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A Additional results - Simulation exercise

In this section, we provide results from additional Monte Carlo simulations. First, we report

results from robustness checks with respect to the data generating process of the high-frequency

indicator and the estimation sample size, respectively. Then we report the results of Monte Carlo

simulations where we assume that the data generating process follows a UMIDAS specification,

instead of following a MIDAS specification as in Section 4 in the main text.

Results when the high-frequency indicator follows a heteroskedastic process

In the Monte Carlo simulations, reported in Section 4 in the main text, we assumed that the

high-frequency regressor followed an autoregressive process. This is typically the case when

the high-frequency regressor is a macroeconomic variable. Here, we will report results when

the high-frequency regressor instead follows a heteroskedastic process. This is often the case

for financial variables. More precisely, we will assume that the high-frequency regressor fol-

lows the heteroskedastic process: xmtm =
√

(σmtm)2εmtm , (σmtm)2 = c0 + c1(x
m
tm−1)

2, c0 = 0.25, c1 =

0.85, εmtm ∼ N.i.i.d(0, 1). We report results in Table A.1 for four different cases of the distur-

bance, ut:

1. ut ∼ N.i.i.d(0, 1)

2. ut = εt + 0.5εt−1, where εt ∼ N.i.i.d(0, 1)

3. ut =
√
htεt, ht = 0.1 + 0.3u2t−1 + 0.6ht−1, where εt ∼ N.i.i.d(0, 1)

4. ut ∼ N.i.i.d(−1, 1) with probability 0.9 or ut ∼ N.i.i.d(9, 1) with probability 0.1.

Comparing the results in Table A.1 with the results in Table 1 in the main text, the speci-

fication for the exogenous high-frequency process does not seem to matter. That is, we obtain

very similar results when the high-frequency regressor follows an AR process as when it is het-

eroskedastic. This is not very surprising as the high-frequency regressor is exogenous and NLS

is a consistent and efficient estimator for the MIDAS model, see Andreou et al. (2010).
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Table A.1. Coverage rates for MIDAS simulations with various DGPs and heteroskedastic
high-frequency indicator

90 percent coverage 70 percent coverage
Coverage SE Lower Upper Coverage SE Lower Upper

DGP 1
IID 88.83 0.15 5.64 5.53 68.91 0.21 15.49 15.60
Normal 88.41 0.15 5.87 5.72 67.97 0.22 16.00 16.03
Block Wild 89.83 0.14 5.08 5.09 70.10 0.20 14.83 15.07

DGP 2
IID 88.60 0.15 5.56 5.84 68.59 0.22 15.60 15.81
Normal 88.17 0.16 5.79 6.04 67.64 0.23 16.04 16.32
Block Wild 90.09 0.14 4.97 4.94 70.59 0.23 14.70 14.71

DGP 3
IID 88.90 0.14 5.38 5.72 68.83 0.21 15.62 15.55
Normal 88.54 0.14 5.61 5.85 68.06 0.21 16.01 15.93
Block Wild 89.98 0.13 4.92 5.10 69.99 0.21 15.00 15.01

DGP 4
IID 90.30 0.13 3.48 6.22 73.90 0.20 12.81 13.29
Normal 89.86 0.13 0.05 10.09 87.50 0.15 2.34 10.16
Block Wild 90.65 0.13 3.22 6.14 74.10 0.20 12.64 13.26

Note: The table reports associated coverage rates for simulation exercises where the DGP follows a MIDAS model

with various assumptions for the DGP disturbance. DGP 1 refers to the disturbance process ut ∼ N.i.i.d(0, 1),

DGP 2 refers to the disturbance process ut = 0.5ut−1 + εt, where εt ∼ N.i.i.d(0, 1), DGP 3 refers to the

disturbance process ut =
√
htεt =

√
0.1 + 0.3u2

t−1 + 0.6εt−1εt, where εt ∼ N.i.i.d(0, 1), and DGP 4 refers

to a process where the disturbance is drawn from a mixture of two distributions, ut ∼ N.i.i.d(−1, 1) with

probability 0.9 or ut ∼ N.i.i.d(9, 1) with probability 0.1. Results are provided for MIDAS models using two

different bootstrapping methods, the residual-based bootstrap (IID) and the block wild bootstrap, as well as

for constructing predictive densities by drawing from a normal distribution. We report nominal coverage rates,

measured as the mean nominal coverage of the 1000 simulations, for the 70 percent and 90 percent fan charts,

their associated standard errors and the mean proportions below and above the nominal coverage.

Results for various sample sizes

As a robustness check, we have experimented with increasing the estimation sample (T). Table

A.2 reports results in the case of DGP 1 (from the main text) where we change the estimation

sample T to either 50 or 300. When T = 50, the relative improvement from the block wild

bootstrap compared with the other two approaches, in terms of actual coverage levels, are

larger than in our baseline simulation exercise (where T = 100). In contrast, for the larger

estimation sample, the three methods provide very similar and accurate actual coverage levels.

This suggests that the block wild bootstrap has better small-sample properties than the residual-

based bootstrap for the MIDAS model.

Finally, in the main text, we suggest following Davidson and MacKinnon (2006) and rescale
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the residuals so that they have the correct variance by ε̈t ≡
(

n
n−k

)0.5
ε̂t. Results documented

in Table A.2, suggest that rescaling the residuals provides modest improvements, in terms of

more accurate density forecasts, for the block wild and residual-based bootstrap.

Table A.2. Robustness with respect to sample size. Coverage rates for DGP MIDAS normal
case

90 percent coverage 70 percent coverage
Coverage SE Lower Upper Coverage SE Lower Upper

T=100
IID 88.68 0.14 5.74 5.59 68.65 0.20 15.71 15.64
Normal 88.22 0.14 5.98 5.80 67.91 0.20 16.18 15.91
Block Wild 89.66 0.13 5.19 5.15 69.93 0.20 15.14 14.94

T=50
IID 88.09 0.14 5.99 5.93 68.21 0.19 15.90 15.89
Normal 87.31 0.15 6.46 6.22 66.79 0.20 16.62 16.59
Block Wild 89.74 0.14 5.15 5.10 70.08 0.21 14.87 15.06

T=300
IID 89.38 0.14 5.31 5.31 69.63 0.20 15.10 15.27
Normal 89.31 0.14 5.31 5.38 69.41 0.21 15.21 15.38
Block Wild 89.80 0.13 5.12 5.08 69.80 0.21 15.10 15.09

No Rescale
IID 88.28 0.14 5.75 5.97 68.22 0.20 15.75 16.03
Normal 88.57 0.14 5.58 5.85 68.32 0.20 15.72 15.96
Block Wild 89.23 0.14 5.55 5.22 69.08 0.22 15.63 15.29

Note: The table reports associated coverage rates for simulation exercises with different estimation sample sizes

T . where the DGP follows a MIDAS with the disturbance ut ∼ N.i.i.d(0.1). The table reports results for T = 50

and T = 300 where xmtm = 0.9xmtm−1+εmtm . where εmtm ∼ N.i.i.d(0.1). Moreover, No Rescale, refers to simulations

with T = 100, but where we do not rescale the residuals. Results are provided for two different bootstrapping

methods, the residual-based bootstrap (IID) and the block wild bootstrap, as well as for constructing predictive

densities by drawing from a normal distribution. We report nominal coverage rates, measured as the mean

nominal coverage of the 1000 simulations, for the 70 percent and 90 percent fan charts, their associated standard

errors and the mean proportions below and above the nominal coverage.
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Simulation results when DGP is a UMIDAS model

In Section 4 in the main text, we report simulation results assuming that the DGP follows a

MIDAS. Here, we instead assume that the DGP follows a UMIDAS model.

The Monte Carlo design is exactly as in Section 4.1 of the paper. The only difference is the

way we generate the data, this time assuming that the true DGP follows a UMIDAS regression

model. In particular, yt is generated as follows:

yt = β0 +β1xt−1 +β21xt−2 +β31xt−3 +β41xt−4 +β51xt−5 +β61xt−6 +ut, t = 1, 2, . . . , T (A.1)

where β0 = 0 and β1 = 0.8. This scheme is chosen because it mimics well the behavior of

macroeconomic series, in which typically the most recent observations have more importance,

and therefore the weights in the lags slowly decay.

Tables A.3 and A.4 report results when the high-frequency regressor follows an autocorre-

lated process and a heteroskedastic process, respectively. In both cases, we report results for

four different cases of the disturbance, ut:

1. ut ∼ N.i.i.d(0, 1)

2. ut = εt + 0.5εt−1, where εt ∼ N.i.i.d(0, 1)

3. ut =
√
htεt, ht = 0.1 + 0.3u2t−1 + 0.6ht−1, where εt ∼ N.i.i.d(0, 1)

4. ut ∼ N.i.i.d(−1, 1) with probability 0.9 or ut ∼ N.i.i.d(9, 1) with probability 0.1.

The simulation results for the UMIDAS are in general very similar to the simulation results

for the MIDAS, reported in Section 4.2 in the main text. In all cases, the actual coverage levels

from the block wild bootstrap are very close to the nominal coverage levels, and considerably

closer to the nominal coverage levels than actual coverage levels provided by the two other

methods for computing predictive densities.
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Table A.3. Coverage rates for UMIDAS simulations with various DGPs and autocorrelated
high-frequency indicator

90 percent coverage 70 percent coverage
Coverage SE Lower Upper Coverage SE Lower Upper

DGP 1
IID 88.85 0.14 5.46 5.68 69.01 0.21 15.35 15.64
Normal 88.24 0.14 5.75 6.01 67.98 0.21 15.90 16.12
Block Wild 89.82 0.14 5.33 4.85 70.06 0.21 15.18 14.76

DGP 2
IID 88.65 0.15 5.57 5.79 68.61 0.23 15.59 15.80
Normal 88.03 0.16 5.88 6.09 67.57 0.23 16.08 16.34
Block Wild 89.82 0.15 5.10 5.08 70.31 0.22 14.96 14.74

DGP 3
IID 88.75 0.14 5.54 5.71 68.74 0.21 15.59 15.67
Normal 88.21 0.15 5.82 5.97 67.72 0.21 16.17 16.11
Block Wild 89.63 0.13 5.16 5.21 70.05 0.22 14.92 15.03

DGP 4
IID 90.44 0.14 4.03 5.54 72.43 0.21 13.73 13.84
Normal 90.23 0.13 0.03 9.75 88.29 0.15 1.89 9.82
Block Wild 89.91 0.14 0.92 9.17 72.35 0.21 16.63 11.02

Note: The table reports associated coverage rates for simulation exercises where the DGP follows a UMIDAS

model with various assumptions for the DGP disturbance. DGP 1 refers to the disturbance process ut ∼
N.i.i.d(0, 1), DGP 2 refers to the disturbance process ut = 0.5ut−1 + εt, where εt ∼ N.i.i.d(0, 1), DGP 3 refers

to the disturbance process ut =
√
htεt =

√
0.1 + 0.3u2

t−1 + 0.6εt−1εt, where εt ∼ N.i.i.d(0, 1), and DGP 4

refers to a process where the disturbance is drawn from a mixture of two distributions, ut ∼ N.i.i.d(−1, 1) with

probability 0.9 or ut ∼ N.i.i.d(9, 1) with probability 0.1. Results are provided for UMIDAS models using two

different bootstrapping methods, the residual-based bootstrap (IID) and the block wild bootstrap, as well as

for constructing predictive densities by drawing from a normal distribution. We report nominal coverage rates,

measured as the mean nominal coverage of the 1000 simulations, for the 70 percent and 90 percent fan charts,

their associated standard errors and the mean proportions below and above the nominal coverage.
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Table A.4. Coverage rates for UMIDAS simulations with various DGPs and heteroskedastic
high-frequency indicator

90 percent coverage 70 percent coverage
Coverage SE Lower Upper Coverage SE Lower Upper

DGP 1
IID 88.88 0.13 5.45 5.66 68.86 0.20 15.53 15.61
Normal 88.23 0.14 5.82 5.95 67.75 0.21 16.07 16.19
Block Wild 89.52 0.14 5.33 5.15 69.67 0.21 15.35 14.99

DGP 2
IID 88.50 0.15 5.63 5.87 68.50 0.22 15.61 15.89
Normal 87.94 0.16 5.88 6.18 67.41 0.23 16.08 16.51
Block Wild 89.87 0.15 5.08 5.05 70.28 0.23 14.96 14.76

DGP 3
IID 89.06 0.15 5.57 5.38 69.23 0.20 15.49 15.28
Normal 88.53 0.15 5.75 5.71 68.28 0.21 15.96 15.76
Block Wild 89.63 0.14 5.18 5.19 69.91 0.21 14.91 15.18

DGP 4
IID 90.68 0.13 3.80 5.52 72.53 0.20 13.46 14.01
Normal 90.14 0.13 0.03 9.82 88.34 0.15 1.75 9.91
Block Wild 90.65 0.13 3.79 5.55 72.48 0.20 13.44 14.08

Note: The table reports associated coverage rates for simulation exercises where the DGP follows a UMIDAS

model with various assumptions for the DGP disturbance. DGP 1 refers to the disturbance process ut ∼
N.i.i.d(0, 1), DGP 2 refers to the disturbance process ut = 0.5ut−1 + εt, where εt ∼ N.i.i.d(0, 1), DGP 3 refers

to the disturbance process ut =
√
htεt =

√
0.1 + 0.3u2

t−1 + 0.6εt−1εt, where εt ∼ N.i.i.d(0, 1), and DGP 4

refers to a process where the disturbance is drawn from a mixture of two distributions, ut ∼ N.i.i.d(−1, 1) with

probability 0.9 or ut ∼ N.i.i.d(9, 1) with probability 0.1. Results are provided for UMIDAS models using two

different bootstrapping methods, the residual-based bootstrap (IID) and the block wild bootstrap, as well as

for constructing predictive densities by drawing from a normal distribution. We report nominal coverage rates,

measured as the mean nominal coverage of the 1000 simulations, for the 70 percent and 90 percent fan charts,

their associated standard errors and the mean proportions below and above the nominal coverage.
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B Additional results - empirical exercise

In this section, we provide additional results from our empirical exercise, using alternative

measures of absolute and relative density forecast accuracy, as well as point forecast accuracy.

Absolute accuracy

In Section 5 in the main text, we gauge calibration by testing jointly for uniformity and in-

dependence of the PITs, applying the test proposed by Berkowitz (2001). The Berkowitz test

works with the inverse normal cumulative density function transformation of the PITs, which

permits testing for normality instead of for uniformity. For one-step ahead forecasts, the null

hypothesis is that the transformed PITs are iid N(0,1). The test statistic is χ2, with three

degrees of freedom. For longer horizons, we do not test for independence, and thus the null

hypothesis is that the transformed PITs are identically standard normally distributed. The test

statistics are then χ2, with two degrees of freedom.

For multi-step ahead forecasts, the PITs are typically serially correlated and the Berkowitz

test is less suitable. To account for serial correlation in the PITs, Knüppel (2015) have recently

developed a raw-moments test. The raw-moments test is based on the standardized PITs instead

of the inverse normal transforms. Despite of the autocorrelation of the PITs, the raw-moments

tests rely on standard critical values. Although this test is more suitable for multi-step ahead

forecasts, the test lacks power in small samples.

Table B.1 report the results of the Knüppel (2015) test. The results are broadly in line with

those of the Berkowitz test, reported in Table 3 in the main text. The main difference is that

the results for models with capacity utilization and the NFCI are somewhat more encouraging

when we apply the Knüppel test than the Berkowitz test. In this case, the null hypothesis is

rejected for the models with capacity utilization at the 5% significance level for the backcast

for all four models and at horizon hm = 1 and hm = 2 for some of the models. For all other

horizons and for all horizons using the NFCI, the null hypothesis cannot be rejected at the 5%

significance level for any of the MIDAS models.
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Table B.1. Absolute forecast accuracy for U.S. output growth. Evaluation sample:
2001q3:2015q2

hm -1 1 2 3 4 5 6

Knüppel

Employment UMIDAS 0.737 0.915 0.690 0.590 0.586 0.521 0.763
AR-UMIDAS 0.590 0.743 0.727 0.510 0.542 0.322 0.751
MIDAS 0.977 0.914 0.870 0.746 0.666 0.512 0.365
AR-MIDAS 0.957 0.798 0.829 0.439 0.294 0.238 0.519
ADL 0.878 0.886 0.763 0.839 0.298 0.286 0.859

Industr. prod. UMIDAS 0.161 0.096 0.188 0.237 0.236 0.235 0.097
AR-UMIDAS 0.141 0.104 0.204 0.372 0.271 0.240 0.133
MIDAS 0.214 0.190 0.181 0.409 0.239 0.266 0.377
AR-MIDAS 0.157 0.180 0.193 0.445 0.472 0.247 0.336
ADL 0.212 0.397 0.362 0.301 0.295 0.201 0.328

Capacity util. UMIDAS 0.013 0.020 0.031 0.084 0.181 0.412 0.209
AR-UMIDAS 0.034 0.045 0.091 0.131 0.277 0.308 0.220
MIDAS 0.012 0.015 0.028 0.064 0.144 0.209 0.189
AR-MIDAS 0.021 0.071 0.058 0.335 0.349 0.352 0.382
ADL 0.027 0.107 0.132 0.122 0.325 0.290 0.217

CFNAI UMIDAS 0.246 0.669 0.374 0.753 0.496 0.303 0.320
AR-UMIDAS 0.122 0.268 0.571 0.806 0.504 0.395 0.206
MIDAS 0.136 0.548 0.761 0.834 0.711 0.539 0.388
AR-MIDAS 0.071 0.627 0.591 0.871 0.879 0.322 0.326
ADL 0.045 0.274 0.557 0.479 0.271 0.269 0.327

NFCI UMIDAS 0.061 0.090 0.098 0.121 0.115 0.134 0.268
AR-UMIDAS 0.076 0.131 0.062 0.106 0.153 0.095 0.297
MIDAS 0.134 0.091 0.099 0.111 0.171 0.098 0.075
AR-MIDAS 0.113 0.163 0.141 0.153 0.107 0.099 0.093
ADL 0.125 0.197 0.170 0.102 0.262 0.172 0.189

AR 0.331 0.413 0.278 0.330 0.306 0.238 0.207

Note: The table reports measures of the absolute density forecasting performance based on the PITs test by

Knüppel (2015) of the four types of MIDAS models described in Section 2 in the main text (UMIDAS, AR-

UMIDAS, MIDAS, AR-MIDAS), the ADL and AR models. Predictive densities are simulated using the block

wild bootstrap approach for all models and the test is described in Section B. The results are computed on an

evaluation sample from 2001q3 to 2015q2. The results are reported for model specifications using five different

high-frequency indicators. Results for the corresponding quarterly ADL model are reported for each indicator

and serve as a comparison in our tests. The table shows the results for the backcast, nowcast and 1-quarter

ahead forecasts. Bold numbers indicate that the null of correct calibration predictive densities is rejected at a

5% significance level.
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Relative accuracy

In the main text, we evaluated relative density forecast accuracy using the logarithmic score

(LS). Here, we also evaluate our forecasts based on a second metric, the Continuous Rank Prob-

ability Score (CRPS). The CRPS for a specific model measures the average absolute distance

between the empirical cumulative distribution function (CDF) of yt+h, which is simply a step

function in yt+h, and the empirical CDF that is associated with the model predictive density.

Formally, the CRPS of a component density for a particular observation can be defined as:

CRPSt+h,tm+w−hm =

∫ (
F (zt+h)− I[yt+h,+∞)(zt+h)

)2
dzt+h (B.2)

where F (zt+h) is the CDF of the predictive density f(zt+h|Itm+w−hm) defined above, see Pana-

giotelis and Smith (2008) for more formal details and Ravazzolo and Vahey (2013) for an

illustrative example. The integral is approximated using the draws from the forecast density.

Smaller CRPS values imply higher model precision.

We report results for relative density forecast performance, measured in terms of CRPS, in

Table B.2. The results are broadly in line with those reported in the main text, using LS as

the measure of relative density forecast accuracy. Importantly, by comparing the forecasting

performance of the various MIDAS models with the AR and ADL benchmarks, the table shows

sizeable decreases in the CRPS using MIDAS models when monthly and weekly data on the

current quarter are available. For each model, there is a clear and steady increase in forecasting

performance as more information becomes available, i.e. the nowcasts produced in the third

month of the quarter (at horizon hm = 1) are better than the forecasts produced in the first

month of the quarter (at horizon hm = 3) and the forecasts produced at the quarter before

the quarter to forecast (i.e., at horizon hm = 4, 5, 6). However, the gains from using higher-

frequency information compared to the quarterly ADL and AR benchmarks is somewhat smaller

when using the CRPS than when using the LS.

Figure B.1 shows how the relative cumulative CRPS from the MIDAS and AR-MIDAS re-

gressions have evolved over time. The figure describes relative forecasting performance using

each of the four monthly indicators for the backcast and the three nowcasting horizons. The

measures are constructed so that an increase in the relative value measures a relative improve-

ment in the forecasting performance of the MIDAS and AR-MIDAS regressions compared
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Table B.2. Relative forecast accuracy for U.S. output. Evaluation sample: 2001q3:2015q2
hm -1 1 2 3 4 5 6

CRPS

Employment UMIDAS 0.257 0.277∗ 0.284∗∗ 0.292∗∗ 0.296 0.300 0.308
AR-UMIDAS 0.261 0.279∗∗ 0.283∗∗ 0.290∗∗ 0.298 0.298 0.308
MIDAS 0.263 0.280∗ 0.293∗ 0.302 0.307 0.313 0.316
AR-MIDAS 0.267 0.288∗ 0.290∗∗ 0.322 0.325 0.321 0.330
ADL 0.271 0.307 0.305 0.308 0.310 0.314 0.319

Industr. prod. UMIDAS 0.262 0.283 0.277 0.275 0.283 0.311 0.304
AR-UMIDAS 0.260 0.282 0.275 0.280 0.281 0.301 0.304
MIDAS 0.236 0.264 0.271 0.284 0.287 0.326 0.328
AR-MIDAS 0.238 0.262 0.275 0.322 0.309 0.318 0.350
ADL 0.251 0.265 0.271 0.277 0.304 0.307 0.313

Capacity util. UMIDAS 0.266 0.273 0.276 0.273∗∗ 0.282 0.316 0.308
AR-UMIDAS 0.272 0.266 0.277 0.274∗ 0.284 0.306 0.309
MIDAS 0.251 0.257 0.260 0.271 0.287 0.324 0.317
AR-MIDAS 0.252 0.256 0.259 0.311 0.304 0.307 0.346
ADL 0.259 0.265 0.270 0.289 0.306 0.306 0.314

CFNAI UMIDAS 0.220 0.249 0.254 0.277 0.281 0.309 0.301
AR-UMIDAS 0.220 0.241 0.262 0.274 0.280 0.306 0.301
MIDAS 0.229 0.247 0.263 0.277 0.285 0.317 0.305
AR-MIDAS 0.220 0.238 0.257 0.312 0.315 0.328 0.343
ADL 0.217 0.254 0.262 0.269 0.305 0.301 0.298

NFCI UMIDAS 0.304 0.299 0.321 0.344 0.278 0.275 0.357
AR-UMIDAS 0.296 0.280 0.305 0.334 0.285 0.275 0.348
MIDAS 0.278 0.264 0.273 0.274 0.278 0.278 0.297
AR-MIDAS 0.276 0.252 0.259 0.282 0.299 0.297 0.304
ADL 0.262 0.262 0.259 0.279 0.312 0.312 0.304

AR 0.290 0.279 0.281 0.301 0.299 0.298 0.298

Note: The table reports the relative forecasting performance, measured in terms of CPRS, of the four types
of MIDAS models described in Section 2 in the main text (UMIDAS, AR-UMIDAS, MIDAS, AR-MIDAS).
Predictive densities are simulated using the block wild bootstrap approach for all models and the evaluation
criterion is described above. The results are computed on an evaluation sample from 2001q3 to 2015q2. The
results are reported for model specifications using five different high-frequency (monthly) indicators. Results for
the corresponding ADL model are reported for each indicator and serve as a comparison in our tests. Statistics
for the standard AR model are also reported. The table shows the results for the backcast, nowcast and 1-quarter
ahead forecasts. Bold numbers indicate that a model specification provides more accurate forecasts than the ADL
benchmark. Differences in accuracy that are statistically different from zero at a 10% and 5% significance level
are denoted by one and two asterisks, respectively. The underlying p-values are based on t-statistics computed
with a serial correlation-robust variance, using the pre-whitened quadratic spectral estimator of Andrews and
Monahan (1992). We report p-values based on one-sided tests.

with the AR benchmark. Again, the results for the CRPS are in line with those reported

for the LS in the main text. Specifically, for all indicators and for both the MIDAS and AR-

MIDAS regressions, the relative cumulative CRPS increases sharply during the Great Recession.

However this increase is then followed by a weak, but persistent, decrease during the recovery

period. Similarly to the results for the LS, this may indicate that the high-frequency indicators

are particularly informative about sharp decreases in real output growth.
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Figure B.1. Relative Cumulative CRPS
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Note: The figure shows the relative Cumulative CRPS =
∑t

s=1(CRPSs+h,sm+w−hm,l −
CRPSs+h,sm+w−hm,i), t = 1, ..., T , l = AR benchmark model and i = alternative information set. The

first column shows the results for the MIDAS model and the second column the results for the AR-MIDAS

model. The different rows show the results for a selection of different forecasting horizons.
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Point forecast accuracy

So far in the literature, MIDAS models have been evaluated based on their point forecasting

performance. Studies, such as Clements and Galvão (2008), Andreou et al. (2013) and Foroni

et al. (2015) found sizeable gains from the use of high-frequency information in terms of point

forecast accuracy. In the main text, we documented also sizeable gains from the use of high-

frequency information in terms of density forecast accuracy. However, since the sample periods,

as well as some of the explanatory variables in the aforementioned studies differ from ours, we

also report results for point forecasting. In this way, we can make a clear comparison of the

gains of using higher frequency information in terms of point and density forecast accuracy.

As a conventional measure for point forecast accuracy, we use the Mean Squared Predictive

Error (MSPE), which is defined as:

MSPEt+h,tm+w−hm =
1

t∗

t∑
t=t

e2t+h,tm+w−hm
(B.3)

where t∗ = t − t + h, t and t denote the beginning and end of the evaluation period, and

e2t+h,tm+w−hm
is the h-step ahead square prediction error conditional on the information set

available at time tm + w − hm

Table B.3 reports real-time point forecasting performance, measured in terms of MSPE,

for the different MIDAS models. As for the results obtained with density forecasting, there

are small differences between the different MIDAS specifications in terms of forecasting perfor-

mance and there is a clear and steady increase in forecasting performance as more information

becomes available. Compared to the quarterly-frequency ADL benchmark, the point nowcasting

improvements from the various MIDAS models are broadly in line with the density nowcasting

improvements, measured by LS, reported in the main text. Similar to findings in Andreou

et al. (2013), we achieve large point forecasting gains, relative to the ADL model, by exploiting

information from a large number of high-frequency financial time series, measured by the NFCI.

However, note that the relative gains are partly driven by a relatively poor point forecasting

performance from the ADL model.
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Table B.3. Point forecast accuracy for U.S. output. Evaluation sample: 2001q3:2015q2
hm -1 1 2 3 4 5 6

MSPE

Employment UMIDAS 0.216 0.247∗ 0.276∗∗ 0.301∗ 0.321 0.335 0.355
AR-UMIDAS 0.219 0.250∗∗ 0.274∗∗ 0.303∗ 0.324 0.336 0.351
MIDAS 0.227 0.256∗ 0.285∗∗ 0.321 0.337 0.371 0.372
AR-MIDAS 0.233 0.269∗ 0.287∗∗ 0.384 0.397 0.395 0.406
ADL 0.238 0.324 0.327 0.335 0.363 0.373 0.370

Industr. prod. UMIDAS 0.256 0.302 0.267 0.270 0.295 0.381 0.355
AR-UMIDAS 0.259 0.307 0.259 0.282 0.297 0.350 0.348
MIDAS 0.182 0.231 0.241 0.284 0.311 0.395 0.406
AR-MIDAS 0.189 0.233 0.248 0.373 0.340 0.392 0.465
ADL 0.222 0.242 0.252 0.283 0.356 0.355 0.353

Capacity util. UMIDAS 0.239 0.262 0.283 0.262 0.287 0.376 0.366
AR-UMIDAS 0.249 0.247 0.280 0.259 0.290 0.356 0.372
MIDAS 0.205 0.214 0.224 0.252 0.294 0.387 0.374
AR-MIDAS 0.199 0.215 0.225 0.337 0.330 0.363 0.460
ADL 0.219 0.236 0.246 0.299 0.352 0.354 0.349

CFNAI UMIDAS 0.160 0.205 0.234 0.262 0.282 0.371 0.348
AR-UMIDAS 0.160 0.194 0.247 0.261 0.285 0.362 0.341
MIDAS 0.169 0.197 0.230 0.265 0.291 0.384 0.361
AR-MIDAS 0.164 0.190∗ 0.229 0.372 0.377 0.441 0.457
ADL 0.153 0.202 0.222 0.251 0.365 0.355 0.335

NFCI UMIDAS 0.423 0.331 0.373 0.527 0.272 0.272 0.551
AR-UMIDAS 0.401 0.286 0.336 0.516 0.280 0.269 0.521
MIDAS 0.265 0.237 0.253 0.261 0.268 0.277 0.323
AR-MIDAS 0.257 0.205 0.222 0.273 0.322 0.328 0.339
ADL 0.390 0.327 0.343 0.348 0.307 0.327 0.356

AR 0.302 0.279 0.293 0.350 0.349 0.349 0.349

Note: The table reports point forecasting performance, measured in terms MSPE, of the four types of MIDAS
models described in Section 2 in the main text (UMIDAS, AR-UMIDAS, MIDAS, AR-MIDAS). Predictive
densities are simulated using the block wild bootstrap approach for all models and the evaluation criterion
is described above. The results are computed on an evaluation sample from 2001q3 to 2015q2. The results
are reported for model specifications using five different high-frequency (monthly) indicators. Results for the
corresponding ADL model are reported for each indicator and serve as a comparison in our tests. Statistics for
the standard AR model are also reported. The table shows the results for the backcast, nowcast and 1-quarter
ahead forecasts. Bold numbers indicate that a model specification provides more accurate forecasts than the ADL
benchmark. Differences in accuracy that are statistically different from zero at a 10% and 5% significance level
are denoted by one and two asterisks, respectively. The underlying p-values are based on t-statistics computed
with a serial correlation-robust variance, using the pre-whitened quadratic spectral estimator of Andrews and
Monahan (1992). We report p-values based on one-sided tests.
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C A case study: The importance of high-frequency financial

data when forecasting during the Great Recession

Theory suggests that the forward-looking nature of financial asset prices should contain informa-

tion about the future state of the economy and therefore should be considered as highly relevant

for macroeconomic forecasting. Andreou et al. (2013) have recently stressed that macroeco-

nomic forecasters should use information from a large number high-frequency financial time

series when forecasting macroeconomic variables. In Section 5.2 in the main text, we showed

that MIDAS models which included weekly updates of the Chicago Fed’s National Financial

Condition Index (NFCI) provided useful information for nowcasts of real output growth for the

U.S. Motivated by this, as a case study, we investigate how weekly updates of financial data

change the nowcasts of real output growth for the U.S. during 2008q3 and 2008q4.

We specify a MIDAS regression with weekly values of the NFCI as the high-frequency

indicator and compute density nowcasts for real output growth using our suggested block wild

bootstrapping approach. Figures C.1 and C.2 report how the density nowcasts for 2008q3 and

2008q4 change as a result of the weekly updates of the NFCI.

We start by presenting the results for 2008q3. Figure C.1 shows that for almost every weekly

update of the NFCI, the predictive densities shift to the left, attributing a larger probability

mass to negative outcomes. The figure shows that the density nowcasts for real output growth

in 2008q3 had already changed between the first and second week of July 2008. During the

second week of July 2008, IndyMac announced they had failed to raise capital since their May

quarterly report. Later the same week, citing liquidity concerns, the Federal Deposit Insurance

Corporation put IndyMac Bank into conservatorship. On July 31, IndyMac Bancorp filed for

bankruptcy. Interestingly, there are again visible changes in the density nowcast from our weekly

MIDAS regression from July 25th to August 1st. While there were no noteworthy changes in

the density nowcasts during August 2008, the predictive densities changed considerably during

September 2008. The week of September 15 to September 19 was particularly turbulent, with

Lehman Brothers Holding Inc. filing for bankruptcy and the equivalent of a bank run on

the money market funds. By the end of September 2008, the density nowcasts from our weekly

MIDAS regression attributes the majority of its predictive probability mass to negative outcomes

for real output growth.
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Turning to the density nowcasts for 2008q4, Figure C.2 reveals even more dramatic changes

in the density nowcasts during 2008q4. During the first ten days of October, the Emergency

Economic Stabilization Act, which implemented the Troubled Asset Relief Program (TARP),

was signed into law, the Federal Reserve Bank (Fed) cut the federal funds rate by 50 basis

points to 1.5 percent at an unscheduled emergency meeting and the TED spread reached its

highest level. This is visible in Figure C.2 in the sense that the density nowcast after the second

week of October has a considerably fatter lower tail than the density nowcast after the first

week of October. In late October, the Fed cut the federal funds rate again by 50 basis points

to 1 percent. During the rest of the quarter, it became more and more evident that the U.S.

economy was going into a deep recession, and the financial turmoil had also spread to Europe

and the rest of the world. Figure C.2 shows that during November and December, the weekly

density nowcasts shift continuously to the left. By mid-December, when the Fed decided to

establish a target range for the federal funds rate of 0 to 0.25 percent and formerly launched its

first quantitative easing program, the density nowcast from our weekly model attributes only

a small probability mass to positive outcomes of real GDP growth, i.e., indicating a distinct

slowdown in output growth.
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Figure C.1. Case study: Updates of weekly density nowcasts during 2008q3
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Note: The figure shows the density forecasts produced by the MIDAS model based on the weekly NFCI indicator

on twelve selected dates in 2008q3. The red dashed line represents the kernel of the computed density forecast

and the blue line shows the probability given to realized actual GDP growth.
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Figure C.2. Case study: Updates of weekly density nowcasts during 2008q4
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Note: Density forecasts produced by the MIDAS model based on the weekly NFCI indicator on twelve selected

dates in 2008q4. The red dashed line represents the kernel of the computed density forecast and the blue line

shows the probability given to realized actual GDP growth.
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