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This document is the Online Appendix to Millo (2018), in turn a replication and critical
extension of Eberhardt, Helmers, and Strauss (2013) (henceforth EHS). As such, it presents
both a full replication of the original paper EHS and a number of alternative or supplementary
results, most of which were not included in Millo (2018) because of space constraints.

In the following sections, we first summarize the analysis in EHS, to set the stage for the repli-
cation and the extension of their work. Next, we highlight the main findings of the study. The
subsequent section details the full replication, listing all the results’ tables. Computational
details and Conclusions follow.

This document, together with the original EHS data (a copy of which is included, with the
kind consent of the authors, in the R package pder), with the accompanying software and
Open Source software from the R Project (R Core Team 2014), is self-contained and entirely
replicable, as detailed in Section 4.

1. Summary

The empirical analysis in EHS regards the estimation of static and dynamic versions of the
following production function. The basic specification as in EHS, Formula (4) is defined as

yit = αlit + βkit + γrit + λt + ψi + εit

where y, l, k and r are, respectively, the logs of production and of the three inputs: labour,
capital and research and development.

The estimators employed can be categorized in two ways: according to the hypotheses on
the technology parameters β (homogeneous or heterogeneous); and, analogously, according to
those on the impact of unobservables, as summarized in EHS, Table 4.

The main empirics of the paper are contained in four tables (originally Tables 5-8 in EHS):

Table 5 “Pooled Production Functions (Static)”compares the following static homogeneous spec-
ifications: pooled OLS with time fixed effects (POLS), two-ways fixed effects (2FE), first
differences with time effects (FD), and common correlated effects pooled a la Pesaran
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(2006) (CCEP) with or without the explicit inclusion of time fixed effects. Coefficients
and standard errors are reported. The constant returns to scale hypothesis (CRS), i.e.
H0 : α+ β + γ = 0 is tested based on the above. Diagnostics are included for overall fit
(root mean square error), serial correlation (mp test Arellano and Bond 1991), cross-
sectional correlation (CD test Pesaran 2004) and unit roots int he residuals (CIPS test
Pesaran 2007).

Table 6 “Pooled Production Functions (Dynamic)”compares autoregressive distributed lags (ARDL)
dynamic versions of the five above specifications, substituting FD with the generalized
method of moments (GMM) dynamic panel estimator of Arellano and Bond (1991) in
the “system” version of Blundell and Bond (1998) (BB). The full dynamic models are
not reported; in their place estimates of the long-run coefficients are reported in two
possible versions according to the results of a common factor (COMFAC) test: either
unrestricted long-run coefficients, with standard errors calculated by the Delta method,
or restricted versions where COMFAC restrictions are applied ex post through a min-
imum distance procedure. Diagnostics as in Table 5 are also reported, regarding the
unrestricted ARDL specifications.

Table 7 “Heterogeneous Production Functions (Static)” presents four heterogeneous parameter
specifications: mean groups a la Pesaran and Smith (1995) (MG), the same on cross-
sectionally demeaned data (CDMG), and two versions of Pesaran (2006)’s common cor-
related effects mean groups (CMG) with or without the inclusion of individual country
trends. Next to the CRS Wald statistic, diagnostics as above are reported, substituting
the serial correlation mp− test with a Fisher-type combination of individual Ljung-Box
tests.

Table 8 “Heterogeneous Production Functions (Dynamic)”compares four dynamic specifications
as in the above Table 6, this time reporting only restricted versions of the four models,
which all pass the COMFAC test. The usual diagnostics, again regarding the unre-
stricted ARDL versions, are reported, with the exception of a serial correlation test.

We omit the (unproblematic) descriptive statistics tables (EHS Table 3) and concentrate on
the estimation results and tests reported in Tables 5, 6, 7 and 8 in EHS, Section VI.

This replication exercise consists in:

� reproducing Tables 5-8 as faithfully as possible using the original dataset but different
software

� suggesting alternatives to estimators and tests where we see it appropriate and provid-
ing our modified versions of said tables, and commenting on the consequences on the
economic results of the paper

� as the conclusions of EHS suggest, providing directions for a first assessment of the
direction of spillovers based on a more sophisticated analysis of cross-sectional and
spatial dependence in the original models.

The following Sections, one dedicated to the main findings and the next to the full replication,
are therefore both organized into subsections according to the structure of EHS, i.e. they



Giovanni Millo 3

contain one subsection for each table 5 to 8 in EHS. The Higlights section begins with a
general caveat on the issues arising when estimating dynamic specifications with CCE.

2. Highlights

Before going through the full replication, we provide a section summarizing the main findings
of the replication.

Estimating dynamic models by CCE There are issues with dynamic CCE models which
were not known at the time EHS was published. Recent research showed that neither the
CCEMG (Chudik and Pesaran 2015) nor the CCEP estimator (Everaert and De Groote 2016)
are consistent for fixed T in the context of a dynamic model with persistent common factors.

A partial solution has been proposed by Chudik and Pesaran (2015) for the dynamic CCEMG,
consisting in augmenting the model with a number of lags of the cross-sectional averages equal
at least to the (unknown) number of common factors, with a practical rule of T

1
3 . Nevertheless,

while the augmented CCEMG estimates of the mean slopes of the regressors are quite robust
even to small T and N , the mean coefficient of the lagged dependent variable still suffers
from severe bias unless T is sufficiently large with respect to N . According to the simulations
by the authors, small sample biases are substantial even for T as large as 50. Moreover, the
EHS dataset is highly unbalanced, making the calculation of many lags of the cross-sectional
averages problematic. As for the CCEP estimator, Everaert and De Groote (2016) show
that the dynamic CCEP estimator is inconsistent for fixed T in a persistent common factors
scenario, the bias being again substantial up to T = 50.

Given that consistently estimating the coefficient on the dynamic term is essential to the
calculation of the long-run solutions presented in EHS, we conclude that the EHS dataset is
simply much too “short” for employing dynamic CCE estimators.1

Pooled production functions, static (EHS Table 5) In the original work, the coefficient
on R&D is of comparable magnitude (between 0.5 and 1) across all specifications and highly
significant with the only exception of the FD model. Residuals are nonstationary for POLS
and 2FE, while – surprisingly – cross-sectional correlation is only detected in the CCEP and,
marginally, in the CCEPt models. Constant returns to scale are rejected in the POLS and
CCEPt specifications. EHS conclude that POLS and 2FE are seriously misspecified, CCEP
and CCEPt fail to address cross-sectional dependence and FD is the preferred model on
grounds of its favourable diagnostics.

For the SEs of the POLS model, despite the evidence of serial correlation, EHS use the het-
eroskedasticity correction of White (1980). A clustered covariance a la Arellano (1987) would
be in order.2 Clustering by individual yields dramatically higher SEs, although all coefficients
are still significant. The same applies to the 2FE model, where employing clustered SEs R&D
is not significant any more.

In the FD specification, again, SEs should, in our view, be clustered by group. Nevertheless,
despite this omission the SEs in EHS are of comparable magnitude: differencing seems to have

1We thank an anonymous referee for pointing out these recent results.
2By contrast, the CRS test reported in EHS is ostensibly computed using the clustering-robust covariance.
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effectively eliminated the persistence of errors within each individual cluster. The replication
is otherwise successful but for some small differences (a missing dummy).

The CCEP and CCEPt estimators are obtained in EHS by interacting the cross-sectional
average of the regressand and of each explanatory variable with every individual dummy,
for a total of at least K + N + (K + 1) × N = 598 regressors. This procedure allows to
perform CCEP estimation with a standard regression, but causes numerical instability ad
unpredictable behaviour because of the large number of dummies and interaction terms.
While this method still comes very close to the parameter estimates one obtains from coding
the estimator in matrix form, it does not provide the correct SEs. Employing the formula from
the original CCE paper (Pesaran 2006, Th.3), the latter are much wider than those reported
by EHS. A thorough selection of alternative estimates is reported (later in the paper) in Table
3 for the sake of comparison.

Controlling for clustering, both homogeneous models accounting for individual heterogeneity
(FE2, FD) now again have SEs of magnitude comparable to that of the CCEP models,
provided the latter are also computed according to Pesaran (2006). The main economic result
is that, unlike the original findings of EHS, own R&D expenditure is consistently insignificant
as soon as one controls for any kind of individual heterogeneity. This reconciles the findings
of EHS, Table 5 with those of the dynamic and/or heterogeneous models in EHS, Tables 6-8.
See further below, as Table 2, our preferred version of EHS, Table 5.

Summing up, Table 5 in EHS can be entirely replicated. Yet there are arguably better ways
to estimate the standard errors, leading to wider confidence intervals. The consequences on
the economic interpretation are that, when accounting at least for individual effects – i.e.
in any model bar POLS – R&D is never significant any more and constant returns to scale
(CRS) are never rejected any more. All in all, the results from the different models are much
more easily reconciled than in the original contribution. Substantial residual cross-sectional
dependence supports the use of CCEP over FD, but the results are qualitatively very similar.
Local dependence diagnostics suggest geographical (within-country) proximity as the main
direction for the spillovers.

Diagnostics EHS employ mp tests for residual serial correlation (Arellano and Bond 1991),
which assume cross-sectional independence. We substitute them with the procedure in Wooldridge
(2010a), running a (panel) autoregression on the model residuals and evaluating the signifi-
cance of the AR coefficients; which test, importantly, can also be robustified as appropriate,
e.g. against cross-sectional correlation (Wooldridge 2010a, 10.5.4). Qualitative conclusions
do not change. Unit root tests are in turn all successfully replicated and the conclusions
unchanged.

As regards cross-sectional dependence diagnostics, the CD test is well known to lose power if
the data are cross-sectionally demeaned, which centers the average of correlation coefficients
ρ̄ on zero (see Sarafidis, Yamagata, and Robertson 2009, 2.2). In this case, from test results
one cannot tell whether pairwise correlation coefficients are generally low in absolute value or
rather if positive and negative coefficients are compensating. As a first indication, we compare
the average of correlation coefficients with that of their absolute values. Then we perform
the rank-based sibling of the CD test, the Frees test (Frees 1995), which does not share this
weakness.

The ρ̄ is near zero for all models, which as expected affects the power of the CD test. By con-
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trast, the average absolute correlation ¯|ρ|, although bigger for POLS and 2FE, is of sizeable
magnitude for all models, hinting at substantial cross-sectional dependence which is actu-
ally detected by the Frees rank-based test. Unlike EHS, we conclude that cross-sectional
dependence is present in all models (see Table 5).

The latter can, a priori, be of either global (pervasive, factor-type) or local (decaying, spatial-
type) nature. Notice that the CCEP estimator is a) designed to control for common factor
dependence, and b) consistent in the presence of spatial dependence. It is therefore no wonder
that cross-sectional dependence be left in the CCEP residuals, as long as it is due to local
correlation and not to a pervasive factor structure. 3 In order to check for this, we apply
the exponent of cross-sectional dependence defined in Bailey, Kapetanios, and Pesaran (2016)
to the CCEP residuals. The results (reported later in the paper in Table 6) are consistent
with the hypothesis that no pervasive factor structure remains in the residuals. The residual
spatial dependence is instead discussed in the following. 4

In the light of the conclusions of EHS on the importance of identifying the direction of
spillovers from R&D, we assess the degree of local cross-sectional dependence between “neigh-
bouring” observations with respect to two naturally defined “proximity” dimensions in the
EHS data: country and industry. As a first step, we apply the local, or spatial, CDp test (Pe-
saran 2004, Section 7); the null hypothesis of independence is consistently rejected for either
definition of space, and across all specifications. It must nevertheless be observed that global
dependence related to unobserved common factors can cause the CDp test to reject as well
(Holly, Pesaran, and Yamagata 2010; Moscone and Tosetti 2010; Millo 2017); therefore the
latter can be safely used only on the residuals from estimators which do control for common
factors. Moreover, neither the CD nor the CDp test tolerate serial correlation, which seems
indeed present in all the static models of EHS.

Factor-robust testing procedures are compared and discussed at length in Millo (2017), where
a new test (RW) based on randomizing the neighbourhood relationships in the proximity
matrix is proposed. Differently from the CDp, the RW test can be safely applied to any
of the specifications considered by EHS; and, interestingly in view of the above concerns,
the RW test is also insensitive to serial correlation. Its pseudo-p values (symmetric version,
1000 random draws; hence 0.002 is the minimum) are reported in the last row of the table.
From this evidence we conclude that all models have locally correlated residuals within single
countries; and, but the evidence is much weaker, probably also within industrial sectors.

Pooled production functions, dynamic (EHS Table 6) EHS estimate the unrestricted
dynamic ARDL models and then, based on diagnostics from the latter, resent either the un-
restricted long-run estimates (Table 6A in EHS) or, for those models that pass the COMFAC
test, the restricted ones (Table 6B in EHS). Only the 2FE passes the restriction. POLS and
BB raise suspicions of nonstationarity; moreover, BB gives unrealistic estimates and shows
signs of cross-sectional dependence, which would invalidate it. The remaining models, (re-
stricted) 2FE and (unrestricted) CCEP, all estimate the effect of R&D next to zero. CRS
is never rejected. As above, we argue that SEs for the POLS and 2FE models should at a

3We thank an anonymous reviewer for raising this point.
4The bias-corrected version of α̊ (Bailey et al. 2016, Eq. 13), allowing for persistent factors but no spatial

correlationα̊ is estimated at 0.616, its 95% confidence bands at (0.574, 0.658). All other versions are computed
with largely similar results, reported in Table 6. The exponent is not computable for the residuals of models
containing time fixed effects, therefore it is here applied only to the CCEP.
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minimum be corrected for clustering by id. Doing this, SEs increase substantially.

The system-GMM specification of Blundell and Bond (1998) (BB)is estimated by EHS ac-
cording to the two-step method, using the popular correction by Windmeijer; all regressors
are used as GMM-type instruments. As EHS observe, the BB estimator is generally inap-
propriate for the problem at hand. Despite limiting the number of lags to avoid instrument
proliferation, numerical problems emerge: Stata drops some instruments because of collinear-
ity and, most importantly, resorts to a generalized inverse. Our R replication is close but not
exact 5.

The dynamic CCEP estimator, again, is obtained by augmenting the specification with
interactions of individual dummies and cross-sectional averages of regressand and regressors,
yielding 7 + 119 + 8 × 119 = 1078 variables which become 1103 if adding T − 1 = 25 time
effects. All considerations from the static case apply. The results can be replicated in R
with reasonable accuracy, given how ill-conditioned the problem is. Again, though, the SEs
reported are incorrect, the ones from the original CCE formula (Pesaran 2006) being much
wider. This has the important consequence that the COMFAC test, which rejected based on
the exceedingly narrow SEs in EHS, does now not reject.

Table 6 in EHS can be entirely replicated; but the considerations on Table 5 apply here as well,
in particular regarding estimation of standard errors. Revised accordingly, the CCEP model
passes the COMFAC test and therefore the restricted estimates of the long-run parameters
are to be reported. The CCEP model thus migrates from Panel A of Table 6 in EHS to Panel
B together with its special case, 2FE. Although important differences remain (above all, in
the estimated productivity of capital), and taking heed of the general issues with dynamic
CCEPs mentioned above, the main conclusions to be drawn from the two preferred models
are now similar.

Heterogeneous production functions, static and dynamic (EHS Tables 7-8) Mean
groups estimators are less problematic that the pooled ones in the Tables 5-6 of EHS, also
thanks to the availability in Stata of a user-contributed function, xtmg, written by one of the
authors (Eberhardt 2012). All results in Table 7, EHS are replicated exactly, with one small
exception6.

The same goes for estimates and diagnostics from the dynamic model (EHS, Table 8) 7.

3. Replication

In this Section we first attempt at replicating EHS as faithfully as possible, then we comment
on the appropriate points and provide alternatives, again following the main structure of EHS
with one subsection dedicated to each Table from 5 to 8.

5The R function pgmm in turn resorts to a generalized inverse in the second step. Given the numerical
difficulties, we did not expect to replicate results exactly; yet the two implementations are not far from each
other either in terms of coefficients or of standard errors.

6In the Ljung-Box-Fisher serial correlation tests, we find serial correlation in all models, where for the CMG
and CMGt EHS report a strange p-value of 1.00 which is likely to be a typo.

7Here, the only discrepancy is due to a typo: the results of the CRS test reported in EHS are actually those
computed on the unrestricted models. We replicated them exactly as such; the results are not reported here
but the code can be found in the replication script as chunk t8.crstests.u. Computing the CRS tests on the
restricted models, constant returns to scale are never rejected.
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3.1. Pooled production functions, static (EHS Table 5)

In this subsection we reproduce the results from static production functions with homogeneous
coefficients, as in EHS, Table 5.

POLS 2FE FD CCEP CCEPt

ln Lit 0.464 0.608 0.635 0.562 0.582
40.946 18.944 18.085 20.714 21.002

ln Kit 0.465 0.487 0.279 0.289 0.203
37.802 10.908 3.431 7.946 4.972

ln Rit 0.096 0.063 0.045 0.084 0.064
22.923 4.544 1.698 4.925 3.662

CRS 0.000 0.001 0.614 0.077 0.000
AB-AR(1) 0.000 0.000 0.005 0.001
AB-AR(2) 0.000 0.000 0.188 0.682

CD 0.116 0.143 0.110 0.010 0.055
CIPS 0.100 0.100 0.010 0.010 0.010

RMSE 0.277 0.161 0.061 0.052 0.052

Table 1: Static homogeneous models (Table 5 in EHS). POLS: pooled OLS with time FEs;
2FE: two-way fixed effects; FD: first differences with time FEs; CCEP: pooled common cor-
related effects. CRS: Wald test for H0 of constant returns to scale; AB-AR(1) and (2):
Arellano-Bond (1991) m1 and m2 tests for residual serial correlation; CIPS: Pesaran (2007)
unit root test: HA is stationarity, upper limits are reported for the p-value. RMSE: root mean
square error.

Observations on EHS, Table 5

Pooled model with time effects (POLS) In the POLS model, which is actually esti-
mated with the addition of time fixed effects, EHS use Stata with the robust option, which
corresponds to the heteroskedasticity correction of White (1980). Given the panel nature
of the dataset, and for homogeneity with the other specifications, a clustered covariance a
la Arellano (1987) would be in order. Clustering by individual yields dramatically higher
standard errors, although all coefficients are still significant.

Two-ways fixed effects (2FE) As above (POLS), standard errors are computed according
to the White method without clustering, hence are not robust to intra-group serial correlation
(which is detected by the AB test). Again, we argue that they should at a minimum be
corrected for clustering by id. Doing this, standard errors increase fourfold as for POLS.
R&D is not significant any more.

Interestingly, the reported p-value of the CRS test is obtained using the clustering-robust
covariance (and, as such, is replicated in the modified table instead of the original one). This
behaviour is probably due to having tested the CRS restriction after (re)estimating the 2FE
model as individual fixed effects plus time dummies, in which case the ’robust’ option produces
clustering-robust SEs a la Arellano (1987); while the original model was estimated as pooled
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POLS 2FE FD CCEP

ln Lit 0.464 0.608 0.646 0.562
11.839 5.567 16.543 6.379

ln Kit 0.465 0.487 0.262 0.289
11.294 3.057 2.771 1.802

ln Rit 0.096 0.063 0.045 0.084
6.704 1.351 1.447 1.239

CRS 0.068 0.338 0.674 0.675
W-AR(1) 0.000 0.000 0.000 0.000
W-AR(2) 0.000 0.000 0.082 0.189

Frees 0.000 0.000 0.000 0.000
CIPS 0.100 0.100 0.010 0.010

RMSE 0.277 0.161 0.061 0.052

Table 2: Static homogeneous models, modified table. t-statistics in parentheses, constructed
from clustered (POLS, 2FE, FD) viz. nonparametric (CCEP) standard errors. W-AR(p) test:
Wooldridge (2010) test for H0 of no residual serial correlation at the p-th order, robustified;
Frees (1995) test for H0 of cross-sectionally independent residuals; CRS, CIPS, RMSE: see
preceding Table

OLS with both individual and time dummies: in this case producing the heteroskedasticity-
consistent estimator in the sense of White (1980) (see the replication code by the authors).
This issue testifies on the need to carefully check the consistency of the default behaviour of
statistical software.8

First difference model (FD) The FD specification in EHS includes time dummies.

A small typo in the Stata code for the FD model originally made results hard to reproduce.
Given the initial observation for each individual which is lost in differencing, EHS omitted
two time dummies instead of one; but then Stata ostensibly also dropped one itself. Hence
the exact results of EHS can be replicated in R by explicitly adding time effects for periods
3 to 26. The effect on estimation is minimal.

Again, standard errors should, in our view, be clustered by group. Interestingly, doing so
does not inflate the standard errors: the t-ratios are of comparable magnitude with those
in EHS, Table 5. Differencing seems to have effectively eliminated the persistence of errors
within each individual cluster.

Common correlated effects pooled (CCEP, CCEPt) In EHS, the CCEP estimator,
which allows for heterogeneous effects of common factors, is obtained interacting the cross-
sectional average of the regressand and of each explanatory variable with every individual
dummy, for a total of K + N + (K + 1) × N = 3 + 119 + 4 × 119 = 598 regressors; and
estimating this specification by OLS.

This procedure allows to perform CCEP estimation with standard regression software; but,
because of the large number of dummies and interaction terms, it is heavy on the machine

8In R the same would have happened if estimating one model with lm and the other with plm; while using
plm for both, with the different options ’pooled’ and ’within’, would have provided consistent results.
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and numerically unstable: in fact, some dummies are dropped by Stata because of extreme
collinearity. Even worse in the case where 25 time dummies are added too (CCEPt). In fact,
collinearity between the time dummies and the cross-sectional averages is to be expected.
Regression software will generally manage the ensuing collinearity in soem automatic way,
either by dropping variables or by employing a generalized inverse, which can entail a loss of
control by the researcher over what is actually done. For this reason we have dropped the
CCEPt from our revised estimates altogether.

Actually, this method comes very close to the parameter estimates one obtains from coding
the estimator in matrix form, at least unless time dummies are also added. We replicated
it in R and report the results. Yet, as it turns out, it does not directly provide the correct
standard errors, because not all of the added terms are orthogonal to the explanatory variables
lnL, lnK, lnR: in fact, their cross-sectional averages are not. Employing the formula from the
original CCE paper (Pesaran 2006), the standard errors are much wider than those reported
by EHS.

Controlling for clustering, both homogeneous models accounting for individual heterogeneity
(FE2, FD) now again have standard errors of magnitude comparable to that of the CCEP
models, provided the latter are also computed according to Pesaran (2006).

The main economic result is that, unlike the original findings of EHS, own R&D expenditure
is consistently insignificant as soon as one controls for any kind of individual heterogeneity.
This reconciles the findings of Table 5 with those of the dynamic and/or heterogeneous models
in Tables 6-8.

Computing the standard errors of CCEP estimators We compare the standard er-
rors and resulting t-statistics for significance from the nonparametric estimator proposed in
Pesaran (2006, 5.2, Th. 3) (henceforth nonparametric SEs) with two sets of alternatives:

� parametric: “sandwich” estimates in the spirit of White (1980) and Arellano (1987)
based on different types of “meat”

� bootstrapped : estimates based on various types of clustered resampling procedures

It should be borne in mind that nonparametric SEs are based on looser assumptions than
parametric ones. The former are justified by Pesaran (2006, Th. 3) as requiring (N,T )→ inf
jointly, in no particular order; the latter - at least in the Newey-West form, by Pesaran (Th.
4 in 2006) which assumes T/N → inf as (N,T )→ inf jointly, so that the sandwich estimator
is appropriate only for relatively “short” panels. By contrast, the theoretical justification of
the nonparametric estimator from Pesaran (Th. 3 in 2006) becomes problematic under the
homogeneity hypothesis βi = β∀i. If the homogeneity hypothesis βi = β∀i holds (Pesaran
2006, Th. 4), and ifN >> T , the covariance matrix of β̂CCEP can be consistently estimated by
the sandwich-type estimator in Pesaran (2006, Formula 74), where the “meat” of the sandwich
is calculated according to a panel version of the Newey and West estimator (Pesaran 2006,
Formulae 51-52).

According to Pesaran (2006) and simulation evidence therein, nevertheless, the nonparametric
estimator performs well in general, homogeneity scenario included, and therefore it is the
suggested alternative. We compare the nonparametric SEs with three parametric alternatives
of the sandwich type, differing by the calculation method for the “meat”: White-Arellano,
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Newey-West and its generalization, robust to cross-sectional dependence, the Driscoll and
Kraay “SCC” estimator.

Bootstrap methods are useful when parametric standard errors are difficult to derive; or they
can improve on the finite-sample properties of known parametric estimators. Lastly, they can
be useful when the parametric SEs are based on some regularity assumptions (homoskedas-
ticity, incorrelation) which are not met. In the general case of clustered sandwich estimators,
the latter are well known and easily computable; moreover, they do already accommodate
heteroskedasticity and (groupwise) correlation of unknown form; so the need for bootstrap-
ping reduces to the case in which the small sample properties of the parametric alternative
are problematic, i.e., when the number of clusters is too small (Cameron, Gelbach, and Miller
2008). In the case of EHS, judging by the simulation evidence in Cameron et al. (2008),
the number of clusters is large enough to make the asymptotic refinement of bootstrap-t
methods redundant. By contrast, cluster bootstrapping, while accommodating factor-related
dependence, still relies on an assumption of spatial independence, which is mimicked in the
independent resampling of individuals (Kapetanios 2008, p. 11 WP). In the case of the CCEP
estimator, available cluster-bootstrap methods are no panacea because they rely on similar
assumptions on independence, sample size and parameter homogeneity as their parametric
counterparts. In the specific case at hand, they are substantially useless because the number
of clusters is big enough for the clustered sandwich estimator of the standard errors to be
reliable; hence they do simply reproduce its results in a computationally more intensive way.

ln Lit ln Kit ln Rit

EHS 0.027 0 *** 0.036 0 *** 0.017 0 ***
Nonparametric 0.088 0 *** 0.161 0.07148 . 0.068 0.21526

HC (cluster by firm) 0.045 0 *** 0.077 0.00017 *** 0.033 0.01023 *
Newey-West 0.031 0 *** 0.045 0 *** 0.02 3e-05 ***

Driscoll-Kraay 0.042 0 *** 0.076 0.00015 *** 0.019 1e-05 ***
Wild bootstrap 0.045 0 *** 0.077 0.00018 *** 0.034 0.01285 *
Pairs bootstrap 0.047 0 *** 0.078 0.00021 *** 0.035 0.01473 *

Wild t-bootstrap (HC) 0 *** 0.002 ** 0.02 *
Pairs t-bootstrap (HC) 0 *** 0 *** 0.016 *

Table 3: Original (EHS) vs. alternative standard errors for the CCEP model from Table 5 in
EHS, with corresponding significance diagnostics. Nonparametric: as in Pesaran 2006, Th.3;
HC, NW and DK: ’sandwich’ estimates as in Pesaran 2006, Th.4, with the ’meat’ calculated by
the respective methods; bootstrap (M = 999): ’pairs’ or ’wild’ bootstrap estimates, clustered
by firm, as defined in CGM; t-bootstrap: ’pairs’ or ’wild’ resampling of cluster-robust t-
statistics. For each variable, first column: standard error; second column: p-value for the
t-test.

General remarks on diagnostics The Arellano and Bond (1991) mp tests for residual
serial correlation are only appropriate if residuals are independent across individuals. In the
light of the above discussion, this hypothesis is unlikely to hold here. Hence we propose to
substitute the m1 and m2 tests presented in EHS, Table 5 with the procedure in Wooldridge
(2010b), running a (panel) autoregression on the model residuals and evaluating the signifi-
cance of the AR(p) coefficients for p = 1, 2. Such procedure allows both testing each order of
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serial correlation individually and also employing a robust covariance matrix, e.g. to account
for cross-sectional correlation.

As Wooldridge (2010b) notes, the procedure is to be adjusted for the induced correlation
from transforming the data, which under the null hypothesis of no serial correlation in the
original errors is, respectively, −0.5 at the first order and 0 at the second for the FD model
(Wooldridge 2010b, 10.6.3) (see also Drukker et al. 2003); and − 1

1−T at any order for the FE
one (Wooldridge 2010b, Eq. 10.52). The serial incorrelation test for the original errors thus
can be performed as a t-test for this serial correlation coefficient (Wooldridge 2010b, 10.5.4).

This induced correlation is another reason to be suspicious of the results of the m1−2 tests:
as EHS (p. 444) observe, AR(1) is to be expected in the FD errors; unsurprisingly, we add,
the errors of the 2FE model turn out correlated at both orders because of the equicorrelation
induced by the FE transformation. Nevertheless, substituting the Wooldridge-type procedure
for the original m tests does not qualitatively change the conclusions regarding residual serial
correlation in any of the models. The results are reported in Table 4.

POLS 2FE FD CCEP

W AR(1), HC 0.000 0.000 0.000 0.000
W AR(2), HC 0.000 0.000 0.082 0.189

W AR(1), SCC 0.000 0.000 0.000 0.000
W AR(2), SCC 0.000 0.000 0.028 0.397

Table 4: Wooldridge’s informal test for serial correlation, with either HC (Arellano) or SCC
(Driscoll-Kraay) covariance; H0: no serial correlation at given order in untransformed errors.

Unit root tests are in turn all successfully replicated and the conclusions unchanged.

As regards cross-sectional dependence diagnostics, the CD test is well known to lose power if
the data are cross-sectionally demeaned, which centers the average of correlation coefficients ρ̄
on zero (see Sarafidis et al. 2009, 2.2).9 In this case, from test results one cannot tell whether
pairwise correlation coefficients are generally low in absolute value or rather if positive and
negative coefficients are compensating. As a first indication, we compare the average of
signed correlation coefficients with that of their absolute values. Then, again for comparison
purposes, we perform the rank-based sibling of the CD test, the Frees test (Frees 1995), which
does not share this weakness.

As discussed in the Highlights section, we assess the degree of local cross-sectional dependence
between “neighbouring” observations with respect to country and industry, applying the local,
or spatial, CDp test (Pesaran 2004, Section 7) and the RW test of Millo (2017). Results are
reported in a dedicated Table 5.

We also apply the exponent of cross-sectional dependence defined in Bailey et al. (2016)
to the CCEP residuals. Different flavours of the bias-corrected version of α̊ (Bailey et al.
2016, Eq. 13), possibly allowing for either persistent factors or/and spatial correlation, are
computed and presented below in Table 6. For computing the spatial version, missing data are
interpolated through the Beckers and Rixen (2003) procedure through the dineof function
from the sinkr package (Taylor 2017) (see also Taylor, Losch, Wenzel, and Schröter 2013).

9This explains the somewhat strange finding that models accounting for cross-sectional dependence in a
simplistic way through time dummies (POLS, 2FE, FD) turn out less affected than more sophisticated CCEP
ones.
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POLS 2FE FD CCEP

Global CD -1.570 -1.464 -1.598 2.588
0.116 0.143 0.110 0.010

avg. rho -0.004 -0.005 -0.005 0.005
avg. |rho| 0.503 0.502 0.218 0.263

Frees rank test 21.959 22.575 -8.308 -2.013
0.000 0.000 0.000 0.000

CD(1), sector 8.631 8.677 2.910 3.937
0.000 0.000 0.004 0.000

CD(1), country 24.584 22.579 16.409 20.092
0.000 0.000 0.000 0.000

RW, sector 0.002 0.002 0.008 0.026
RW, country 0.002 0.002 0.002 0.002

Table 5: Comparison of cross section dependence diagnostics for the models in Table 5.
Global CD is Pesaran’s (2015) test; rho is the mean of pairwise correlation coefficients; |rho|
the mean of their absolute values; Frees (1995) is the rank test for cross-sectional dependence;
CD(1) sector and, respectively, country are the local CD tests (Pesaran, 2004) when defining
neighbourhood as sharing either the same industrial sector or the same country. RW is Millo’s
(2017) randomization test for spatial correlation robust to common factors (pseudo-p values
from 999 random draws are reported).

Although the estimate of α̊ is slightly higher than 0.5, we still take the results as suggesting
that no pervasive factor structure remains in the residuals (a short discussion in Millo 2018).
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a.o.lwr95 a.o a.o.upr95 N.alfa N

None 0.578 0.616 0.654 18 119
Persistent factors, NW 0.574 0.616 0.658 18 119
Persistent factors, AR 0.565 0.616 0.667 18 119

Spatial correlation (reduce) 0.624 0.667 0.710 24 119
Spatial correlation (interpolate) 0.636 0.662 0.725 26 119

Both (NW + reduce) 0.619 0.667 0.714 24 119

Table 6: Exponent of cross-sectional dependence estimated on the CCEP residuals, allowing
for (in row order): no persistence or spatial residual correlation; persistence, Newey-West
style variance estimator; persistence, variance estimated through AR(4); spatial correlation
in remainder errors, data balanced by reduction; spatial correlation, balanced by interpolation;
both persistent factors (NW) and spatial correlation (by reduction). In column order: lower
95 percent bound, central estimate and upper bound for the bias-corrected version of the
exponent; estimated number of significant factor loadings; total number of cross-sectional
units (memorandum item).
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3.2. Pooled production functions, dynamic (EHS Table 6)

EHS proceed to estimate the unrestricted dynamic ARDL models and then, based on diag-
nostics from the latter, present either the unrestricted long-run estimates (Table 6A in EHS)
or, for those models that pass the COMFAC test, the restricted ones (Table 6B in EHS). Only
the 2FE passes the restriction. POLS and BB raise suspicions of nonstationarity; moreover,
BB gives unrealistic estimates and shows signs of cross-sectional dependence, which would
invalidate it. The remaining models, (restricted) 2FE and (unrestricted) CCEP, all estimate
the effect of R&D next to zero. CRS is never rejected.

As done above with the static models, we now proceed to assessing local dependence in the
dimensions of countries and sectors.

Results suggest that local cross-sectional dependence is substantial, and remains in the resid-
uals of CCEP estimators as well (although these are consistent in its presence). This is true
for both within sector and within country dependence. As for the intensity (measured by the
absolute value of the CD statistics), it is worth noticing that: within-sector is weaker, and
is rather successfully accounted for by time fixed effects, suggesting that the factor loadings
of different firms to sector-wide shocks are reasonably homogeneous; within-country depen-
dence is generally stronger, and by contrast to the former it is better accounted for by CCEP
models, suggesting a greater deal of heterogeneity in factor loadings.

As EHS proceed to estimate the unrestricted dynamic ARDL models and then, based on
diagnostics from the latter, present either the unrestricetd long-run estimates (Table 6A in
EHS) or, for those models that pass the COMFAC test, the restricted ones (Table 6B in
EHS), not being bound by compactness requirements, we here present first the dynamic
ARDLs together with the relevant diagnostics, in order to assess their statistical properties as
done in EHS; then, in the following table(s), either the unrestricted or the restricted estimates
with the relevant CRS test.

Observations on EHS, Table 6

Pooled model with time effects (POLS) Standard errors for the POLS model are
computed according to the White method without clustering, hence are not robust to intra-
group serial correlation (which is detected by the AB test). We argue that they should at a
minimum be corrected for clustering by id. Doing this, standard errors increase fourfold.

Two-ways fixed effects (2FE) Standard errors for 2FE are computed as for POLS. Again,
we argue that they should at a minimum be corrected for clustering by id. Doing this,
standard errors increase fourfold as for POLS.

System GMM model (BB) The System-GMM specification of Blundell and Bond (1998)
is estimated by EHS according to the two-step method, using the popular correction by
Windmeijer; all regressors are used as GMM-type instruments. Proliferation of instruments
is clearly an issue here, given the sizeable time dimension (REF.: Baltagi?); to control it,
EHS limit the number of lags used for instrumentation to 3 and collapse the instrument
matrix as suggested in Roodman (see refs. therein). Numerical problems nevertheless emerge,
Stata dropping some instruments because of collinearity and, most importantly, resorting to
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POLS 2FE BB CCEP CCEPt

ln Yit-1 0.981 0.934 0.935 0.408 0.402
220.715 126.800 24.293 14.560 14.527

ln Lit 0.660 0.660 0.564 0.670 0.663
20.409 19.682 3.052 13.056 16.251

ln Lit-1 -0.654 -0.617 -0.616 -0.452 -0.445
-20.388 -18.284 -3.147 -8.934 -25.345

ln Kit 0.208 0.062 0.175 0.503 0.503
4.554 1.085 0.726 5.238 0.154

ln Kit-1 -0.205 -0.046 -0.082 -0.285 -0.331
-4.525 -0.823 -0.347 -3.302 -0.102

ln Rit 0.078 0.018 -0.025 0.020 0.020
3.879 0.748 -0.220 0.503 0.006

ln Rit-1 -0.069 -0.019 0.040 0.020 0.019
-3.469 -0.796 0.354 0.504 0.006

COMFAC 0.000 0.688 0.030 0.000 0.000
CD 0.125 0.097 0.000 0.229 0.891

CIPS 0.010 0.010 0.010 0.010
RMSE 0.060 0.055 0.075 0.034 0.032

Table 7: Dynamic homogeneous models. Replication of unreported table, basis for Table 6 in
EHS. Diagnostics denoted as in the preceding tables.

a generalized inverse. The R function pgmm in turn resorts to a generalized inverse in the
second step. Given the numerical difficulties, we did not expect to replicate results exactly;
yet the two implementations are not far from each other either in terms of coefficients or of
standard errors.

Common correlated effects pooled (CCEP, CCEPt) The considerations in the fol-
lowing only regard replication of the original dynamic CCEP models in EHS. They must be
seen in the light of the “Estimating dynamic models by CCE” paragraph on page 3, which have
a more general bearing on the statistical appropriateness of the whole estimation.

The dynamic CCEP estimator, again, is obtained by augmenting the specification with inter-
actions of individual dummies and cross-sectional averages of regressand and regressors. In
the dynamic model, there are 7 regressors, so this yields an even larger design matrix, with
7 + 119 + 8× 119 = 1078 variables, which become 1103 if adding T − 1 = 25 time effects.

All considerations from the static case apply. The results can be replicated in R with reason-
able accuracy, given how ill-conditioned the problem is. Again, though, the standard errors
reported are incorrect, the ones from the original CCE formula (Pesaran 2006) being much
wider. This has the important consequence that the COMFAC test, which rejected based on
the exceedingly narrow SEs in EHS, does now not reject.

Diagnostics As done above with the static models, we assessed local dependence in the
dimensions of countries and sectors. Results (not shown, to be found in the Online Appendix)
suggest that local cross-sectional dependence is substantial, and remains in the residuals of
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POLS 2FE BB CCEP

ln Yit-1 0.981 0.934 0.935 0.393
96.077 39.039 24.293 2.942

ln Lit 0.660 0.660 0.564 0.687
18.045 16.061 3.052 5.639

ln Lit-1 -0.654 -0.617 -0.616 -0.459
-17.707 -15.698 -3.147 -3.137

ln Kit 0.208 0.062 0.175 0.493
2.687 0.739 0.726 1.870

ln Kit-1 -0.205 -0.046 -0.082 -0.311
-2.617 -0.557 -0.347 -1.191

ln Rit 0.078 0.018 -0.025 -0.022
2.471 0.528 -0.220 -0.192

ln Rit-1 -0.069 -0.019 0.040 0.055
-2.246 -0.565 0.354 0.423

COMFAC 0.000 0.750 0.030 0.427
Frees 0.000 0.000 0.000 0.000
CIPS 0.010 0.010 0.010

RMSE 0.060 0.055 0.075 0.034

Table 8: Dynamic homogeneous models, modified table. Diagnostics denoted as in the pre-
ceding tables.

CCEP estimators as well (although these are consistent in its presence). This is true for
both within sector and within country dependence. As for the intensity (measured by the
absolute value of the CD statistics), it is worth noticing that: within-sector is weaker, and is
rather successfully accounted for by time fixed effects, suggesting that the factor loadings of
different firms to sector-wide shocks are reasonably homogeneous; within-country dependence
is generally stronger, and by contrast to the former it is better accounted for by CCEP models,
suggesting a greater deal of heterogeneity in factor loadings.

Again, Table 6 in EHS can be entirely replicated; but considerations on Table 5 apply here
as well, in particular regarding estimation of standard errors. As a consequence, the revised
CCEP model passes the COMFAC test and therefore the restricted estimates of the long-run
parameters are to be reported. The CCEP model thus migrates from Panel A of Table 6 in
EHS to Panel B together with its special case, 2FE. Although important differences remain
(above all, the estimate of the productivity of capital), the main conclusions to be drawn from
the two preferred models are now similar.

In the following we report both our replication of the original, and our preferred modified
versions, of the two panels A and B of Table 6 in EHS.



Giovanni Millo 17

POLS 2FE BB CCEP CCEPt

ln Lit 0.338 -0.792 0.369 0.364
2.495 -0.927 5.256 4.996

ln Kit 0.173 1.409 0.367 0.287
0.869 2.041 3.746 2.644

ln Rit 0.462 0.222 0.066 0.064
2.788 1.594 1.668 1.600

CRS 0.593 0.868 0.033 0.008

Table 9: Dynamic homogeneous models, unrestricted long-run solutions (Replication of Table
6, Panel A in EHS).

POLS 2FE BB CCEP CCEPt

ln Lit 0.654
19.761

ln Kit 0.078
1.447

ln Rit 0.019
0.815

CRS 0.000

Table 10: Dynamic homogeneous models, long run solutions imposing COMFAC restriction
(Replication of Table 6, Panel B in EHS).

POLS 2FE BB CCEP

ln Lit 0.338 -0.792
2.495 -0.927

ln Kit 0.173 1.409
0.869 2.041

ln Rit 0.462 0.222
2.788 1.594

CRS 0.593 0.868

Table 11: Dynamic homogeneous models, unrestricted long-run solutions, modified version of
Panel A.

POLS 2FE BB CCEP

ln Lit 0.654 0.646
19.761 5.425

ln Kit 0.078 0.355
1.447 1.600

ln Rit 0.019 0.011
0.815 0.139

CRS 0.020 0.962

Table 12: Dynamic homogeneous models, long run solutions imposing COMFAC restriction,
modified version of Panel B.
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3.3. Heterogeneous production functions, static (EHS Table 7)

Uniform demeaning techniques (CDMG) seem to account for within-sector dependence just as
well as do models allowing for heterogeneous factor loadings. On the contrary, within-country
dependence is still stronger in the CDMG residuals than in CMG ones. The former situation is
consistent with an assumption of uniform effect of factors, which is actually more reasonable
for technological progress within a particular industry than for the effect of idiosyncratic
national factors.

MG CDMG CMG CMGt

ln Lit 0.568 0.557 0.599 0.698
6.569 7.628 9.000 8.236

ln Kit 0.117 0.445 0.244 0.149
0.955 5.008 1.702 1.004

ln Rit -0.058 0.089 0.035 -0.050
-0.728 2.123 0.445 -0.601

CRS 0.000 0.092 0.468 0.277
Ljung-box AR(1) 0.000 0.000 0.000 0.000

CD 0.000 0.046 0.505 0.347
CIPS 0.010 0.010 0.010 0.010

RMSE 0.051 0.068 0.037 0.035

Table 13: Static heterogeneous models (Table 7 in EHS). Diagnostics denoted as in the
preceding tables, but for Ljung-Box AR(1) which is a Fisher-type combination of individual
Ljung-Box tests for serial correlation.

MG CDMG CMG CMGt

Global CD 22.668 1.992 0.667 0.940
0.000 0.046 0.505 0.347

avg. rho 0.059 0.005 0.002 0.003
avg. |rho| 0.226 0.240 0.223 0.228

Frees rank test -5.527 -4.363 -5.715 -5.486
0.000 0.000 0.000 0.000

CD(1), sector 9.569 4.129 5.035 4.051
0.000 0.000 0.000 0.000

CD(1), country 20.660 16.568 12.830 12.507
0.000 0.000 0.000 0.000

RW, sector 0.002 0.008 0.002 0.004
RW, country 0.002 0.002 0.002 0.002

Table 14: Comparison of cross section dependence diagnostics for the models in Table 7.
Global CD test, rho, |rho|, Frees rank test, CD(1) sector and, respectively, country, and RW
randomization test defined as in Table eftab:xsd.

Observations on EHS, Table 7

Mean groups estimators are much less problematic that the pooled ones in the Tables 5-6 of
EHS, also thanks to the availability in Stata of a user-contributed function, xtmg, written by
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one of the authors (Eberhardt 2012).

All results in Table 7, EHS have been replicated exactly (at least up to the decimals re-
ported), with the only exception of the Ljung-Box-Fisher serial correlation tests. The latter
are combination-type tests whose null hypothesis is that none of the individual time series of
residuals are serially correlated, hence they can be expected to be very conservative. In fact,
in our replication, serial correlation is found in all four models; on the contrary, for the CMG
and CMGt models EHS report a strange p-value of 1.00 which is likely to be a typo.
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3.4. Heterogeneous production functions, dynamic (EHS Table 8)

MG CDMG CMG CMGt

ln Yit-1 0.153 0.470 -0.022 -0.046
1.658 10.954 -0.519 -0.992

ln Lit 0.690 0.563 0.642 0.671
5.723 9.519 9.073 8.843

ln Lit-1 -0.237 -0.350 -0.094 -0.037
-2.730 -5.928 -1.307 -0.463

ln Kit 0.278 0.184 0.295 0.229
1.616 1.950 1.749 1.326

ln Kit-1 -0.146 0.000 -0.261 -0.264
-0.647 0.002 -1.648 -1.609

ln Rit -0.096 0.139 -0.086 -0.094
-0.701 3.961 -0.665 -0.726

ln Rit-1 -0.032 -0.082 0.046 0.010
-0.168 -2.234 0.263 0.054

COMFAC 0.716 0.480 0.969 0.849
CD 0.000 0.065 0.078 0.061

CIPS 0.010 0.010 0.010 0.010
RMSE 0.035 0.038 0.022 0.020

Table 15: Dynamic heterogeneous models.

MG CDMG CMG CMGt

ln Lit 0.703 0.567 0.642 0.678
6.152 10.011 9.386 9.432

ln Kit 0.277 0.245 0.276 0.172
1.867 3.373 1.709 1.088

ln Rit -0.107 0.139 -0.084 -0.088
-0.953 3.947 -0.945 -0.964

CRS 0.469 0.540 0.274 0.142

Table 16: Dynamic heterogeneous models, long run solutions imposing COMFAC restrictions
(Table 8 in EHS).

Observations on EHS, Table 8

The considerations in the following only regard replication of the original dynamic CCEMG
models in EHS. They must be seen in the light of the “Estimating dynamic models by CCE”
paragraph on page 3, which have a more general bearing on the statistical appropriateness of
the whole estimation.

As observed, MG estimators in Stata match those in R very well. All diagnostics from the
dynamic model are replicated exactly. All models pass the COMFAC test, thus only restricted
versions of the long-run models are reported in Table 8, EHS. The latter is in turn exactly
replicated in R, but for the last row. Here, the only discrepancy is due to a typo: the
results of the CRS test reported in EHS are actually those computed on the unrestricted
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MG CDMG CMG CMGt

Global CD 12.336 1.843 -1.761 -1.875
0.000 0.065 0.078 0.061

avg. rho 0.033 0.005 -0.006 -0.006
avg. |rho| 0.227 0.225 0.211 0.220

Frees rank test -7.799 -7.826 1.557 2.019
0.000 0.000 0.000 0.000

CD(1), sector 6.102 4.023 2.938 3.053
0.000 0.000 0.003 0.002

CD(1), country 11.262 10.567 6.307 6.346
0.000 0.000 0.000 0.000

RW, sector 0.016 0.002 0.006 0.010
RW, country 0.002 0.002 0.002 0.002

Table 17: Comparison of cross section dependence diagnostics for the models in Table 8.
Diagnostics defined as in earlier Tables.

models10. Computing the CRS tests on the restricted models, constant returns to scale are
never rejected.

4. Computational details

This appendix has been produced as a dynamic document with the Sweave utility (Leisch
2002) in order to be replicable in the sense of Peng (2011): as such, it is self-contained and
fully self-reproducing without the need for any further resources other than the files provided
with it and FOS software from the R project (R Core Team 2014).

All calculations were originally performed in R 3.0.2 (R Core Team 2014), in particular using
packages plm 1.3-3 (Croissant and Millo 2008), lmtest (Zeileis and Hothorn 2002), car (Fox
and Weisberg 2011), msm (Jackson 2011) and sinkr (Taylor 2017), on the following systems:
Ubuntu Linux 16.04, Windows 7. Results were identical across platforms. Tables have been
automatically typeset in LATEX by the xtable package (Dahl 2014). Full replication scripts are
available in the accompanying materials to this Appendix, together with extended versions of
some published functions from packages plm and splm, as well as some entirely new procedures
(most of them meant to be included in said packages in the future).

4.1. Data sources and materials

Data and procedures from the original paper have been retrieved from the personal page
of Markus Eberhardt, www.medevecon.com. They are available from the data archive of
the Review of Economics and Statistics as well. With the kind agreement of the authors,
the dataset has also been included in the pder package for R (Croissant and Millo 2017) (a
companion package to the forthcoming book by the same name), whence they can be retrieved
with data(RDSpillovers, package="pder").

10We replicated them exactly as such; the results are not reported here but the code can be found in the
replication script as chunk t8.crstests.u.
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4.2. Computational robustness checks

In the following we discuss the possibility of errors in the R code, and the replication of non-
matching results with different procedures and/or different software as a robustness check.
All relevant scripts are available upon request. Results are discussed in order of appearance.

While our R implementation of the minimum distance estimator for the COMFAC restricted
models is a port of the Stata routines of Mans Soderbom (www.soderbom.net/Resources.
htm), the Arellano-Bond m-tests have been rewritten from scratch starting from the original
paper, instead of porting the abar Stata routine by Doorman. The former in fact replicates
exactly the original results, while the latter does not. Our implementation of the m-tests, both
m1 and m2, has been checked for consistency by means of a small Monte Carlo simulation, in
which it turned out to produce test statistics that are correctly sized and have the expected
power properties as the serial correlation coefficient at, respectively, the first and second
order goes from 0 to near 1 (we tested the following values: 0, 0.1, 0.2, 0.3, 0.5 and 0.99, at
a confidence level of 5%, obtaining an empirical size in the region of 0.04 and monotonically
increasing power).

5. Conclusions

The paper by EHS is a rich piece of empirical work which exposes a number of issues whose
interest goes beyond that of the application at hand to bear more generally on the practice
of modelling panel time series with common factors.

We have successfully replicated all procedures in the paper in open source R with only minor
discrepancies. Next to the replication of original results, we have provided alternatives for
estimators and diagnostics for some problematic cases. 11 The most important aspect is
perhaps our critique of the “augmentation” approach to computing CCEP estimators. While
very convenient and applicable through standard regression, the technique yields grossly un-
derestimated standard errors. Nevertheless, the economic conclusions of the paper are still
upheld. Our corrected estimates actually reconcile some of the original findings which were
at odds with each other. Constant returns to scale (CRS) restrictions are now not rejected
throughout all preferred specifications of EHS, hereby confirming the consistency of their re-
sults beyond the original presentation, where heterogeneous common-factor augmented mod-
els (CMG, CMG with trends) rejected CRS while all other preferred models (homogeneous
static: FD, homogeneous dynamic: CCEP, heterogeneous static: CMG, CMG with trends)
did not.

As for the cross-sectional correlation which is such a substantial feature of the original study,
we highlight the shortcomings of relying on CD tests in presence of time fixed effects and
other cross-sectional augmentations, and suggest alternatives. We assess the effectiveness of
defactoring in CCEP models computing the exponent of cross-sectional (residual) dependence.
Lastly, we provide a first assessment of the direction of spillovers by means of local CDp and
RW tests over the dimensions of countries and industries, finding that correlation is highest

11 The availability of the original dataset and Stata code, published by the authors, made this replication
and critique of the main results in the original paper possible; in particular, the availability of code clarified
the procedures used far beyond what could be gauged from the paper itself, a testimony to the importance of
complementing published results with linked data and executable code, in the spirit of the “gold standard of
replication” (Peng 2011).

www.soderbom.net/Resources.htm
www.soderbom.net/Resources.htm
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within each country.
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