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A Quality of Approximation of Tauchen’s Method for

Highly Persistent Data

The VAR model that describes the dynamics of the underlying continuous-valued process is

given by

yt = Ayt−1 + εεεt (A.1)

where εεεt is i.i.d. N (0,Ω), Ω is a diagonal matrix with an i-th diagonal element ω2
i and Σ is

the unconditional covariance matrix of yt with an i-th diagonal element σ2
i .

Let (ỹ
(n)
1 , ỹ

(n)
2 , · · · , ỹ(n)

t , · · · , ỹ(n)
T ) be a realization of the n-state Markov chain of length

T, approximated over n grid points using the Tauchen’s (1986) method with the standard

normal CDF Φi, and ω̃i denote the square root of the i-th diagonal element of the covariance

matrix Ω̃ of ε̃εεt = ỹ
(n)
t −Aỹ

(n)
t−1. In what follows, we keep n fixed and and perform the analysis

as T →∞.

In Proposition 1 below, we show that calculating the transition probabilities using the

continuous distribution functions does not always deliver meaningful approximations. In

particular, Tauchen’s (1986) method fails to approximate the variability in yt as one or

more of the roots of the underlying continuous-valued VAR process yt approach the unit

circle. This problem arises because most of the existing approximation methods, including

the method by Tauchen (1986), target only the first conditional moment of the continuous-

valued process yt.

Proposition 1. For any set of integers (N1, N2, · · · , NM) and any arbitrarily small posi-

tive number ε, there always exists a highly persistent vector autoregressive process for which

ω̃i/ωi < ε for all i.

Proof. Since we are interested in the behavior of highly persistent processes, it is conve-

nient to reparameterize the matrix A as local-to-unity (see Phillips, 1987, for example). In

particular, the matrix A is reparameterized as a function of T as (Elliott, 1998)

A = IM −
C

T
, (A.2)

where C = diag(c1, c2, ..., cM) with ci > 0 being fixed constants for all i = 1, ...,M .1 This

is an artificial statistical device in which the parameter space for each individual process is

1We can also allow for non-zero off-diagonal elements of C (see Gospodinov, Maynard and Pesavento,
2011) provided that this does not induce nonstationarity and preserves the stability of the process. The proof
that we present below goes through for this more general specification but at the cost of more complicated
notation.
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a shrinking neighborhood of one as T increases. This parameterization proves to be very

useful for studying the properties of strongly dependent processes as T →∞.

First note that using this reparameterization, the innovation variance matrix for the

continuous-valued process can be expressed as

Ω =
CΣ + ΣC ′

T
− CΣC ′

T 2
. (A.3)

and the variance for the i-th innovation is

ω2
i =

2ciσ
2
i

T
− c2iσ

2
i

T 2
. (A.4)

For Tauchen’s (1986) method, the probability that the process yi switches from state j

(corresponding to grid point ȳ
(j)
i ) to any other state is given by

1− π(i)
j,j = 1− Pr

(∣∣∣∣∣εi − ciȳ
(j)
i

T

∣∣∣∣∣ ≤ 24i

)
, (A.5)

where π
(i)
j,j is the j-th diagonal element of the i-th Ni×Ni block of matrix Π and 4i denotes

the distance between the grid points. As T → ∞, the persistence of the process increases

and 0 < ȳ
(j)
i /T < 24i (for all j) with probability approaching one.2 Therefore,

1− π(i)
j,j ≤ 1− Pr (|εi| ≤ 24i) = 2

(
1− Φ

(
24i√

2ciσ2
i /T − c2iσ2

i /T
2

))

and thus,

1− π(i)
j,j

ω2
i

<
2
(

1− Φ
(
4i

√
2T

σi
√
ci

))
2ciσ2

i /T − c2iσ2
i /T

2
(A.6)

for all j. Since

Φ

(
4i

√
2T

σi
√
ci

)
→ 1 as T →∞ (A.7)

by l’Hopital’s rule,

lim
T→∞

1− π(i)
j,j

ω2
i

=
4i

2σ3
i c

3/2
i π1/2

1

(1/T 3/2 − ci/T 5/2) exp(2ci42
i T/σ

2
i )

= 0. (A.8)

Hence, since the limiting behavior of the conditional variance of the Markov-chain approxi-

2Note that ∆i is fixed. While one can reduce the speed of the convergence by making m a decreasing
function of the persistence, such an adjustment will severely distort the unconditional variances.
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mation is determined by the limiting behavior of 1− π(i)
j,j ,

ω̃2
i

ω2
i

→ 0 as T →∞. (A.9)

This completes the proof of Proposition 1.

B Asymptotic Validity of the MM Method

In this section, we establish the asymptotic validity of the proposed moment-matching

method for approximating conditional expectations of nonlinear functions and solving func-

tional equations. For notational simplicity, we present the results for a scalar continuous-

valued process with conditional density f(y′|y) although the results can be extended to the

vector case f(y|x), where y ∈ RM and x = (y−1, ...,y−L) ∈ RM ·L. Consider the function

eg(y) =

∫
g(y′)f(y′|y)dy, (B.1)

where g(y) ∈ C0[a, b] and C0[a, b] denotes the space of continuous functions on [a, b] with

a < b and both a and b are finite. Assume that the support of f(y′|y) is a subset of

[a, b]× [a, b] and f(y′|y) is jointly continuous in y′ and y. Let ỹ denote the n-state Markov-

chain approximation proposed that takes on the discrete values {ȳ(1), ȳ(2), · · · , ȳ(n)} and

transition probabilities π
(n)
j,k = Pr(ỹ′ = ȳ(k)|ỹ = ȳ(j)). Let

egn(y) =
n∑
k=1

g(ȳ(k))π
(n)
j,k . (B.2)

Following Tauchen and Hussey (1991), we need to show the uniform convergence result

sup
y∈[a,b]

|egn(y)− eg(y)| p→ 0 (B.3)

as n→∞.
The pointwise convergence of the conditional distribution of the Markov chain ỹ′ given

ỹ = ȳ(j) to the conditional distribution of y′ given y = µ(j) can be inferred from noting that

the transition probability matrix for our method can be expressed in a polynomial form (see

Kopecky and Suen, 2010) and by appealing to the Stone-Weierstrass approximation theorem.

Finally, the condition that egn(y) is uniformly bounded converts the pointwise convergence

into uniform convergence. As a result, egn(y) is equicontinuous which is a sufficient condition
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for the uniform convergence result

sup
y∈[a,b]

|egn(y)− eg(y)| p→ 0 as n→∞. (B.4)

C Additional Numerical Results

In this section, we provide additional numerical results not reported in the paper. In partic-

ular, we consider the bivariate VAR(1) case (M = 2) with

εεεt ∼ i.i.d. N

((
0

0

)
,

(
0.1 0

0 0.1

))
(C.1)

and A = AR0 , where

A0 =

(
0.9579 0.0505

0.0337 0.9242

)
(C.2)

and R is a positive integer set to 1 and 10.3 It is straightforward to see that higher values

of R imply lower persistence. As in Tauchen (1986), we choose nine grid points for each

component: N = N1 = N2 = 9. When using Tauchen’s method, we set mi = 1.2 lnNi

(Floden, 2008). (Below in subsection C.3, we consider different values for mi while targeting

unconditional variances as Kopecky and Suen (2010) do.)

C.1 Approximation accuracy

Let {ỹt}τt=1 denote the simulated time series either from the Markov chain approximation

by Tauchen (1986) or the method proposed in this paper. The accuracy of the two approxi-

mations can then be examined by estimating or computing the key parameters of the initial

process. The parameters of interest are the unconditional variances of y1 and y2 (denoted

by σ2
1 and σ2

2), the correlation coefficient between y1 and y2, and the persistence measures

1− ς1 and 1− ς2, where ς1 and ς2 are the two roots (eigenvalues) of matrix A. As in Tauchen

(1986) and Tauchen and Hussey (1991), the simulated counterpart of A, Â, is obtained by

fitting a VAR(1) to {ỹt}τt=1.

The unconditional variances are directly calculated using the invariant mass distribution

of ỹt. The invariant distribution P (a vector of length N∗) is obtained by satisfying the

3The matrix A0 is chosen for comparison purposes. Specifically, when R = 10,

A = A10
0 =

(
0.7 0.3
0.2 0.5

)
.

Therefore, the vector autoregressive process coincides with the one considered in Tauchen (1986).
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following equation:

ΠTP = P. (C.3)

However, the evaluation of the approximation accuracy of the eigenvectors and the cross

correlation coefficient is based on 1,000 Monte Carlo replications of length τ = 2, 000, 000.4

Columns “Tau.” and “MM” in Table C.1 summarize the key moments generated by Tauchen’s

and the MM methods, respectively.

The results suggest that our MM method dominates the method by Tauchen (1986)

in terms of bias and RMSE for all parameters of interest across all degrees of persistence.

For example, for the less persistent case (R = 10), the relative bias for of the estimated

1 − ς1, σ
2
1 and σ2

2, using data generated by Tauchen’s (1986) method, is 3.5%, 6.6% and

4.4%, respectively, whereas the corresponding biases for the MM method are 1%, -0.8% and

-0.5%. For the more persistent case (R = 1), the biases for the method of Tauchen (1986)

become -19.3%, 35.6% and 28.7%, while those of the MM method remain almost constant at

1.9%, -0.7% and -0.9%, respectively. So, the advantages of our method become particularly

striking when the underlying persistence increases.

It should be noted that for the degree of persistence that is much higher than those

considered here, Tauchen’s (1986) method fails to produce any time variation in the approx-

imate Markov chain process, which is consistent with our theoretical results in Proposition 1

(also, see Fig. 1 in the text).

C.2 Conditional moments

As before, the distances between the targeted and the generated conditional moments are

measured by |µ̂i(j)−µi(j)| and |ω̂2
i (j)/ω

2
i −1| for each i and j. To assess the overall accuracy

of the conditional moments, we consider the weighted averages of these distances across the

N∗ states using the invariant distribution of ỹt as weights. The results are presented in the

lower panel (Panel C) of Table C.1 and show that the MM method performs extremely well

across all parameterizations. Again, this is not surprising since, by construction, this method

targets the first two conditional moments of the underlying process. More importantly, the

results show that calculating the transition probabilities using the conditional distribution, as

in Tauchen (1986), generates a substantial bias in the conditional moments. This numerical

finding lends support to our theoretical result in Proposition 1.

4Note that the length of the time series is much larger than that considered by Tauchen (1986). The
main reason is that, for smaller number of observations, Tauchen’s method fails to generate time-varying
data for the examples considered here and, thus, renders the numerical evaluation of the methods impossible.
Put differently, for shorter time series, the numerical results will be much more favorable for the method
developed in this paper.
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Table C.1: Approximation Accuracy

Less Persistence (R = 10) More Persistence (R = 1)
Tau. Tau- MM Tau. Tau- MM

Moments adjust. adjust.

Panel A. Moments computed using the invariant distribution

σ̂2
1 0.066 0 -0.008 0.3559 0 -0.0071
σ̂2

2 0.044 0 -0.005 0.2866 0 -0.0094

Panel B. Moments measured from simulated data

ρ̂1,2 RMSE 0.017 0.017 0.006 0.047 0.047 0.006
Bias -0.017 -0.017 -0.006 -0.047 -0.046 -0.005
Std. 0.002 0.002 0.002 0.003 0.003 0.003

1− ς̂1 RMSE 0.035 0.035 0.010 0.193 0.193 0.019
Bias 0.035 0.035 0.010 -0.192 -0.193 0.018
Std. 0.003 0.003 0.003 0.007 0.007 0.008

1− ς̂2 RMSE 0.003 0.003 0.001 0.121 0.121 0.003
Bias 0.003 0.003 0.000 -0.121 -0.121 0.001
Std. 0.001 0.001 0.001 0.003 0.003 0.003

Panel C. Distance between simulated and true conditional moments

µ̂1 0.001 0.002 0.000 0.018 0.016 0.000
µ̂2 0.001 0.001 0.000 0.004 0.004 0.000

(ω̂1/ω1)
2 0.116 0.052 0.000 0.053 0.242 0.012

(ω̂2/ω2)
2 0.060 0.022 0.000 0.343 0.058 0.001

Notes. This table evaluates the performance of different approximation methods using the
example considered in Section C. “Tau.” denotes the approximation obtained by the method
of Tauchen (1986), whereas “MM” denotes the Markov chain approximation method devel-
oped in this paper. “Tau-adjust.” denotes the version of Tauchen (1986) where the grid
points are adjusted to perfectly match the unconditional variances, σ2

i , i ∈ {1, 2}. The
accuracy of the approximation of the moments, except for µ̂1 and µ̂2, are reported as the
percentage deviation from their true values. Panel A reports the moments calculated using
the invariant multivariate distribution. Panel B summarizes the root mean squared error
(RMSE), the bias and the standard deviation of cross correlation and eigenvalues. Panel
C reports the distance between generated and true conditional moments. Specifically, the
numbers in row µ̂i are the weighted average of |µ̂i(j)−µi(j)| which uses the invariant distri-
bution (not the simulated frequencies) of states j = 1, 2, ..., N∗ as weights. Analogously, the
numbers in row ω̂2

i /ω
2
i are the weighted average of |ω̂2

i (j)/ω
2
i − 1| using the same weigths.

The numbers smaller than 0.0005 (0.05%) in absolute terms are denoted by 0.000 with their
appropriate signs. In the case of perfectly matched moments, the approximation accuracy
is denoted by 0.
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C.3 Adjusting variances in Tauchen’s method

Kopecky and Suen (2010) show that when using Tauchen’s method for AR(1) shocks, one can

perfectly match the unconditional variances by calibrating the grid points. In this section,

we perform a similar analysis for the VAR(1) process. After considering several alternatives,

we choose the approach that perfectly matches the unconditional variances without affecting

the transition matrix.5 Specifically, for each i ∈ {1, 2}, using equispaced grids on the interval

[−miσi,miσi], where mi = 1.2 lnNi (Floden, 2008), we first calculate the transition matrix

Π and the associated invariant distribution P (see equation (C.3)). Second, we calculate the

unconditional standard deviations of ỹi, denoted by σraw
i , using the invariant distribution P .

Then, we perfectly match the unconditional variances by replacing the grid points of ỹi with

equispaced grid points on the interval [−m̃iσi, m̃iσi], where m̃i = 1.2 lnNi × σi

σraw
i

.

The moments associated with this modified Tauchen’s method are summarized under

columns “Tau-adjust.” in Table C.1. The numerical results show that when the persistence

is low, adjusting unconditional variances improves the conditional moments. However, in

the case of high persistence, such adjustment can be counterproductive. Specifically, the

approximation accuracy of the conditional variance of ỹ1 deteriorates from 5.3% to 24.2%.

Therefore, the issue with approximating the conditional variance, using Floden’s (2008)

method, remains even after adjusting the unconditional variances, which is consistent with

Kopecky and Suen (2010). What is more important for our analysis is that, regardless of

the degree of persistence, the quality of the approximation is consistently higher for the MM

method compared to the approximation by the adjusted Tauchen’s method.

D Discretized Process and Simulated Shocks

The discretized process and a sample of simulated z and g shocks (see Section 4), constructed

by the MM method, are available at https://sites.google.com/site/dlkhagva/var_mmm.

E MATLAB Programs

Here, we provide Matlab codes for implementing the MM method described in the paper.

The main program is provided in section E.1. The subsequent sections contain Matlab

functions used by the main program.

5Another way would be to modify the transition matrix for the purpose of reducing the probability of
observing the finite state process at the extreme values of yi. However, this type of approach creates an
undesirable situation in which any change in the transition matrix affects moments of different components
of ỹ through the dynamic correlation of the multivariate shocks.
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E.1 Function var Markov MM

% This function constructs a finite state Markov chain approximation using

% the MM method in Gospodinov and Lkhagvasuren (2013) for a bivariate

% VAR(1) process considered in the numerical experiment of the paper.

% The VAR(1) process is: y’=Ay+epsilon,

% where var(epsilon) is given by a daigonal matrix Omega.

%

% INPUT:

% A0x stands for the 2X2 coefficient matrix A.

% vex is the 2X2 diagonal matrix, Omega, i.e.

% Omega(1,1)=omega_{1,1}^2 and Omega(2,2)=omega_{2,2}^2

% nbar is the number of grid points for each i.

% ntune is the control variable, where

% setting ntune=0 performs the baseline method (MM0), while

% setting ntune>1 performs the full version of the method,

% MM. For the examples considered in the paper, ntune was

% set to 999. While higher values of ntune gives a better

% approximation, the gain becomes negligible beyond

% the value 10000.

% OUTPUT:

% PN is the N*-by-N* transition matrix, where N* = nbar^2. The

% [row k, column j] element is the probability the system

% switches from state j to state k. So, the elements of each

% column add up to 1.

% YN is the N*-by-2 matrix of the discrete values of y1 and y2

% for N* states.

%

function [PN, YN]=var_Markov_MM(A0x,vex,nbar,ntune)

if ntune<0

error(’ntune has to be a positive integer (including zero)’);

end

if mod(ntune,1)~=0

error(’ntune has to be a positive integer’);

end

nx=ntune+1;

n=nbar;
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n1=n;

n2=n;

[probtemp, z] = rouwen(0,0,1,n);

y1=z;

y2=y1;

A0=A0x;

% normalize the initial var so unconditional variances are 1

[A0new, vynew, vyold, venew]=var_norm(A0, vex);

vy=vyold;

A=A0new;

ve=venew;

pmat=zeros(2,n,n,n);

px=zeros(2,n,n);

for i=1:n

for j=1:n

for k=1:2

mu=A(k,1)*y1(i)+ A(k,2)*y2(j);

vact=ve(k,k);

r=sqrt(1-vact);

[prob1, z] = rouwen(r,0,1,n);

[v1, p, na,nb, dummy_exceed]=cal_mu_fast(mu,vact,n,z);

if nx<2

if na==nb % if mu is outside of the grids

pmat(k,i,j,:)=prob1(:,na);

else % more relevant case

pmat(k,i,j,:)=p*prob1(:,na)+(1-p)*prob1(:,nb);

end

else

if na==nb % if mu is outside of the grids

pmat(k,i,j,:)=prob1(:,na);

else % begining of the more relevane

B=999*ones(nx,6);

ixx=0;

for ix=1:nx

vactx=max(0.00000000000001, vact*(1.0-(ix-1)/(nx-1)));

[v1x, px, nax,nbx, dummy_exceedx]=cal_mu_fast(mu,vactx,n,z);
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if abs(dummy_exceedx)<0.5

ixx=ixx+1;

B(ixx,:)=[v1x px nax nbx dummy_exceedx vactx];

end

end

if ixx<1

pmat(k,i,j,:)=p*prob1(:,na)+(1-p)*prob1(:,nb);

else

bvectemp=B(:,1)-vact;

dif1=abs(bvectemp);

[difx, iz]=min(dif1);

pz=B(iz,2);

naz=B(iz,3);

nbz=B(iz,4);

vactz=B(iz,6);

rz=sqrt(1-vactz);

[probz, z] = rouwen(rz,0,1,n);

pmat(k,i,j,:)=pz*probz(:,naz)+(1-pz)*probz(:,nbz);

end % end of the more relevane

end

end

end

end

end

% convert the transition probabilities into a conventional form

PN = bigPPP(pmat,n);

ynum=n*n;

ix=0;

Y=zeros(n*n,2);

for i=1:n

for j=1:n

ix=ix+1;

Y(ix,:)=[y1(i) y2(j)];

end

end

YN=[Y(:,1)*sqrt(vy(1,1)) Y(:,2)*sqrt(vy(2,2))];
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E.2 Function cal mu fast

% cal_mu_fast

% This function calculates the conditional variance of the mixture

% distribution given the conditional mean mu and the conditional variance

% v0 of the mass distributions on the n grids given by z.

%

% For details, see Nikolay Gospodinov and Damba Lkhagvasuren, 2013

%

function [v1, p, na,nb, dummy_exceed]=cal_mu_fast(mu,v0,n,z)

r=sqrt(1-v0);

zm=z*r;

if mu>=zm(n)

dummy_exceed=1;

na=n;

nb=n;

p=0;

v1=v0;

elseif mu<=zm(1)

dummy_exceed=-1;

na=1;

nb=1;

p=1;

v1=v0;

else

dummy_exceed=0;

na=1+floor((mu-zm(1))/(zm(2)-zm(1)));

nb=na+1;

zax=zm(na);

zbx=zm(nb);

p=(zbx-mu)/(zbx-zax);

v1=v0+p*(1-p)*(zbx-zax)^2;

end
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E.3 Function var norm

% var_norm

% This code is written to normalize unconditional variance of components

% of a VAR(1) process: y’=Ay+epsilon.

% INPUT: ve - covariance matrix of the error term. This is a diagonal

% matrix where the i-th diagonal element is var(epsilon_i).

% A - the coef. matrix.

% OUTPUT: vynew - cov. matrix of normalized y

% vyold - initial cov. matrix of y

% venew - cov. matrix of the new error term

% Anew - the new coef. matrix

function [Anew, vynew, vyold, venew]=var_norm(A, ve)

dif=100;

temp=size(A);

nx=temp(1,1);

V0=zeros(nx,nx);

while dif>0.00000000001

V=A*V0*A’+ve;

dif=max(max(V-V0));

V0=V;

end

vyold=V0;

venew=zeros(nx,nx);

Anew=zeros(nx,nx);

for i=1:nx

venew(i,i)=ve(i,i)/vyold(i,i);

for j=1:nx

Anew(i,j)=A(i,j)*sqrt(vyold(j,j))/sqrt(vyold(i,i));

end

end

vynew=zeros(nx,nx);

for i=1:nx

for j=1:nx

vynew(i,j)=vyold(i,j)/(sqrt(vyold(i,i))*sqrt(vyold(j,j)) );

end

end
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E.4 Function rouwen

% rouwen

% Rouwenhorst’s method (1995) to approximate an AR(1) process using

% a finite state Markov process.

% For details, see Rouwenhorst, G., 1995: Asset pricing implications of

% equilibrium business cycle models, in Thomas Cooley (ed.), Frontiers of

% Business Cycle Research, Princeton University Press, Princeton, NJ.

%

% Suppose we need to approximate the following AR(1) process:

% y’=rho_Rouw*y+e

% where abs(rho_Rouw)<1, sig_uncond=std(e)/sqrt(1-rho_Rouw^2) and

% mu_uncond denotes E(y), the unconditional mean of y. Let n_R be the

% number of grid points. n_R must be a positive integer greater than one.

%

% [P_Rouw, z_Rouw] = rouwen(rho_Rouw, mu_uncond, sig_uncond, n_R) returns

% the discrete state space of n_R grid points for y, z_Rouw, and

% the transition matrix P_Rouw.

%

function [P_Rouw, z_Rouw] = rouwen(rho_Rouw, mu_uncond, sig_uncond, n_R)

% CHECK IF abs(rho)<=1

if abs(rho_Rouw)>1

error(’Persitence, rho, must be less than one in absolute value.’);

end

% CHECK IF n_R IS AN INTEGER GREATER THAN ONE.

if n_R <1.50001 %| mod(n_R,1)~=0

error(’n_R has to be an integer greater than one.’);

end

% CHECK IF n_R IS AN INTEGER.

if mod(n_R,1)~=0

warning(’the number of the grid points is not an integer.’)

warning(’The method rounded n_R to its nearest integer.’)

n_R=round(n_R);

disp(’n_R=’);

disp(n_R);

end
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% GRIDS

step_R = sig_uncond*sqrt(n_R - 1);

z_Rouw=[-1:2/(n_R-1):1]’;

z_Rouw=mu_uncond+step_R*z_Rouw;

% CONSTRUCTION OF THE TRANSITION PROBABILITY MATRIX

p=(rho_Rouw + 1)/2;

q=p;

P_Rouw=[ p (1-p);

(1-q) q];

for i_R=2:n_R-1

a1R=[P_Rouw zeros(i_R, 1); zeros(1, i_R+1)];

a2R=[zeros(i_R, 1) P_Rouw; zeros(1, i_R+1)];

a3R=[zeros(1,i_R+1); P_Rouw zeros(i_R,1)];

a4R=[zeros(1,i_R+1); zeros(i_R,1) P_Rouw];

P_Rouw=p*a1R+(1-p)*a2R+(1-q)*a3R+q*a4R;

P_Rouw(2:i_R, :) = P_Rouw(2:i_R, :)/2;

end

P_Rouw=P_Rouw’;

for i_R = 1:n_R

P_Rouw(:,i_R) = P_Rouw(:,i_R)/sum(P_Rouw(:,i_R));

end

E.5 Function bigPPP

% bigPPP

% This function is used by the main code var_Markov_MM.

function PPP = bigPPP(pmatxxx,n)

PPP=zeros(n^2,n^2);

ix2=0;

for i1=1:n

for i2=1:n

ix2=ix2+1;

for i3=1:n

for i4=1:n

ix1=(i3-1)*n+i4;
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PPP(ix1,ix2)=pmatxxx(1,i1,i2,i3)*pmatxxx(2,i1,i2,i4);

end

end

end

end

for i = 1:n*n

PPP(:,i) = PPP(:,i) / sum(PPP(:,i));

end
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