category 2 or 3 of the 4-item scale,

depending on the most probable answer. For example, if in the 2005 sample most youth

answered “completely agree,” people who answered “indifferent” in the 2006 sample are

assumed to tend toward the “slightly agree” answer. After transforming answers to have

the same scale, each question is answered on a Likert scale ranging from 1 (“completely

disagree ”) to 4 (“completely agree”).

E.3 School choice

We group schooling into two broad categories: higher education and lower education.

Individuals are classified as being highly educated whenever they have some kind of

academic qualification. That is, to qualify as highly educated, individuals need to

have passed at least those exams that mark the completion of secondary schooling,

and which are obtained in tracks with an academic orientation (German high school

diploma (Abitur) obtained either at Gymnasium or Gesamtschule). To identify the

level of schooling obtained, we use the international Comparative Analysis of Social

Mobility in Industrial Nations (CASMIN) Classification, which is a generated variable

available in the SOEP. We define individuals as being highly educated when their

attained education level corresponds to CASMIN categories (2c, 3a, 3b). Similarly,

individuals are low-educated if their education status is classified according to CASMIN

classification categories (1b, 1c, 2a, 2b). Furthermore, for a subsample of youth who

have not completed their education at the time of the last interview, we replace their

final education status with their aspired (planned) level of education.

E.4 Wage construction and labor market participation

Wages are constructed by using most recent wage information available from the SOEP.

Whenever occurring, missing wage information was substituted by wage information

obtained in one of the earlier years. Wages have been inflation adjusted to match 2011

wage levels (inflation rates obtained from Eurostat). Wages are assigned a missing

whenever the respective individual is indicating not to have a regular (full time or part

time) job. We exclude other types of employment such as marginal employment, to

ensure that we are not including typical student jobs.

Hourly wages have been constructed by dividing gross monthly wages by the actual

number of hours worked in the last month before the interview. Log hourly wages
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are then obtained by taking the natural logarithm of the hourly wage variable. To

account for outliers, we trim hourly wages below the first and above the ninety ninth

percentiles. All individuals who indicate a positive wage are classified as labor market

participants. The low levels of labor market participation arise because many individ-

uals still participate in education or training. In fact, education measures are part of

active labor market policies in Germany, such that almost all young individuals not

currently employed are enrolled in education or training programs.

E.5 Covariates

In our measurements system, schooling equation and outcome equations, we control

for a large set of background variables (see Table E.2). The locus of control factor

distribution is identified from the covariance structure of the unobservables of the model.

Hence, any controls in the measurement system purge our measures of locus of control

of any effects which are captured by the covariates. Thus, the covariates in place should

be uncorrelated with the latent trait we want to capture, since in our model the latent

factor has to be uncorrelated with these covariates by construction. In the following,

a brief description of the different categories of covariates is provided. Descriptive

statistics are shown in Tables E.3 and E.4.

Parental education and investment

Parental education variables have been constructed in the form of dummy variables

for higher secondary degree (German Gymnasium), lower secondary degree (German

Hauptschule or Realschule), dropout and other degree. This information was collected

using the Biography Questionnaire, which every person answers when she is first inter-

viewed in the SOEP.

Apart from parental education, Parental investment is proxied by two variables:

broken home and number of siblings. Our broken home variable reflects the percentage

of childhood time spent in a broken home until the age of 15. This information was also

obtained from the Biography Questionnaire. Last, the number of siblings is obtained for

the youth by counting the number of siblings living in the household. If an individual

has many brothers and sisters, this may indicate that parental time is spread among

more individuals, and that overall parental investment is lower.
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Table E.2: Samples and included covariates

Typea Meas. Educ. Empl. Wage

Samples

Youth sample X X (X)b (X)b

Adult sample — X X X

Covariates

Number of siblings D X — — —
% of time in broken family C X X — —
Father dropout B X X X X
Father grammar school B X X X X
Mother dropout B X X — —
Mother grammar school B X X — —
Region: Northc B X X X X
Region: Southc B X X X X
Childhood in large cityd B X X X X
Childhood in medium cityd B X X X X
Childhood in small cityd B X X X X
Track recommendation (highest)e B X — — —
Track recommendation (lowest)e B X — — —
Local unemployment rate C — — X X
Local unemployment rate (edu)f C — X — —
Married B — — X X
Number of Children C — — X X
Age of individual C — X X X
Cohort 26/30 B — X — X
Cohort 31/35 B — X — X

aB = Binary, C = Continuous, D = Discrete.
bOnly a small subsample available for these equations.
cBase category is West Germany.
dBase category is Childhood in countryside.
eBase category is Recommendation for middle track.
fWhen the education decision is made.

Region dummies and city size

Because school quality and availability, culture and incomes may vary between large

and small municipalities, we control for the size of the city where agents spent most of

their childhood. Hence, we specify dummy variables for large city, medium city, small

city and countryside. Furthermore, we specify four region variables to represent the

current region of residence. Hereby, the German Länder (federal states) are classified

as follows:

• North: Berlin, Bremen, Hamburg, Lower Saxony, Schleswig-Holstein,
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• South: Bavaria, Baden-Württemberg,

• West: Hessen, North Rhine-Westphalia, Rhineland-Palatinate, Saarland,

• East: Brandenburg, Mecklenburg Western Pomerania, Saxony, Saxony-Anhalt,

Thuringia.

Unemployment rates

We construct unemployment rates at two different points in time. First, we use overall

German unemployment at the time when individuals are 17, to have a rough measure of

the business cycle when schooling decisions are made. Second, we use region (Länder)

specific unemployment rates at the time when labor market outcomes are observed.

The latter are important to explain the participation decision, as well as local wage

rates. All local unemployment rates are obtained from the Federal Employment Of-

fice (Bundesagentur für Arbeit), and overall unemployment from the German Federal

Statistical Agency (Bundesamt für Statistik).

Marital status and number of children

We construct a dummy variable for whether someone is married by looking at her

current marital status. Furthermore, we identify the number of dependent children by

counting all children for which child benefit payments (Kindergeld) are received by the

household. These variables are important, because previous studies show that being

married and the number of dependent children have a positive impact on labor market

participation and wages for males, and a negative one for females (see, e.g., Hill, 1979,

among others).

Track recommendation after elementary school

We acknowledge that both schooling decisions and locus of control measures may be

correlated with cognitive skills. Hence, in order to proxy cognitive skills, and to account

for the fact that schooling decisions may depend on prior track attendance, we include

an individual’s track recommendations after elementary school. In Germany, track rec-

ommendations are given to every student during 4th grade by their elementary school

teachers. In some of the German Länder, track recommendations are non-mandatory

(but generally adhered to). In some other Länder, track recommendations are compul-

sory.
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Table E.3: Descriptive statistics: covariates in the measurement system

Variables Mean and (sd)

Males Females

Broken home 0.22 (0.41) 0.22 (0.41)
Number of siblings 0.98 (1.22) 1.01 (1.22)
Father grammar school 0.30 (0.46) 0.33 (0.47)
Father dropout 0.03 (0.16) 0.03 (0.18)
Mother grammar school 0.24 (0.43) 0.26 (0.44)
Mother dropout 0.01 (0.10) 0.03 (0.16)
Recommendation: grammar school 0.39 (0.49) 0.45 (0.50)
Recommendation: general secondary school 0.16 (0.37) 0.13 (0.34)
Childhood in large city 0.21 (0.41) 0.22 (0.42)
Childhood in medium city 0.18 (0.39) 0.20 (0.40)
Childhood in small city 0.28 (0.45) 0.25 (0.43)
North 0.23 (0.42) 0.24 (0.43)
South 0.33 (0.47) 0.35 (0.48)

N 962 949

Source: SOEP, cross section using most recent information from

the waves 2004-2011. Own calculations.

Notes: p-values of a two-sided t-test for differences in means are reported.

Table E.4: Descriptive statistics: covariates in the outcome equations (by schooling)

Variables Males Females

Low High Pval Low High Pval

Age 26.63 25.85 0.00 26.52 25.88 0.01
Broken home 0.19 0.16 0.12 0.22 0.16 0.00
Father grammar school 0.10 0.47 0.00 0.10 0.46 0.00
Father dropout 0.03 0.01 0.03 0.04 0.01 0.00
Mother grammar school 0.10 0.35 0.00 0.09 0.35 0.00
Mother dropout 0.01 0.00 0.04 0.03 0.01 0.00
Married 0.14 0.11 0.03 0.19 0.11 0.00
Number of Children 0.24 0.13 0.00 0.32 0.14 0.00
Childhood in large city 0.16 0.26 0.00 0.18 0.25 0.00
Childhood in medium city 0.18 0.19 0.58 0.19 0.20 0.43
Childhood in small city 0.25 0.28 0.18 0.24 0.25 0.74
North 0.20 0.23 0.10 0.20 0.22 0.28
South 0.32 0.28 0.04 0.36 0.27 0.00
Local unemployment rate 7.62 7.50 0.46 7.58 7.63 0.77

N 1584 1532

Source: SOEP, cross section using most recent information.

from the waves 2004-2011. Own calculations.

Notes: p-values of a two-sided t-test for differences in means are reported.
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F Exploratory Factor Analysis

To determine the underlying dimensionality of locus of control, as measured by the

items displayed in Table F.5, we conduct a scree plot analysis displayed in Figure F.1.

With two eigenvalues larger than one this analysis suggests two underlying factors. A

scatter plot of the respective factor loadings (Fig. F.2), with the first two principal

factors on the axis, shows that the external locus of control measures (Q3, Q4, Q6, Q7

and Q9) load very highly on the external locus of control factor (factor 1), while the

other items have a loading close to zero (mainly Q1, Q5, Q8 and Q10). Furthermore,

the items with a close to zero loading are items that were designed to capture an

internal attitude, while the other items mostly capture the external dimension of locus

of control.

We can draw two conclusions from the item design and from our exploratory factor

analysis. First, researchers who use an index, constructed for example as the standard-

ized mean of the items, instead of a latent factor, force each of the measurement items

to enter the index with an equal weight. Doing this yields a locus of control measure

that is potentially flawed by measurement error, and to coefficients that are biased

downward due to attenuation bias. Second, a unidimensional factor of locus of control

captures mostly the external attitude dimension of locus of control. This motivates our

decision to focus on the external dimension of locus of control in our paper.

Table F.5: Locus of control, youth sample

Variables Mean and (sd)

Males Females

Q1 My life’s course depends on me 3.57 (0.61) 3.51 (0.60)
Q2 I have not achieved what I deserve 2.06 (0.85) 1.92 (0.80)
Q3 Success is a matter of fate or luck 2.22 (0.82) 2.33 (0.78)
Q4 Others decide about my life 2.16 (0.83) 2.12 (0.83)
Q5 Success is a matter of hard work 3.50 (0.60) 3.52 (0.57)
Q6 In case of difficulties, doubts about own abilities 2.03 (0.81) 2.32 (0.86)
Q7 Possibilities in life depend on social conditions 2.70 (0.78) 2.71 (0.75)
Q8 Abilities are more important than effort 3.05 (0.70) 3.06 (0.68)
Q9 Little control over what happens to me 1.91 (0.76) 1.95 (0.76)
Q10 Social involvement can help influence social cond 2.49 (0.86) 2.51 (0.78)

N 962 949

Means and (sd) displayed. Locus of control Answers: 1 (disagree completely) to 4 (agree completely).

External Locus of Control items in bold.

Source: SOEP youth sample 2000-2011.
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Figure F.1: Scree plot: all measurements versus 5 ‘external’ items only
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Figure F.2: Scatterplot of loadings: all measurements versus 6 ‘external’ items only
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G Empirical Application: Additional Posterior Re-

sults

This section provides posterior results for the regression coefficients of the measurement

and outcome systems.

Table G.6: Regression coefficients in measurement system, males (locus of control
reverse coded)

Variables

Loc 3 Loc 4 Loc 6 Loc 7 Loc 9

Constant 0.99 (0.12) 0.97 (0.14) 0.65 (0.11) 1.65 (0.12) 0.63 (0.12)
Childhood in large city 0.05 (0.12) -0.07 (0.14) -0.04 (0.12) -0.15 (0.11) -0.15 (0.13)
Childhood in medium city 0.00 (0.12) 0.10 (0.14) -0.02 (0.12) 0.03 (0.12) 0.11 (0.13)
Childhood in small city 0.02 (0.11) 0.02 (0.12) -0.06 (0.10) -0.05 (0.10) 0.04 (0.12)
North 0.04 (0.11) 0.01 (0.12) 0.06 (0.10) 0.19 (0.10) -0.07 (0.12)
South -0.02 (0.10) 0.14 (0.11) 0.19 (0.09) -0.02 (0.09) 0.22 (0.11)
Rec: grammar school 0.00 (0.10) -0.01 (0.12) -0.19 (0.10) 0.26 (0.09) 0.09 (0.11)
Rec: general secondary school 0.29 (0.12) 0.12 (0.14) 0.09 (0.12) 0.02 (0.11) 0.11 (0.13)
Number of siblings 0.00 (0.03) -0.01 (0.04) 0.01 (0.03) -0.07 (0.03) -0.00 (0.04)
Broken home 0.29 (0.10) 0.07 (0.11) 0.12 (0.10) 0.12 (0.09) 0.08 (0.11)
Father grammar school -0.17 (0.10) 0.02 (0.12) 0.05 (0.10) -0.10 (0.10) -0.30 (0.12)
Father dropout 0.08 (0.26) 0.11 (0.31) 0.50 (0.26) -0.07 (0.25) -0.11 (0.29)
Mother grammar school -0.15 (0.11) -0.01 (0.12) -0.01 (0.11) 0.01 (0.10) -0.05 (0.12)
Mother dropout 0.72 (0.41) -1.40 (0.52) -0.19 (0.40) -0.21 (0.38) -0.40 (0.46)
Locus of control -0.58 (0.06) -0.88 (0.10) -0.51 (0.06) -0.43 (0.05) -0.77 (0.08)

Means and standard deviations (in brackets) of the posterior coefficient distributions displayed.

Source: SOEP youth sample 2000-2011.
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Table G.7: Regression coefficients in measurement system, females (locus of control
reverse coded).

Variables

Loc 3 Loc 4 Loc 6 Loc 7 Loc 9

Constant 1.29 (0.12) 0.91 (0.13) 1.16 (0.12) 1.58 (0.12) 0.61 (0.17)
Childhood in large city 0.12 (0.11) -0.09 (0.12) 0.04 (0.11) -0.10 (0.11) 0.11 (0.17)
Childhood in medium city 0.22 (0.11) 0.26 (0.13) 0.15 (0.12) 0.24 (0.11) 0.27 (0.17)
Childhood in small city 0.03 (0.10) 0.23 (0.12) 0.04 (0.11) 0.14 (0.10) 0.19 (0.15)
North -0.05 (0.10) 0.02 (0.12) 0.05 (0.10) 0.01 (0.10) 0.06 (0.15)
South 0.04 (0.09) 0.00 (0.10) 0.22 (0.09) 0.03 (0.09) 0.25 (0.13)
Rec: grammar school -0.07 (0.09) -0.15 (0.11) -0.11 (0.09) 0.25 (0.09) -0.00 (0.14)
Rec: general secondary school 0.20 (0.12) -0.21 (0.14) -0.07 (0.13) 0.03 (0.12) 0.06 (0.18)
Number of siblings -0.02 (0.03) 0.03 (0.04) -0.08 (0.03) 0.00 (0.03) 0.08 (0.05)
Broken home 0.07 (0.10) 0.11 (0.11) -0.09 (0.10) -0.02 (0.09) 0.07 (0.14)
Father grammar school -0.20 (0.10) -0.09 (0.11) -0.13 (0.10) -0.15 (0.10) -0.11 (0.15)
Father dropout -0.05 (0.23) 0.57 (0.26) 0.06 (0.24) -0.13 (0.23) 0.15 (0.34)
Mother grammar school -0.17 (0.10) -0.03 (0.11) -0.08 (0.10) 0.06 (0.10) -0.10 (0.15)
Mother dropout 0.52 (0.26) -0.28 (0.29) 0.14 (0.27) 0.34 (0.26) 0.66 (0.37)
Locus of control -0.45 (0.05) -0.74 (0.07) -0.56 (0.06) -0.40 (0.05) -1.23 (0.18)

Means and standard deviations (in brackets) of the posterior coefficient distributions displayed.

Source: SOEP youth sample 2000-2011.
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H Simulation of the Model and Goodness of Fit

H.1 Model simulation

We simulate the model by computing the expected wage for different quantiles of the

distribution of the factor, conditional on a given set of covariates XY and conditional

on schooling S. The Gibbs algorithm we implement to estimate our model generates a

sample of the model parameters from their conditional distribution that can be used as

follows to approximate the expected wage for each quantile qθ of the factor distribution:

1

M

M∑
m=1

(
XY β

(m)
Y + q

(m)
θ α

(m)
Y

)
,

for a set of M simulated parameters (β
(1)
Y , α

(1)
Y ), . . . , (β

(M)
Y , α

(M)
Y ). The quantile of the

latent factor q
(m)
θ also has a superscript (m), since it depends on the variance of the

factor σ
2(m)
θ , and therefore varies during the MCMC sampling. Similarly, the schooling

and labor market participation probabilities in the qth quantile of the latent factor

distribution can be approximated by:

1

M

M∑
m=1

Φ
(
XSβ

(m)
S + q

(m)
θ α

(m)
S

)
,

1

M

M∑
m=1

Φ
(
XEβ

(m)
D + q

(m)
θ α

(m)
D

)
,

respectively, where Φ(·) denotes the cumulative distribution function of the standard

normal distribution. More specifically, the simulations we present rely on the deciles

of the distribution. All simulations are performed for the mean individual of the corre-

sponding sample.

H.2 Assessing goodness of fit

Our model provides a good fit to the data, and especially to the distribution of wages.

Figures H.3 to H.5 display the observed distribution of wages, along with their posterior

predictive distribution for the different specifications. The actual distribution is quite

well approximated by the posterior predictive distribution. The Kolmogorov-Smirnov

tests we conduct to compare the actual distribution and the posterior predictive dis-

tribution never reject the null hypothesis of equal distribution. This result is in great

part due to the use of normal mixtures for the error term, allowing for a flexible ap-

proximation of the true distribution.
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Figure H.3: Goodness-of-fit check for wages: posterior predictive (dashed) vs. ac-
tual distribution (solid) and Kolmogorov-Smirnov test for equal distributions (2
mixture components).
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(d) Females, with higher education

Notes: Model estimated using external locus of control measures and a 2-component mixture for the error term. Figures
display posterior predictive distributions and actual wages. Kernel density estimation implemented using a Gaussian
kernel with bandwidth selected using Silverman’s rule of thumb (Silverman, 1986) with the variation proposed by Scott
(1992). Wages predicted from their posterior distribution using 20,000 replications of the sample. Shaded area represents
95% confidence interval of posterior predictive distribution. Kolmogorov-Smirnov test: Two-sample KS-test with null
hypothesis that the actual sample and the posterior predictive sample have the same distribution. p-values in brackets,
computed using Monte Carlo simulations to determine the proper p-value in the presence of ties in the actual distribution
of wages (see Sekhon, 2011).
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Figure H.4: Goodness-of-fit check for wages: posterior predictive (dashed) vs. ac-
tual distribution (solid) and Kolmogorov-Smirnov test for equal distributions (3
mixture components).
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(d) Females, with higher education

Notes: Model estimated using external locus of control measures and a 3-component mixture for the error term. Figures
display posterior predictive distributions and actual wages. Kernel density estimation implemented using a Gaussian
kernel with bandwidth selected using Silverman’s rule of thumb (Silverman, 1986) with the variation proposed by Scott
(1992). Wages predicted from their posterior distribution using 20,000 replications of the sample. Shaded area represents
95% confidence interval of posterior predictive distribution. Kolmogorov-Smirnov test: Two-sample KS-test with null
hypothesis that the actual sample and the posterior predictive sample have the same distribution. p-values in brackets,
computed using Monte Carlo simulations to determine the proper p-value in the presence of ties in the actual distribution
of wages (see Sekhon, 2011).
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Figure H.5: Goodness-of-fit check for wages: posterior predictive (dashed) vs. actual
distribution (solid) and Kolmogorov-Smirnov test for equal distributions (normal
error term).
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(c) Females, no higher education
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(d) Females, with higher education

Notes: Model estimated using external locus of control measures and a gaussian normal for the error term. Figures
display posterior predictive distributions and actual wages. Kernel density estimation implemented using a Gaussian
kernel with bandwidth selected using Silverman’s rule of thumb (Silverman, 1986) with the variation proposed by Scott
(1992). Wages predicted from their posterior distribution using 20,000 replications of the sample. Shaded area represents
95% confidence interval of posterior predictive distribution. Kolmogorov-Smirnov test: Two-sample KS-test with null
hypothesis that the actual sample and the posterior predictive sample have the same distribution. p-values in brackets,
computed using Monte Carlo simulations to determine the proper p-value in the presence of ties in the actual distribution
of wages (see Sekhon, 2011).
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I Robustness Checks

In this section, we check the robustness of our model with respect to several aspects of

the specification: the number and type of locus of control measures, the covariates of the

model, the distributional assumptions on the latent locus of control factor and on the

error terms in the wage equations. Second, our identification hinges on the assumption

of common parameters in the schooling equation among the youth and adult samples.

To assess whether this assumption is indeed reasonable, we perform several checks

concerning differences in the distribution of parameters and the covariates across the

two samples.

I.1 Model specification.

First, our results may depend on the model specification and distributional assump-

tions. Most importantly, cognitive abilities may play a role in the school choice model.

As a robustness check, we therefore use four alternative ways of accounting for cog-

nitive abilities: (i) omitting track recommendation from the measurement system, (ii)

adding track recommendation to the schooling equation, (iii) adding school grades to

the measurement system (iv) introducing a second cognitive factor with a separate mea-

surement system which enters the schooling equation. Table I.10 compares the results

of five alternative models. Most importantly, cognitive abilities are likely to be part of

the structural school choice model. We therefore purge the locus of control estimates

by using track recommendation in the measurement system of locus of control. The

top four panels of Table I.10 present four alternative ways of accounting for cognitive

abilities. Panel 1 omits the track recommendation dummies from the measurement

system and panel 2 adds them to the schooling equation. Our results are invariant to

these changes and the posterior mean of the estimated coefficients remains almost iden-

tical, as does the estimated variance of the latent factor. Panel 3 displays the results

of a model where the most recent school grades obtained in math, German and the

first foreign language were included with track recommendation in the measurement

system. Again, this does not have a large impact on the results except that for females

the factor loadings in the schooling and wage equations decrease slightly. We proceed

by testing the robustness of our results with respect to the direct inclusion of cognitive

abilities in the model. Hence, we add a second measurement system with cognitive

measures and a second latent cognitive factor to the schooling equation. To do this, we
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use cognitive test measures that were administered to a subsample of our youth sample,

namely to all those who turned 17 in or after the year 2006. These cognitive measures

are part of the I-S-T 2000 R intelligence test, which measures the cognitive potential

of an individual on hands of three subscales: verbal numeric and figural cognitive po-

tential (von Rosenbladt and Stimmel, 2005). The results of this exercise are displayed

in panel 4 of Table I.10 and again do not change our main results and qualitative im-

plications. If at all the factor loadings slightly increase in size and significance. The

analysis with two factors, however, faces two potential limitations that are related to

the small sample for which we observe cognitive abilities. Specifically, all individuals

for which we observe cognitive ability measures are still relatively young and not yet

part of the labor force. Hence, there is no overlap sample for this group and including

the cognitive ability factor in the wage equations renders the model more unstable.

Because of the limited sample size, we can also not allow the cognitive and locus of

control factors to be correlated. Empirically, this is however not problematic because

the correlation of cognitive and locus of control measures is always less than 0.1 and

very close to zero for most item pairs. This result, together with our results from the

previous robustness checks, show that cognitive abilities and locus of control are two

very distinct orthogonal concepts and that the inclusion of cognitive abilities is not

crucial for the identification of our parameter estimates. Panel 5 of Table I.10 presents

a last robustness check of our model specification where we change the specification of

the wage equation to include not only the age of an individual but also a quadratic

term in age as a proxy for the squared experience term of a Mincer wage equation.14

Again, we find that this change in model specification does not change our results.

I.2 Distributional assumptions.

In addition to the sensitivity analyses discussed so far, we perform a range of estimations

to assess the robustness of the results with respect to the assumptions we make regarding

the dimensionality and shape of the locus of control factor and the error term in the wage

equations. First, the results of a factor model tend to be sensitive to the types, validity

and dimensionality of the underlying measurements used. To see how the inclusion of

additional items affects our results we re-estimated our model with the entire set of

ten locus of control measurements provided by the SOEP youth questionnaire. The

14We also have information about total labor force experience which however tends to be highly
correlated (∼0.8) with age.
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Table I.10: Robustness to model specification, factor loadings
of outcome system for different specifications

Males Females

No track recommendation in measurement system

S 0.204∗∗∗ (0.059) =0.225∗∗∗ (0.060)
E0 0.140 (0.101) =0.189∗ (0.109)
E1 =0.062 (0.138) 0.012 (0.110)
Y0 0.063∗ (0.036) =0.082∗∗ (0.038)
Y1 =0.068 (0.064) =0.013 (0.050)

Track recommendation in education choice

S 0.182∗∗∗ (0.070) 0.217∗∗∗ (0.067)
E0 0.151 (0.100) 0.185∗ (0.110)
E1 =0.060 (0.133) 0.021 (0.115)
Y0 0.060 (0.036) 0.080∗∗ (0.038)
Y1 =0.067 (0.062) 0.003 (0.050)

With grades in measurement system

S 0.193∗∗∗ (0.069) 0.215∗∗∗ (0.065)
E0 0.143 (0.098) 0.197∗ (0.113)
E1 =0.072 (0.135) =0.009 (0.112)
Y0 0.063∗ (0.036) 0.082∗∗ (0.037)
Y1 =0.068 (0.063) 0.012 (0.051)

With cognitive factor in schooling equation

S 0.254∗∗ (0.115) 0.355∗∗∗ (0.123)
E0 0.193 (0.132) 0.277∗ (0.162)
E1 =0.107 (0.179) =0.018 (0.167)
Y0 0.077 (0.047) 0.118∗∗ (0.056)
Y1 =0.080 (0.082) 0.016 (0.074)

Mincer equation for wages

S 0.191∗∗∗ (0.070) 0.215∗∗∗ (0.068)
E0 0.141 (0.099) 0.198∗ (0.108)
E1 =0.069 (0.137) =0.003 (0.114)
Y0 0.056 (0.036) 0.081∗∗ (0.038)
Y1 =0.066 (0.061) =0.010 (0.048)

Notes: Standard errors in brackets. Significance check: */**/*** if zero lies
outside the 90%/95%/99% confidence interval of the posterior distribution of the
corresponding parameter. Factor variances are set to one except for panel 4 where
for computational reasons the normalization is on factor loading 2.
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Table I.11: Robustness to distributional assumptions, factor
loadings of outcome system for different assumptions

Males Females

10-item locus of control scale

S 0.184∗∗∗ (0.066) 0.235∗∗∗ (0.066)
E0 0.148 (0.096) 0.242∗∗ (0.112)
E1 =0.087 (0.124) =0.016 (0.105)
Y0 0.046 (0.036) 0.078∗∗ (0.039)
Y1 =0.063 (0.060) 0.019 (0.050)

Normal distribution for ε in the wage equation

S 0.193∗∗∗ (0.070) 0.217∗∗∗ (0.067)
E0 0.140 (0.096) 0.192∗ (0.110)
E1 =0.063 (0.131) =0.001 (0.111)
Y0 0.069∗ (0.035) 0.043 (0.044)
Y1 =0.073 (0.066) 0.015 (0.051)

3-component mixture for ε in the wage equation

S 0.194∗∗∗ (0.068) 0.215∗∗∗ (0.068)
E0 0.137 (0.099) 0.194∗ (0.110)
E1 =0.061 (0.135) =0.002 (0.110)
Y0 0.058 (0.035) 0.080∗∗ (0.037)
Y1 =0.063 (0.061) 0.009 (0.048)

2-component mixture for locus of control

S 0.193∗∗∗ (0.069) 0.212∗∗ (0.100)
E0 0.140 (0.103) 0.199 (0.153)
E1 =0.071 (0.134) =0.058 (0.159)
Y0 0.060 (0.036) 0.113∗∗ (0.054)
Y1 =0.063 (0.064) 0.016 (0.075)

Notes: Standard errors in brackets. Significance check: */**/*** if zero lies
outside the 90%/95%/99% confidence interval of the posterior distribution of the
corresponding parameter. Factor variances are set to one.
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top panel of Table I.11 displays the means and standard deviations of the posterior

distributions of the estimated parameters in the outcome system. Comparing these

results to the main results displayed in Table 3 of the paper, we can infer that all

coefficient estimates and results stay almost exactly the same.15 Another concern with

our results could be that a 2-component mixture is too restrictive or that precision

of the estimates could be improved by using a normal distribution for wages in the

error term. Figure H.4, Figure H.5, and Figure H.3 described in the previous section,

assess which of these distributional assumptions generates the best fit to to the data

by comparing the posterior predictive wage distribution generated by the model to the

actual distribution of wages. Both eyeballing and a formal Kolmogorov-Smirnov test tell

us that a 2-component mixture fits the data better than a normal distribution, while a

3-component mixture does not further improve model fit.16 Moreover, Table I.11 shows

that neither a normal distribution nor a 3-component mixture for the error term in the

wage equation has a large effect on our results. Last, the use of a normal distribution

for the latent factor might be too restrictive. The bottom panel of Table I.11 displays

the results of a model where we use a 2-component mixture for the latent factor instead

and we find that our results are invariant to this change in model specification.

15In an earlier working paper version of this article, we obtain very similar results using the full
battery of locus of control measures.

16In earlier version of this paper we used a smaller sample size with slightly more heterogeneity
among individuals. For that sample a 3-component mixture provided the best fit to the data.
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J The Schooling Equation among Youths and Adults

As explained in Section 3.2 of the paper, the schooling equation represents the link

between the two subsamples. Therefore, it plays a central role for model identification.

Our main assumption postulates that the parameters of the schooling equation are

the same across the youth and the adult samples, after controlling for observables and

cohort fixed effects. In other words, we assume that the schooling decision is generated

by the same structural model for both the youths and the adults. This section takes a

closer look at the credibility of this assumption.

First, we test if the parameters βS of the schooling equation can be assumed to

be the same across the two subsamples. To this end, we estimate the schooling equa-

tion separately for the youths and the adults. We exclude the individuals from the

overlap sample from this analysis, to make the separation between the two subsamples

more clear-cut. We use a probit model similar to the schooling equation used in the

paper, with the only difference that the latent factor is relegated to the error term

(i.e., νS = αSθ + εS), as we can only control for the observables in XS in this single-

equation model.17 Each of these two models is estimated using a Gibbs sampler with

non-informative priors (βSk ∼ N (0; 10) for each covariates k), where 40, 000 MCMC

iterations are saved for posterior inference after a burn-in of 2, 000 iterations.

To compare the posterior distributions of the parameters across the two samples, we

compute the statistic ξk = βadult
Sk −β

youth

Sk for each covariate k and look at its distribution.

Figures J.6 and J.7 show the results for females and males. For a given covariates k,

there is evidence that βadult
Sk = βyouth

Sk if 0 is contained in the 95% highest posterior density

interval (i.e., credible interval for ξk corresponding to covariate k).

Overall, the graphs show that we cannot discard the assumption that the parameters

of the schooling equation are the same across the two subsamples for most of the

covariates. The only exceptions appear to be for ‘local unemployment rate’ for females

and ‘mother grammar school’ for males, which are both borderline. Note that ‘Mother

dropout’ is outside the 95% credible interval for both genders. However, the sample

mean of this dummy variable is so small in the adult subsample (0.0048 for males

and 0.0266 for females) that it makes it very difficult to get sensible results for the

corresponding coefficient, thus deteriorating the test for this variable.

However, these encouraging results should not hide the fact that testing the as-

sumption of equal parameters across the two subsamples is challenging in this data set,

17This has no impact on βS , however, since XS ⊥⊥ θ by assumption.
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because of the relatively small number of observations in each of the subsamples. This

is why we perform additional tests, in order to further investigate the similarity of the

two subsamples.

It is common practice in the literature on data combination to provide evidence

that the variables have the same distribution across the different samples that are

combined. Although this assumption is not strictly required for our analysis, it is

important to check that the differences in levels that we observe for some variables can

be explained by age and cohort effects. One concern, in our case, may be that these age

and cohort effects are not sufficient to account for the rising share of individuals with

higher education displayed in Table 2 of the paper. We test for this by checking whether

any of the variables that are relevant to the schooling equation still differ significantly

in their means after age and cohort effects have been accounted for. To this end, we

first ‘residualize’ the higher education variable and all covariates that are part of the

schooling equation by estimating the residuals of a linear regression of these variables on

a linear age trend and the cohort dummies used in our main specification. We then test

for significant differences in these residuals. The results, displayed in Table J.12, show

that the differences between these two samples seem to be generated by level-effects

that can be accounted for by a linear age trend and cohort fixed effects and that the

p-values of the test on the residualized higher education variable are particularly high.
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Figure J.6: Testing for differences between the youth and the adult samples
in the schooling equation for males. Each graph shows the posterior distri-
bution of the statistic ξk = βadult

Sk −β
youth

Sk , for each of the corresponding coefficients
βSk. Shaded areas show the 95% highest posterior density intervals. Zero inside
shaded area means βadult

Sk = βyouth

Sk is credible.
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Figure J.7: Testing for differences between the youth and the adult samples
in the schooling equation for females. Each graph shows the posterior distri-
bution of the statistic ξk = βadult

Sk −β
youth

Sk , for each of the corresponding coefficients
βSk. Shaded areas show the 95% highest posterior density intervals. Zero inside
shaded area means βadult

Sk = βyouth

Sk is credible.
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sample, a dummy variable is included for the ages 31 to 35 to control for potential cohort effects.
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Table J.12: p-values of a two-sided test in means of detrended covariates among youth
and adult samples (by gender).

Variables Males Females

p-value p-value

Higher education 0.99 0.75
Father grammar school 0.61 0.40
Father dropout 0.97 0.94
Mother grammar school 0.79 0.68
Mother dropout 0.72 0.77
Childhood in large city 0.94 1.00
Childhood in medium city 0.64 0.75
Childhood in small city 0.58 0.82
North 0.80 0.87
South 0.78 0.67
Broken home 0.71 0.28
Unemployment at schooling decision 0.07 0.12

N 1584 1532

Source: SOEP waves 2001-2011. Own calculations.

Notes: p-values of a two-sided t-test for differences in means are reported.

Variables are detrended using a linear age trend

and a cohort dummy for the age groups 26-30 and 31-35, respectively.
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K Comparison to more Traditional Methods of Es-

timation

We conduct several wage regressions to obtain an idea of the estimates we would have

obtained without the methodological contributions of the paper.18 First, to assess

endogeneity bias, we conduct a standard wage regression of the log hourly wage on

contemporaneous locus of control factor values as predicted from a standard confirma-

tory factor model. The results are displayed in Table K.13 and show that, with the

exception of highly educated men, the use of contemporaneous measurements yields

significant coefficients both in a pooled analysis that conditions on education outcomes

and in separate analyses by education level.19 Moreover, the coefficients obtained in

this regression are very similar in magnitude to the ones reported in Heineck and Anger

(2010, Table 1). Last, comparing the magnitude of the effect to the effects of pre-

market locus of control on wages, we find that most of the differences occur for highly

educated individuals. One interpretation of this result is that working in a high status

environment increases locus of control, and the effect may be stronger for women (this

interpretation is also supported by the results reported in Trzcinski and Holst, 2010).

Second, to see how much standard results are affected by measurement error, we replace

the estimated factor with a simple standardized score, generated by summing up the

external locus of control measures. Columns 1 and 2 (5 and 6 for females) of Table K.14

show the difference in estimated coefficients when only external locus of control items

are used and columns 3 and 4 (7 and 8 for females) when the full battery of locus

of control items is used. If only the external items are used, we find the coefficients

are not attenuated in the estimations for males and by only 5% in the estimations for

females. This difference in coefficients is small because a factor analysis on the exter-

nal locus of control items returns similar loadings (weights) for each of the items. To

see what happens if this is not the case, we report estimated coefficients for the case

where the full battery of locus of control items is used for the analysis. In this case the

estimated coefficients from using raw scores are reduced by around 25% for both males

and females.

18For results on the stability of locus of control over time see Section L.
19These results where obtained using simple ordinary least squares to make the analysis comparable

to what is usually done in the literature. Bayesian inference results (not displayed) are very similar.
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Table K.13: Wage regressions with locus of control factor (contemporaneous measures)

Log hourly wages Males Females

All S = 1 S = 0 All S = 1 S = 0

External loc factor (std) 0.046∗∗∗ 0.013 0.061∗∗∗ 0.063∗∗∗ 0.080∗∗ 0.049∗∗

(0.016) (0.032) (0.017) (0.017) (0.031) (0.022)

Education 0.234∗∗∗ 0.117∗∗∗

(0.036) (0.035)

Observations 692 252 440 660 308 352
R-squared 0.246 0.242 0.163 0.194 0.208 0.174

Robust standard errors in parentheses. The covariates are the same as the main specification
(See Table E.2). Factor scores were predicted from a standard confirmatory factor model.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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L The Stability of Locus of Control

In this section, we use contemporaneous measures of locus of control for the adult

sample to compare locus of control distributions for individuals over time. To be able

to do so, we have to overcome several shortcomings of the data. Most importantly,

the battery of contemporaneous locus of control measures uses the same questions but

a Likert scale with seven instead of four answers as in the youth questionnaire. We

therefore have to make sure that the underlying latent construct measured by both test

batteries is indeed comparable over time. To address this concern and to be able to

use both pre-market and contemporaneous locus of control constructs for later analysis

we follow a simple three step approach. In a first instance, we estimate polychoric cor-

relation matrices among (i) pre-market locus of control measures for the youth sample

and (ii) contemporaneous locus of control measures administered in 2010 for the adult

sample. Here, the polychoric correlation among two measurements is given by the cor-

relation among two latent measurements M∗
1 and M∗

2 which follow a bivariate normal

distribution and who can be categorized to obtain the observe measures M1 and M2.

In a second instance, we use the estimated polychoric correlation matrix to perform

a simple factor analysis and to predict factor values for each individual. Last, we use

these factor values to compare distributions of locus of control and individual locus of

control measures over time. A second limitation of the data arises at this point because

we only obtain factor values at two different points in time for a small overlap sample.

Note that this overlap sample is distinct and much smaller from the one we discuss in

the paper, which comprises those individuals that are part of the youth sample, but for

which we also have measures on adult wages. In what follows we will therefore refer to

the youth sample the adult sample and the loc-overlap sample.

Figure L.8 compares latent external locus of control distributions for the youth and

adult sample. The left panel shows that there are no significant differences in distri-

butions when all observations from the youth and adult samples are used. The p-value

of a Kolmogorov-Smirnov test for significant differences in distributions is 0.15, thus

not rejecting the null assumption of equal distributions at a 5% level. The right panel

compares pre-market youth locus of control to market adult locus of control for in-

dividuals from the overlap sample. It shows that the locus of control distribution of

these same individuals differs significantly over time (the p-value of the Kolmogorov-

Smirnov test is 0.002) and that the distribution widens as individuals age. Hence, the

graph shows that some individuals become more internal (higher locus of control) and
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some individuals become more external (lower locus of control) as they enter the labor

market. This result is further confirmed by Figure L.9 which displays the difference in

percentile ranks from estimated external locus of control for the overlap sample. Again,

the graph shows that some individuals become much more external while some others

become more internal over time.

Figure L.8: Kernel density distributions of latent youth and adult locus of control
factors
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Figure L.9: Histogram of percentile differences in latent youth and adult locus of
control factors
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