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The data used in this paper are very confidential data and the property
of one of the largest telecommunications companies in the world. The com-
pany handles over 60 percent of all telephone services in its particular market.
It also offers several other telecommunication services,including cellular PCS
(Personal Communications Service),internet, cable, and satellite communica-
tion services. The computer systems in this company can be divided into two
categories according to their use: (i) research, and (ii) management and/or de-
livering services. The following table illustrates the different groups of major
tasks and number of systems in terms of the two CPU standards. All mainframe
computer systems are associated with specific tasks.

Computers included in the sample in terms of CPU standards

CPU MIPS TPC
standard
Number* 48 57

Tasks Billing-Development Business Info-Management
Billing-Management Customer Development
General Management Total Document

New Customer Info-system Pre-Billing
Super High Speed Printer Line-Management

Material information
*: number of computers in the sample

Since computers used for research use are purchased and replaced on a
project basis, their maintenance activities do not reflect technological depre-
ciation. In this paper, I consider only those computer systems used for man-
agement or delivering services. I also do not include the replacement of PCs
in my model, since in PC replacement there is no upgrade activity, but rather
only block purchases or replacements. The time frame of the dataset starts in
1989 and ends in 1999. The data prior to 1989 are incomplete, though some
computer systems have a history starting as early as 1977. For the 1989-1999
period, I have the full history of upgrades and replacements for 105 of the com-
pany’s computer systems. The data consists of purchase dates, purchase prices,
specifications, upgrade and replacement dates, upgrade and replacement prices,
and other details on each replacement or upgrade such as system specifications.
Monthly data on the firm’s number of customers is also available.

The estimation procedure by NLS-NFXP is a two step procedure. First, out-
side of the system, the parameters θ0 for state variables are estimated separately
from the structural parameters. Next, inside of the system, the structural pa-
rameters θ1 are estimated by the nested fixed point algorithm. In other words,
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inside of the maximum likelihood estimation, the nonlinear least squares esti-
mation (NLS), which is in fact, parametric estimation is performed, and fixed
points EVθ are calculated. Based on the fixed points, the maximum likelihood
estimation is performed.

The general method to solve the fixed point problem is a discretization of
observed state variables. When the observed state variable is continuous, the
required fixed point is in fact an infinite dimensional object.

Therefore, in order to solve the fixed point problem, it is necessary to dis-
cretize the state space so that the state variable takes on only finitely many val-
ues. But there are limits regarding this method: (i) “curse of dimensionality”;
(ii) the limits it places on our ability to solve high-dimensional DP problems.
Despite these limits, this method have been used in many literature.

The discretization method may not be appropriate to computer replacement
research to solve the fixed point problem, because of the aforementioned prob-
lems. The details of shortcomings of discretization method and its alternative
methods are in the following

0.1 An attempt of discretization of the state variables

The most conservative dimension of a possible combination of state variables
resulting from discretization in the proposed model is 540,000. Discrete vari-
ables, capacity and age are discretized as follows. First, I discretize the age
variable, gt, into bimonthly cycle, even though I have monthly data. Thus, age
1 represents a new computer (literally 2 months old.), and an absorbing state
30 means 5 years of age (for estimation purpose, I discretize the age variables
into months instead of bi-monthly cycle).

Second, regarding the capacity level, the current dataset of the capacity
consists of the three elements of CPU, hard drive and memory size. In order to
concretize and transform the capacities into actual numbers which can represent
the capacity of each computer system, I take a weighted average of these three
elements. Since CPU is the most important factor in the capacity of computer
systems, I give it a weight of 0.5. On the other hand, I give equal weights to
Hard Drive and Memory size, namely 0.25. At this time, I do not separate
the capacity into the two standards of CPU benchmark, TPC and MIPS. Even
though the weights were confirmed with the system administrators in the firm,
their appropriateness will be verified in further research. With transformed
capacities of computer systems, I discretize the capacity from 1 to 40. The last
state 40 is the absorbing state. Difference between each step is 30. Therefore,
1 represents (1,...,30), and 2 represents (31,...,60), and 40 represents the range,
(1171,...,+∞). These two discrete variables should be discretized regardless of
the parametric approximation.

The continuous variables, demand and cost per capacity, can be discretized
as follows. First, I discretize demand from 1 to 30. Like the actual capacity, the
last state 30 is the absorbing state. Demand 1 represents 100,000 to 105,000
users and the absorbing state 30 is from 245,001 to ∞ users.

2



Second, I discretize the cost per capacity into 15 possible costs such as
{15, 14, ..., 1}. Difference between subsequent prices is a 20% price drop. I
restrict maximum price drops in one period to just 2 steps. These assumptions
are based on several research data, computer industry databooks, and Moore’s
Law. Therefore, the resulting dimension from the discretization is 540, 000 =
30× 40× 30× 15.

The transition probability matrices, p(dt+1|dt) and p(ct+1|ct) are in the ap-
pendix.

0.2 Computational Burden

First, solving the fixed point problem requires calculation of the expected value
function. That is, EVθ =

∫
y

∫
η

Vθ(y, η)p(dy, dη|xt, εt, a, θ0). Even though the

Markov transition probability from discretization is a sparse matrix, it still
requires extensive time to calculate expectation of value function. Second, the
polyalgorithm method by Rust (1987) takes advantage of the complimentary
behavior of the two iterations, which are a combination of contraction iteration
and policy iteration. (Newton Kantorovich method) This algorithm enjoys a
substantial reduction in time calculating the fixed point. However, it is not
applicable to solving a dynamic programing model. The reason is as follows:
One must have a Frechet derivative (I − T

′
θ) in order to use policy iteration

method.( the idea of the policy iteration method, i.e., the Newton Kantorovich
iteration is to find a zero solution of the nonlinear operator F = (I − Tθ)
instead of finding a fixed point EVθ = Tθ(EVθ). With invertibility of (I − Tθ)
and existence of a Frechet derivative (I − T

′
θ), one can do a following Taylor

expansion: 0 = [I−Tθ](EVl)˜[I−Tθ](EVl−1)+[I−T ′θ](EVl−EVl−1) =⇒ EVl =
EVl−1 − [I − T ′θ]−1(I − Tθ)(EVl−1).) But, the dimensionality problem makes it
impossible to get the derivatives of Tθ. Thus, the algorithm for the DP problem
consists solely of a backward induction, which is simple but takes more time to
solve. Therefore, the extended time caused by the two aforementioned reasons
seriously affects the calculation time of a nested fixed point algorithm, because
the nested fixed point algorithm uses the fixed point algorithm outside of the
maximum likelihood estimation.

0.3 3. Parametric Estimation

The detailed parametric estimation in this paper is as follows;
To begin with, one needs functional forms for the three value functions, keep,

upgrade, and replacement.

V (a = 0, x) = H(x, λ0) + ψ0

V (a = U, x) = H(x, λU ) + ψU

V (a = Kr, x) = H(x, λKr ) + ψKr
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where H(x, λ0), H(x, λU ) and H(x, λKr
) are flexible functions and linear in λ.

ψ0, ψU , and ψKr
are assumed to be distributed as N(0, 1)

First, I choose the best functional forms for each value function according to
the criteria, R

2
. After extended search for the appropriate functional forms of

the three value functions, I have the following results. ̂V (a = 0, x) has 12 parame-
ters ( = λ0) with 0.983 of R

2
, ̂V (a = U, x) has 15 parameters ( = λU ) with 0.962

of R
2

and ̂V (a = (K1...Kn), x) has 18 parameters ( = λKr
) with 0.962 of R

2
.

Therefore, we have H(x, λ0) u
∑12

i=1 λ
i
0ϑ0,i(x), H(x, λU ) u

∑15
i=1 λ

i
UϑU,i(x),

and H(x, λKr
) u

∑18
i=1 λ

i
KrϑKr,i(x(Kr)).

Second, with the approximated functional forms of the three value functions,
I estimate all 45 parameters (λ0,λU , λKr

) with nonlinear least square estimation,
such as

min
λ0,λU ,λKr

∑

j

∑
a

[Va(xj)− Ua]2

where
U1 = [({u(xt, at = 0, θ1)
+β

∫
σ

y

log
(∑

a′∈A(y) exp[Vα′(y)/σ]
)
p(dy|xt, at = 0, θ0)})]

and
U2 = [({u(xt, a = U, θ1)
+β

∫
y
σ log

(∑
a′∈A(y) exp[Vα′(y)/σ]

)
p(dy|xt, at = U, θ0)})]

and
U3 = [({u(xt, a = Kr))
+β

∫
y
σ log

(∑
a′∈A(y) exp[Vα′(y)/σ]

)
p(dy|xt, at = Kr, θ0)})].1

Solving the above minimization problem enables us to estimate all param-
eters λ̂0, λ̂U , and λ̂Kr .In fact, a parametric approximation procedure converts
the contraction fixed-point problem into a nonlinear least squares problem.

SungJin Cho
sungcho [AT] snu.ac.kr

1The above three expectations are calculated by a quadrature method.
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