
Appendix to: “A Review of TESTU01”
reviewed by B. D. McCullough1

1 Introduction

The purpose of this Appendix is to present the reader with instructions for installing TESTU01
and getting it running, using TESTU01 to apply both specific tests and batteries of tests to a
pre-programmed RNG, and to test an RNG that is not pre-programmed. By the time this review
appears, TESTU01 will have been revised a couple more times, so the specific commands given
here might not work. Nonetheless, simply reading this appendix will give the reader a good idea
of how to use TESTU01, and will make it easier to understand the TESTU01 documentation.
More sophisticated uses of TESTU01 can be learned by consulting the User Guide.

All code used to produce this appendix is contained in two zip files: ccodeforRrngs.zip and
codelistings.zip (some programs appear in both files). The former contains the code necessary
to test all the RNGs given in Table 1, and the latter contains ASCII versions of the code listings
given at the end of this appendix.

2 Installing TESTU01

The following worked on Red Hat 9.0 with TestU01-03. The procedure might change slightly
for subsequent versions of TestU01, so be sure to consult the README file that comes with the
software.

From www.iro.umontreal.ca/˜simardr/ obtain the software as a zip file, e.g., Testu01-03.zip
and place the it file in the preferred directory, e.g., /home/myname, and unzip it. This will create
the testu01-02 subdirectory which, in turn, will have a README file and 7 subdirectories: doc,
examples, include, lib, mylib, param, probdist, and testu01.

The README instructs the user to edit two files. In the file /mylib/gdef.tex change noth-
ing. In the subdirectory /lib depending on whether one uses the c-shell or the bash shell, in
about the sixth line of the file Crc.csh or Crc.sh (respectively) change the default directory
from /u/simardr/paquets/alcatel/testu01-03 to, e.g., /home/myname/testu0-03. From within the
/lib subdirectory, to invoke the former from a c-shell, issue the command source Crc.csh
and to invoke the latter from bash the command ./Crc.sh must be invoked.

1Thanks to Akram Muhammad and Thomas Flottemesch, who test-drove the intstallation instructions, and Mer-
rill Liechty, who test-drove the examples. Thanks are also due to Pierre L’Ecuyer and Richard Simard for comments,
with additional thanks to Simard for writing the C programs used in this Appendix.

1

smultin (based on multinomial distribution) svaria (various tests)
independent cells sample mean test
overlapping cells sample correlation test
independent cells (bit test version) sample product test
overlapping cells (bit test version) sum of the logarithms test

sentrop (entropy-based tests) test of Matsumoto and Kurita
independent blocks weighted distribution test
overlapping blocks; number of bits n ≤ 31 arg max collision test
overlapping blocks; number of bits n > 31 sum of uniforms test
Dudewicz/van der Meulen test appearance spacings test
Dudewicz/van der Meulen circular version swalk (tests based on the random walk)

snpair (based on distance between points) random walk one
distance measured by Lp norm random walk one-a
a binary measure of distance number of steps necessary to exceed µ

closest pairs test of Bickel and Breiman number of steps still less than 1 − µ

sknuth (Knuth’s classic tests) scomp (tests based on linear complexity)
serial test jumps test
serial sparse test jumps size test
permutation test compressibility test
gap test sspectral (tests based on spectral methods)
simplified poker test Fourier one
coupon collector test Fourier two
runs of bits test Fourier three
independent runs test sstring (tests applied to strings of random bits)
‘maximum of t’ test periods in strings
collision test longest run of ones
collision-permutation test Hamming weights test

smarsa (tests due to Marsaglia) Hamming correlation test
overlapping t-tuple test Hamming independence test
overlapping pairs sparse occupancy test runs test
monkey test autocorrelation test
monkey test (bit test version) sspacings (tests based on the sorted uniforms)
birthday spacings test sum of the logs test
rank of a binary random matrix sum of the squares test
savir2 test scans test
all spacings two test all spacings test

Table 1: Groups (italics) of tests (indented) in TESTU01

2

Among other things, the files Crc.csh and Crc.sh set environment variables, etc. and define
some useful commands, e.g., ccl (that’s a lowercase ell, not a one). Executing ccl fn.c sub-
mits fn.c to gcc with all the TESTU01 libraries, etc., as part of the call.

Working from bash, the instruction did not appear to work. To get around this, still in the /lib
subdirectory, switch to the c-shell by issuing the command exec /bin/csh. Then issue the
command source Crc.csh. There is one thing left to do. From the /lib subdirectory, issue
the command make. If this runs without an error, TESTU01 has been installed. Otherwise, refer
to the README file for further information.

After successful installation, every time an xterm window is opened for the purpose of using
TESTU01, it is necessary to issue the pair of commands exec /bin/csh and source Crc
from the /lib subdirectory.

3 A Preliminary Example

Now go to the subdirectory /examples and issue the command ccl birth1.c followed by
./a.out. With the exception of some deleted blank lines, you should see the output below:

MACHINE = localhost.localdomain
ulcg_CreateLCG: m = 2147483647, a = 397204094, c = 0, s = 12345

smarsa_BirthdaySpacings test:

N = 1, n = 1000, r = 0, d = 10000, t = 2, Order = 1

Number of cells = dˆt = 100000000
Lambda = Poisson mean = 2.5000

--
Total expected number = N*Lambda : 2.50
Total observed number : 6
Significance level of test : 0.04

CPU time used : 00:00:00.00

Generator state:
s = 1858647048

3

MACHINE = localhost.localdomain
ulcg_CreateLCG: m = 2147483647, a = 397204094, c = 0, s = 12345

smarsa_BirthdaySpacings test:

N = 1, n = 10000, r = 0, d = 1000000, t = 2, Order = 1

Number of cells = dˆt = 1000000000000
Lambda = Poisson mean = 0.2500

--
Total expected number = N*Lambda : 0.25
Total observed number : 44
Significance level of test : eps *****

CPU time used : 00:00:00.01

Generator state:
s = 731506484

The program birth1.c demonstrates the importance of being able to vary the parameters of a
statistical test: the RNG being tested passes the “Birthday Spacings Test” when the number of
birthdays n = 1000 and the number of intervals on the line d = 10, 000. The p−value of 0.04
is suspect. As opposed to DIEHARD, where the test parameters are fixed, with TESTU01 the
parameters can be varied to investigate the suspicious behavior of the RNG. When the param-
eters are changed to n = 10, 000 and d = 1, 000, 000, the RNG fails catastrophically, with a
significance level of “eps”.

The usual hypothesis testing framework does not apply to testing random numbers. By “fail-
ure” we mean catastrophic failure, the requisite evidence of which is a p-value that is either zero
or unity to several decimal places. For example, a p-value of 1E-10 is a catastrophic failure
(L’Ecuyer and Simard, 2002, p. 79). This is necessary, but not sufficient. The additional neces-
sary condition is that the failure be replicated for a different seed. For example, if an RNG fails
the “Birthday Spacings” test with p-value=1E-10 for one seed, but fails only with p-value=1E-6
(or does not fail at all) with another seed, then one would not conclude that the RNG fails the
Birthday Spacings test. On the other hand, if it failed both times with p-value=1E-10, then it
would be correct to conclude that the RNG fails the Birthday Spacings test.

It is useful to examine the program birth1.c, given below:

#include "unif01.h"

4

#include "ulcg.h"
#include "smarsa.h"
#include <stddef.h>

int main (void)
{

unif01_Gen *gen;
gen = ulcg_CreateLCG (2147483647, 397204094, 0, 12345);
smarsa_BirthdaySpacings (gen, NULL, 1, 1000, 0, 10000, 2, 1);
smarsa_BirthdaySpacings (gen, NULL, 1, 10000, 0, 1000000, 2, 1);
ulcg_DeleteGen (gen);
return 0;

}

The #include statements specify the various modules of TESTU01 that will be needed. For
example #include "ulcg.h" specifies the linear congruential generators module (the “u”
at the beginning stands for “uniform”), and #include "smarsa.h" specifies the Marsaglia
tests (the “s” at the beginning stands for “statistical tests”). The actual commands to be used,
e.g., smarsa BirthdaySpacings are described in detail in the User’s Guide.

It is very easy to crib from the examples in the /testu01-02/examples subdirectory to choose
different combination of RNGs and tests. Suppose one wished to combine two LCGs and then
apply the Small Crush battery of tests to this combined LCG. The program test.c (availabe at the
journal archive) would be as follows:

#include "unif01.h"
#include "ulcg.h"
#include "bbattery.h"
#include <stddef.h>

int main (void)
{

unif01_Gen *gen1, *gen2, *gen3;
gen1 = ulcg_CreateLCG (2147483543, 10064, 0, 12345);
gen2 = ulcg_CreateLCG (2147483563, 16493, 0, 12345);
gen3 = unif01_CreateCombAdd2 (gen1, gen2,"My Combination of LCGs");
bbattery_SmallCrush (gen3);
unif01_DeleteCombGen (gen3);
ulcg_DeleteGen (gen1);

5

ulcg_DeleteGen (gen2);
return 0;

}

To test this combined RNG, simply issue the command ccl test.c followed by the com-
mand ./a.out and read the output. Note that instead of loading the Marsaglia tests, the library
that contains the Small Crush battery of tests is loaded. Two very nice features of the Crush bat-
teries is that, in addition to providing a listing of all the test results, at the end is a separate list that
summarizes the failures, so there is no need to wade through several pages of output trying to de-
cide if some particular result constitutes success or failure (persons who have applied DIEHARD
will appreciate this feature). Moreover, it is possible (by loading the ‘swrite.h’ module) to vary
the amount of output produced by each test.

4 A Practical Example

Of course, what we really want to do is test the RNGs in our statistical and econometric pack-
ages, and if these RNGs are not pre-programmed in TESTU01 then we have to implement them
ourselves. This can be done in two ways: program the RNG in C, or call the package’s RNG
from C code (if the package permits this). Either way, the ability to program C is required. The
User Guide gives an example of how to “roll your own” (Figure 2.4, p. 19), but persons not fluent
in the C programming language may find it completely unsatisfactory.

A good choice for a guinea pig is the default uniform RNG in the package “R” (Ihaka and
Gentleman, 1996). There are several reasons for this. First, no formal, independent testing has
been done on the “R” RNGs. Second, the source code for the RNG is readily available at the “R”
website (www.r-project.org) so there is no quibbling with some software developer (try getting
the precise details of the RNG in your favorite statistical package and you’ll see what I’m talking
about). Third, the “R” RNG is superb: it offers a variety of uniform generators (as well as a
variety of transforms to normality) including (and this is very important) the ability to call user-
written RNGs that are compiled. This is very important because no user should have to depend
solely on the RNG that the software developer happens to include.

The default uniform RNG in R v1.6.1 is Marsgalia’s Multicarry. TESTU01 has this pre-
programmed as umarsa CreateMWC97R, but it is instructive to see how it might be pro-
grammed by a user. The relevant lines of the “R” source code (which is written in C) are as
follows:

case MARSAGLIA_MULTICARRY:/* 0177777(octal) == 65535(decimal)*/
I1= 36969*(I1 & 0177777) + (I1>>16);
I2= 18000*(I2 & 0177777) + (I2>>16);

6

return ((I1 << 16)ˆ(I2 & 0177777)) * i2_32m1; /* in [0,1) */

The C program that implements the Marsaglia Multicarry for use in TESTU01, multicarry.c,
is available at the journal archive.

Examining the “include” statements at the top of multicarry.c, the only one that is not already
part of one or another of the libraries in TESTU01 is “multicarry.h” which has to be written by
the user, and is available at the journal archive:

#include "unif01.h"
unif01_Gen *CreateMultiCarry (unsigned long I1, unsigned long I2);
void DeleteMultiCarry (unif01_Gen * gen);

The C program that calls multicarry.h and applies the Small Crush battery, to it, poil.c (avail-
able at the journal archive) follows:

/*
* Generate 10 numbers in [0, 1), then apply SmallCrush on MultiCarry
*/

#include "bbattery.h"
#include "unif01.h"
#include "multicarry.h"
#include <stdio.h>

int main (void)
{

int i;
unif01_Gen *gen;

gen = CreateMultiCarry (1012585244, -997230227);
for (i = 0; i < 10; i++)

printf ("%18.16f\n", unif01_StripD (gen, 0));

bbattery_SmallCrush (gen);
DeleteMultiCarry (gen);

return 0;
}

7

To change from Small Crush to Big Crush it is necessary only to change bbattery SmallCrush
(gen) to bbattery BigCrush (gen). Two things are of particular note in the poil.c pro-
gram. First, the seeds for the Multicarry are given as 1012585244 and -997230227 . Second, a
’for’ loop prints out the first ten random numbers, so that I can compare them to the random num-
bers actually produced by “R” when I give the same seeds to its default generator. The relevant
output from “R” is given below, where a single integer, 123457, is used as a seed from which
the two seeds necessary to define the Multicarry RNG are created. To find these two seeds the
command ‘.Random.seed’ is issued.

R : Copyright 2002, The R Development Core Team
Version 1.6.1 (2002-11-01)

> set.seed(123457,kind="Marsaglia-Multicarry")
> .Random.seed
[1] 1 1012585244 -997230227
> runif(10)
[1] 0.5735857858261059 0.0658577107977722 0.9885551664020293
[4] 0.3964184309347575 0.3679865683354405 0.1116248930598667
[7] 0.6149889928323655 0.0728358628863552 0.8065828624662436
[10] 0.4819400479276524

>

Now all that remains is to put poil.c, multicarry.c and multicarry.h in the same directory and
issue the command ccl poil.c multicarry.c. This creates the ’a.out’ executable file,
partial output from which follows:

[bmccullo@localhost examples]\$./a.out
0.5735857858261059
0.0658577107977722
0.9885551664020293
0.3964184309347575
0.3679865683354405
0.1116248930598667
0.6149889928323655
0.0728358628863552
0.8065828624662436
0.4819400479276524

8

xxx
Starting Crush

xxx

Test smarsa_SerialOver calling smultin_MultinomialOver

MACHINE = localhost@localdomain

CreateMultiCarry: I1 = 1012585244, I2 = 3297737069

.... several hundred lines deleted

CPU time used : 00:01:10.83

Generator state:
I1 = 1414800700, I2 = 413436365

============== Summary results of Crush ==============

Generator: CreateMultiCarry
Number of tests: 60
Total CPU time: 01:44:34.14
The following tests gave p-values outside [0.01, 0.99]:
(eps means a value < 1.0e-15)

Test p-value
--
1 SerialOver (t = 2) 1 - eps
2 SerialOver (t = 4) eps
4 CollisionOver (t = 2) 1 - eps
8 MultinomialBitsOver 1 - 3.1e-7
10 BirthdaySpacings (t = 2) 1.0e-4
11 BirthdaySpacings (t = 4) eps
12 BirthdaySpacings (t = 13) eps
13 BirthdaySpacings (t = 13) eps

9

14 ClosePairs (t = 2) eps
15 ClosePairs (t = 4) eps
16 ClosePairsBitMatch (t = 2) 1 - eps
23 Gap 8.8e-5
24 Gap eps
25 Gap eps
27 Permutation 1 - 6.6e-14
29 MaxOft eps
30 MaxOft eps
37 WeightDistrib 8.1e-6
48 Fourier3 2.6e-3
52 HammingCorr (L = 30) 2.1e-14
55 HammingIndep (L = 30) 1.6e-4
--
All other tests were passed

After each of the tests is applied, TESTU01 prints the amount of CPU time that the test
required (this is not shown in the abbreviated output above). In the summary output, which can
be seen above, is also displayed the “Total CPU time:”; be sure not to confuse an individual test
time with the total test time.

As can be seen from the comparison of the “R” output and the TESTU01 output, both are
using the same generator since they produce the same string of numbers. Thus we can be confi-
dent that the results produced by TESTU01 shed light on the efficacy of the default RNG in “R”.2

The program prints a convenient summary: the names of all tests that produce a p-value outside
the [0.1, 0.99] interval (these limits can be adjusted by using the variable gofw suspectp in
module probdist/gofw, see page 27 of the User Guide). Actually, the summary is more than
convenient, it is a necessity, since the output for Small Crush, Crush, and Big Crush is on the
order of 500, 2000, and 1500 lines, respectively.

Examining the summary, many catastrophic failures can be seen (tests 1, 2, 4, 11, 12, 13, 14,
15, 16, 24, 25, 27, 29, 30, 52). Near catastrophic failures occurs with tests 8 and 37. However,
the birth1.c example in Section Two suggests that some of these near failures might be failures,
if only the parameters of the test were varied, especially the “27 Permutation” and “52 Ham-
mingCorr (L=30)” tests. As the Marsaglia Multicarry passes all the DIEHARD tests, this is an
example of a test that passes all the DIEHARD yet fails TESTU01.

2Technically, since only the first ten numbers are checked, and later numbers may vary, the only way to be
absolutely sure is to feed the numbers directly from the package into TESTU01 (thanks to Duncan Murdoch for
pointing this out).

10

5 A Second Example

There exists a pre-programmed Wichmann-Hill generator ulcg CreateCombWH3 (Wichmann-
Hill 1) but it is also possible to construct one by combining three LCGs (Wichmann-Hill 2). The
two methods are algebraically equivalent, but not numerically equivalent. The pre-programmed
version is slightly more efficient, because the three components are updated by the same function
call, whereas the constructed version makes three separate function calls. Consequently, there
can be a large difference in the amount of time each takes, as shown in Table 1.

Wichmann-Hill-1
unif01_Gen *gen1;
gen1 = ulcg_CreateCombWH3(30269, 30307,30323,171,172,

170,0,0,0,26656,2092,3794);

Wichmann-Hill-2
unif01_Gen *gen1, *gen2, *gen3, *gen4;
gen1 = ulcg_CreateLCG (30269,171, 0, 26656);
gen2 = ulcg_CreateLCG (30307,172, 0, 2092);
gen3 = ulcg_CreateLCG (30323,170, 0, 3794);
gen4 = unif01_CreateCombAdd3 (gen1, gen2, gen3, "Wichmann-Hill");

(eps means a value < 1.0e-15)
Test p-value

--
10 BirthdaySpacings (t = 2) eps
11 BirthdaySpacings (t = 4) eps
13 BirthdaySpacings (t = 13) 2.4e-3
14 ClosePairs (t = 2) eps
15 ClosePairs (t = 4) 2.1e-14
44 RandomWalk1 (L = 10000) 0.9966
--
All other tests were passed

Table 1 presents results for all the uniform generators in R. The code for running these tests
is at this journal’s archive. There is a slight problem in the table. In R there seems to be a
problem setting the seed for the Mersenne Twister. This researcher was unable to use the pre-
programmed Mersenne Twister in TESTU01 to duplicate the first ten random numbers produced

11

catastrophic failures (CPU time)
RNG Small Crush Crush Big Crush

Marsaglia Multicarry 1 (00:00:46) 13 (01:44:34) 19 (15:06:40)
Super-Duper 1 (00:00:48) 9 (01:47:21) 12 (15:21:20)

Wichmann-Hill-1 1 (00:01:03) 3 (02:18:39) 4 (19:57:47)
Wichmann-Hill-2 1 (00:01:21) 3 (02:56:37) 4 (25:39:25)
Mersenne Twister 0 (00:00:46) 0 (01:52.22) 0 (15:58:25)

Knuth TAOCP 0 (00:00:44) 0 (01:38:29) 0 (14:20:26)
Knuth TAOCP 2002 0 (00:00:44) 0 (01:39:46) 0 (14:29:36)

Table 2: Crush Tests Applied to Several RNGs from “R”
time in hours:minutes:seconds

by the Mersenne Twister in R. Nonetheless, the Mersenne Twister results in Table 2 are indicative
of the performance of the, the same-named RNG in R.

Examining Table 1, of the six uniform RNGs in R, only the Mersenne-Twister and the pair
of Knuth-TAOCP generators appear to be bullet-proof, consequently only they can be recom-
mended. We know from experience that non-uniform uniform RNGs act in unpredictable ways.
For example, the Marsaglia-Zaman subtract-with-borrow generator gives perfectly sensible re-
sults in many situations, but when combined with the Box-Muller method it produces normal
random deviates that are not normal. The non-normality is slight enough to avoid detection by
the standard methods, but still substantial enough to noticeably change Monte Carlo results. Of
course, one will only observe that the Monte Carlo results are wrong if one runs the same ex-
periment using two different generators. Many packages do not afford users this “luxury”, so
the unfortunate users of such deficiently designed packages could not run their Monte Carlo with
two different generators, even if they were so inclined.

6 Conclusions

The careful reader should be able to perform rudimentary analyses of RNGs using TESTU01.
The reader who is interested in further uses of TESTU01 is referred to the User Guide.

12

REFERENCES

Ihaka, Ross and Robert Gentleman (1996), “R: A language for data analysis and graphics,” Jour-
nal of Computational and Graphical Statistics 5, 299-314

L’Ecuyer, Pierre and Richard Simard (2002), “TESTU01: A Software Library in ANSI C for
Empirical Testing of Random Number Generators, User’s Guide, Detailed Version” (comes
with the software TESTU01)

L’Ecuyer, Pierre and Richard Simard (2002a), “MYLIB-C: A Small Library of Basic Utilities in
ANSI C” (comes with the software TESTU01)

L’Ecuyer, Pierre and Richard Simard (2002b), “PROBDIST: A Software Library of Probability
Distributions and Goodness-of-Fit Statistics in ANSI C” (comes with the software TESTU01)

13

Code Listing A: multicarry.c

#include "multicarry.h"
#include "unif01.h"
#include "util.h"
#include "addstr.h"
#include <string.h>

typedef struct{
unsigned long I1, I2;

} MultiCarry_state;

static unsigned long MultiCarry_Bits (void *par, void *sta)
{

MultiCarry_state *state = sta;
state->I1 = 36969 * (state->I1 & 0177777) + ((state->I1 >> 16) & 0177777);
state->I2 = 18000 * (state->I2 & 0177777) + ((state->I2 >> 16) & 0177777);
return (state->I1 << 16) ˆ (state->I2 & 0177777);

}

static double MultiCarry_U01 (void *par, void *sta)
{

return MultiCarry_Bits (par, sta) * 2.328306437080797e-10;
}

static void WrMultiCarry (void *sta)
{

MultiCarry_state *state = sta;
printf (" I1 = %lu, I2 = %lu\n", state->I1, state->I2);

}

unif01_Gen *CreateMultiCarry (unsigned long I1, unsigned long I2)
{

unif01_Gen *gen;
MultiCarry_state *state;
size_t leng;
char name[60];

14

gen = util_Malloc (sizeof (unif01_Gen));
gen->state = state = util_Malloc (sizeof (MultiCarry_state));
state->I1 = I1;
state->I2 = I2;
gen->param = NULL;
gen->Write = WrMultiCarry;
gen->GetU01 = MultiCarry_U01;
gen->GetBits = MultiCarry_Bits;

strcpy (name, "CreateMultiCarry:");
addstr_Ulong (name, " I1 = ", I1);
addstr_Ulong (name, ", I2 = ", I2);
leng = strlen (name);
gen->name = util_Calloc (leng + 1, sizeof (char));
strncpy (gen->name, name, leng);
return gen;

}

void DeleteMultiCarry (unif01_Gen * gen)
{

gen->state = util_Free (gen->state);
gen->name = util_Free (gen->name);
util_Free (gen);

}

Code Listing B: multicarry.h

#include "unif01.h"
unif01_Gen *CreateMultiCarry (unsigned long I1, unsigned long I2);
void DeleteMultiCarry (unif01_Gen * gen);

Code Listing C: poil.c

/*
* Generate 10 numbers in [0, 1), then apply SmallCrush on MultiCarry
*/

#include "bbattery.h"
#include "unif01.h"

15

#include "multicarry.h"
#include <stdio.h>

int main (void)
{

int i;
unif01_Gen *gen;

gen = CreateMultiCarry (1012585244, -997230227);
for (i = 0; i < 10; i++)

printf ("%18.16f\n", unif01_StripD (gen, 0));

bbattery_SmallCrush (gen);
DeleteMultiCarry (gen);

return 0;
}

Code Listing D: test.c

#include "unif01.h"
#include "ulcg.h"
#include "bbattery.h"
#include <stddef.h>

int main (void)
{

unif01_Gen *gen1, *gen2, *gen3;
gen1 = ulcg_CreateLCG (2147483543, 10064, 0, 12345);
gen2 = ulcg_CreateLCG (2147483563, 16493, 0, 12345);
gen3 = unif01_CreateCombAdd2 (gen1, gen2,"My Combination of LCGs");
bbattery_SmallCrush (gen3);
unif01_DeleteCombGen (gen3);
ulcg_DeleteGen (gen1);
ulcg_DeleteGen (gen2);
return 0;

}

16

