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Appendix I. Posterior analysis of the network and SCSAR models

Here, we list the set of conditional posterior distributions required by the Gibbs

sampler:

(i) By Bayes’ theorem, P (zi,g|Yg,Wg, Z−i,g, θ, αg) ∝ π(zi,g) · P (Yg,Wg|Zg, θ, αg),

i = 1, · · · ,mg, g = 1, · · · , G. Therefore, we have

P (zi,g|Yg,Wg, Z−i,g, θ, αg) ∝ Nd̄(zi,g; 0, Id̄) · P (Yg,Wg|Zg, θ, αg), (1)

where

P (Yg,Wg|Zg, θ, αg)

= P (Yg|Wg, Zg, θ, αg) · P (Wg|Zg, θ, αg)

= (2π)−
mg
2

(
σ2
u

)−mg
2 |Img − λWg| exp

(
− 1

2σ2
u

u′gug

)
·
∏
i 6=j

exp(wij,gψij,g)

1 + exp(ψij,g)
.

(ii) We can simplify the conditional posterior distribution of φ to P (φ|{Wg}, {Zg}).

Using Bayes’ theorem, we have

P (φ|{Wg}, {Zg})

∝ π(φ) ·
G∏
g=1

P (Wg|Zg, φ) = N2s̄+q̄+d̄ (φ;φ0,Φ0) ·
G∏
g=1

P (Wg|Zg, φ), φ ∈ O1

(2)

(iii) By applying Bayes’ theorem, we have

P (λ|{Yg}, {Wg}, {Zg}, β, σ, {αg}) ∝
G∏
g=1

P (Yg|Wg, Zg, λ, β, σ, αg), (3)

where λ ∈ [−1/τG, 1/τG].

(iv) By applying Bayes’ theorem, we have

P (β|{Yg}, {Wg},{Zg}, λ, σ, {αg})

∝ N2k(β; β0, B0) ·
G∏
g=1

P (Yg|Wg, Zg, λ, β, σ, αg).
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Since both N2k(β; β0, B0) and P (Yg|Wg, Zg, λ, β, σ, αg) are in terms of normal

density, we obtain standard linear model results in which

P (β|{Yg}, {Wg}, {Zg}, λ, σ, {αg}) ∝ N2k

(
β; β̂,B

)
, (4)

where β̂ = B
(
B−1

0 β0 + 1
σ2
u

∑G
g=1 X

′
g((Img − λWg)Yg − Zgσzε − lgαg)

)
and

B =
(
B−1

0 + 1
σ2
u

∑G
g=1 X

′
gXg

)−1

with Xg = (Xg,WgXg).

(v) By applying Bayes’ theorem, we have

P (σ|{Yg}, {Wg}, {Zg}, λ, β, {αg})

∝ Nd̄+1(σ;σ0,Σ0)
G∏
g=1

P (Yg|Wg, Xg, Zg, λ, β, σ, αg), σ ∈ O2. (5)

(vi) By applying Bayes’ theorem, we have

P (αg|Yg,Wg, Zg, λ, β, σ) ∝ N (αg, α0, A0) · P (Yg|Wg, Xg, Zg, λ, β, σ, αg),

for g = 1, · · · , G. Similar to (iv), we can further obtain

P (αg|Yg,Wg, Zg, λ, β, σ) ∝ N (αg; α̂g, Rg), (6)

where α̂g = Rg

(
A−1

0 α0 + 1
σ2
u
l′g
(
(Img − λWg)Yg −Xgβ − Zgσzε

))
and Rg =(

A−1
0 + 1

σ2
u
lgl
′
g

)−1

.

The sampling of β and {αg} are straightforward because of their well-known condi-

tional posterior distributions. However, other conditional posterior distributions are

not available in closed forms, and hence, we need to use the Metropolis-Hastings (M-

H) algorithm to draw from those conditional distributions. Tierney (1994) and Chib

and Greenberg (1996) show that the combination of Markov chains (Metropolis-

within-Gibbs) is still a Markov chain with the invariant distribution equal to the

correct objective distribution. The procedure of the MCMC sampling starts with

arbitrary initial values for {Z(0)
g }, {α(0)

g }, and parameters θ(0), and then the sampling
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proceeds sequentially from the above set of conditional posterior distributions. The

implementation details of the MCMC procedure are listed as follows:

At the tth iteration of the MCMC sampling, we implement the following steps:

Step 1. Sample z
(t)
i,g from P (zi,g|Yg,Wg, θ

(t−1), α
(t−1)
g ), as specified in Eq. (1), by

using the M-H algorithm for i = 1, · · · ,mg and g = 1, · · · , G.

(a) Propose z̃i,g ∼ Nd̄(z
(t−1)
i,g , κ2

zId̄), where κ2
z is chosen by users. We adjust

the value of κ2
z in the proposal distribution, such that the acceptance rate

of z̃i,g is between 20% and 40%.

Let Z̃g = (z
(t−1)
1,g , · · · , z(t−1)

i−1,g , z̃i,g, z
(t−1)
i+1,g , · · · , z

(t−1)
mg ,g ).

(b) With the probability equal to

α(z
(t−1)
i,g ; z̃i,g) =

min

{
P (Yg|Wg, Z̃g;λ

(t−1), β(t−1), σ(t−1), α
(t−1)
g )

P (Yg|Wg, Z
(t−1)
g ;λ(t−1), β(t−1), σ(t−1), α

(t−1)
g )

· Nd̄(z̃i,g; 0, Id̄)

Nd̄(z
(t−1)
i,g ; 0, Id̄)

, 1

}
,

set z
(t)
i,g equal to z̃i,g. Otherwise, set it to z

(t−1)
i,g .

Step 2. Simulate φ(t) = (γ(t)′ , δ(t)′) from P (φ|{Wg}, {Z(t)
g }), φ ∈ O1, by using the

M-H algorithm.

(a) Propose φ̃ ∼ N2s̄+q̄+d̄

(
φ(t−1), κ2

φI2s̄+q̄+d̄

)
, where κ2

φ is chosen by users.

(b) With the probability equal to

α(φ(t−1); φ̃) =

min

{
G∏
g=1

(
P (Wg|Z(t)

g , φ̃)

P (Wg|Z(t)
g , φ(t−1))

)
·

N2s̄+q̄+d̄(φ̃;φ0,Φ0)

N2s̄+q̄+d̄(φ
(t−1);φ0,Φ0)

· I(φ̃ ∈ O1)

I(φ(t−1) ∈ O1)
, 1

}

set φ(t) equal to φ̃. Otherwise, set it to φ(t−1).
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Step 3. Sample λ(t) from P (λ|{Yg}, {Wg}, {Z(t)
g }, β(t−1), σ(t−1), {α(t−1)

g }),

λ ∈ [−1/τG, 1/τG], as specified in Eq. (3), by using the M-H algorithm.

(a) Propose λ̃ ∼ N
(
λ(t−1), κ2

λ

)
, where κ2

λ is chosen by users.

(b) Let A = [−1/τG, 1/τG], with the probability equal to

α(λ(t−1); λ̃) =

min

{
G∏
g=1

(
p(Yg|Wg, Z

(t)
g ; λ̃, β(t−1), σ(t−1), α

(t−1)
g )

p(Yg|Wg, Z
(t)
g ;λ(t−1), β(t−1), σ(t−1), α

(t−1)
g )

)
· I(λ̃ ∈ A)

I(λ(t−1) ∈ A)
, 1

}
,

set λ(t) equal to λ̃. Otherwise, set it to λ(t−1).

Step 4. Sample β(t) from P (β|{Yg}, {Wg}, {Z(t)
g }, λ(t), σ(t−1), {α(t−1)

g }), as specified

in Eq. (4).

Step 5. Sample σ(t) from P (σ|{Yg}, {Wg}, {Z(t)
g }, λ(t), β(t), {α(t−1)

g }), σ ∈ O2, as

specified in Eq. (5), by using the M-H algorithm.

(a) Propose σ̃ ∼ Nd̄+1

(
σ(t−1), κ2

σId̄+1

)
, where κ2

σ is chosen by users.

(b) with the probability

α(σ(t−1); σ̃) = min

{
G∏
g=1

(
p(Yg|Wg, Z

(t)
g ;λ(t), β(t), σ̃, α

(t−1)
g )

p(Yg|Wg, Z
(t)
g ;λ(t), β(t), σ(t−1), α

(t−1)
g )

)
·

Nd̄+1(σ̃|σ0,Σ0)

Nd̄+1(σ(t−1)|σ0,Σ0)
· I(σ̃ ∈ O2)

I(σ(t−1) ∈ O2)
, 1

}
set σ(t) equal to σ̃. Otherwise, set it to σ(t−1).

Step 6. Sample α
(t)
g from P (αg|Yg,Wg, Z

(t)
g , λ(t), β(t), σ(t)), as specified in Eq. (6)

for g = 1, · · · , G.

Appendix II. Diagnostics of the MCMC convergence
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An unexpected slow convergence of the MCMC sampling could be due to either

programming mistakes, an inadequate model that does not fit the data, or simply the

slow movement of the Markov chain. Therefore, making sure that the statistical in-

ference is based on the converged MCMC results (Gelman 1996) is crucial. One way

to evaluate the convergence of the MCMC sampling is visual inspection. More for-

mally, we consider methods proposed by Geweke (1992), Raftery and Lewis (1992),

and Heidelberger and Welch (1983). Geweke (1992) compares the sample means of

the first x% of the MCMC draws versus the last y% of the MCMC draws. The null

hypothesis of an equal mean is examined by using the standard Z-score test, with

standard errors estimated numerically. Raftery and Lewis (1992) study the quan-

tiles of the posterior distribution for the parameter vector θ. Suppose one wants

to estimate the posterior probability, P (θ ≤ u|data), to within a range of error

(−r,+r) with a probability s, where u is a particular cutoff corresponding to a spec-

ified quantile. Raftery and Lewis propose a method to calculate the (approximate)

required number of MCMC iterations when the actual quantile of interest is q. The

idea of Heidelberger-Welch diagnostic is to use the Cramér-von Mises statistic to

test the null hypothesis of stationarity.

All three methods are available in the package CODA (Best et al., 1996). which

supports the software such as Fortran, S-Plus, R, and Matlab. To implement

Geweke’s diagnostic, we provide the MCMC draws as inputs and specify values

of two percentage points, x = 50 and y = 50. To implement Raftery and Lewis’s

diagnostic, we specify q = 0.025, r = 0.005, and s = 0.95, which require the cumula-

tive distribution function of the 2.5% quantile to be estimated within the error range

of ±0.005 with the probability of 0.95. In our study, we utilize three methods as

guidance to decide the length of the MCMC sampling. First we apply Raftery and

Lewis’s method to check the adequate sampling length. In any case, if the required

sampling length is too long to be computationally feasible, we will further check
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Geweke’s and Heidelberger-Welch’s diagnostics and finish the sampling whenever

the tests are passed.

Appendix III. Bayesian analysis for missing observations

Let Y o
g (ng × 1) denote the observed dependent variables, and Y m

g ((mg − ng)× 1)

denote the missing observations in group g. We have

Yg|Wg, Xg, Zg, θ =

 Y o
g

Y m
g

∣∣∣∣∣∣Wg, Xg, Zg, θ ∼ Nmg(µg,Σg),

where µg =

 µog

µmg

 and Σg =

 Σoo
g Σom

g

Σmo
g Σmm

g

. The conditional distribution of

Y m
g , given Y o

g and others, can be written as

Y m
g |Y o

g ,Wg, Xg, Zg, θ ∼ Nmg−ng

(
E(Y m

g |Y o
g ,Wg, Xg, Zg, θ),V(Y m

g |Y o
g ,Wg, Xg, Zg, θ)

)
,

where

E(Y m
g |Y o

g ,Wg, Xg, Zg, θ) = µmg + Σmo
g (Σoo

g )−1(Y o
g − µog),

V(Y m
g |Y o

g ,Wg, Xg, Zg, θ) = Σmm
g − Σmo

g (Σoo
g )−1Σom

g .

To deal with the problem of missing observations in the Bayesian estimation, we

consider the approach of data augmentation. In the imputation step, we draw

Y m
g from the density f(Y m

g |Y o
g ,Wg, Xg, Zg, θ). In the posterior step, we draw θ

from the density f(θ|Y o
g , Y

m
g ,Wg, Xg, Zg). Under the SCSAR model, we have µg =

S−1
g (Xgβ + Zgσzε + lgαg) and Σg = S−1

g

(
(σ2

ε − σεzσzε)Img

)
S−1′
g . Hence,

Ym,g

∼ Nmg−ng

(
(S−1

g (Xgβ + Zgσzε + lgαg))m + Σmo
g (Σoo

g )−1(Y o
g − µog),Σg

mm − Σg
moΣ

g−1
oo Σg

om

)
.
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Appendix IV: Derivation of the AICM

The conventional AIC (Akaike 1973) is defined as

AIC = 2d− 2`max, (7)

where `max is the maximum log-likelihood and d is the dimension of the parameters

in the model. `max is not directly observable in the Bayesian estimation approach

because `max may not be reached during the MCMC sampling procedure; however,

following Raftery et al. (2007), it may be estimated given the posterior distribution

of the log-likelihoods,

`max − `t ∼ Gamma(d/2, 1), (8)

where {`t : t = 1, · · · , T} is a sequence of log-likelihoods from MCMC posterior

draws with a proper thinning such that they are approximately independent. The

distributional assumption in Eq. (8) is asymptotically evident when the amount

of data underlying the likelihoods increases to infinity (Bickel and Ghosh 1990;

Dawid 1991). Based on the Gamma distribution, we know E[`max − `t] = d/2

and Var(`t) = d/2. Therefore, we can obtain the moment estimators d̂ = 2s2
`

and ˆ̀
max = ¯̀+ s2

` , where ¯̀ and s2
` are the sample mean and variance of the `t’s,

respectively. The simulation-based (Monte Carlo) version of AIC is given as

AICM = 2d̂− 2ˆ̀
max = 2(s2

` − ¯̀). (9)

and its standard error can be calculated by

S.E.(AICM) =

√
4d̂/(2T ) + 4d̂(11d̂/4 + 12)/T (10)

by using the fact that Var(¯̀) ≈ d/(2T ) and Var(s2
`) ≈ d(11d/4 + 12)/T and the

approximate independence between ¯̀ and s2
` .
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