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Abstract

This online supplementary appendix presents technical details of our proposed
econometric methodology, simulation results not included in the paper, and
additional results using both our benchmark data set and a data set with more
time series observations.
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1 Technical Appendix

1.1 Filtering

In this sub-section, we provide econometric details of our (TVP)-VARs. Filtered estimates

can be obtained using the fact that the form of the state space model implies

βt|yt−1,Σt−1 ∼ N
(
βt|t−1,Ωt|t−1

)
,

where t|t − 1 subscripts refer to estimates made of time-t quantities given information

available at time t − 1. Forecasts can be obtained using the fact that the predictive

density is multivariate t:

yt|yt−1 ∼ t
(
ŷt|t−1, xtΩt|t−1x

′

t +Qt|t−1

)
,

where ŷt|t−1 = xtβt|t−1. Standard Kalman filtering and Wishart matrix discounting

formulas can be used to produce the quantities βt|t−1,Ωt|t−1 and Qt|t−1 as follows.

Predictive step

The Kalman filter provides, beginning with β0|0 = 0 (see below), simple updating

formulas for producing βt|t−1 and βt|t for t = 1, ..., T which are standard and will not be

reproduced here. Given these we can produce point forecasts as:

ŷt|t−1 = xtβt|t−1.

To produce Ωt|t−1 we use a discount factor approximation involving a discount factor λ

and update as

Ωt|t−1 =
1

λ
Ωt−1|t−1.

Note that such an approximation is well established (West and Harrison, 1997) and, for

example, used by Koop and Korobilis (2013).

We select the discount factors in a data-adaptive fashion in real time. If λ < 1, the

VAR coefficients are time varying and a lower value of λ is associated with more rapidly

changing coefficients. If λ = 1, the special case of constant coefficients is obtained. An

advantage of the discount factor approach is that we do not have to update the entire

covariance matrix but instead only have to choose a single discount factor.
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To retain conjugacy, Σt is modelled as Inverse Wishart (IW) with δnt−1 degrees of

freedom and scale matrix St−1,

Σt|t−1 ∼ IW (δnt−1, St−1),

with the expected value

E
(
Σt|t−1

)
:= Qt|t−1 =

St−1

δnt−1 +M − 1
.

Note that this density reflects the uncertainty about Σt and thus accounts for

parameter uncertainty. Low values of δ are associated with increasingly rapid changes in

the covariance matrix. Values near one are associated with slow adaptation, while δ = 1

represents the case of a constant covariance matrix Σ.

Update step

The error et is obtained as the difference between the point forecast ŷt|t−1 and the

actual observation yt

et = yt − ŷt|t−1.

The observational covariance matrix is updated as

Σt|t ∼ IW (nt, St)

with the scale

St =
(
k−1St−1 + ete

′

t

)(
IM + FtΩt|t−1x

′

t

)
,

where

k−1 =
δ (1−M) +M

δ (2−M) +M − 1
,

using approximation results by Triantafyllopoulos (2011) exploiting the expectation

invariance of the random walk process for Σt : E
(
Σt|t−1

)
= E

(
Σt−1|t−1

)
. As is common

in the literature, the scale matrix is initialized as

S0 =


û2

1

...

û2
M

 ,
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where û2
i , ..., û

2
M are the residuals from OLS estimation of a VAR over an initial training

sample. The updated degrees of freedom are obtained as

nt = δnt−1 + 1 (nt → n =
1

1− δ
).

It is a natural choice to initialize the degrees of freedom with

n0 =
1

1− δ
.

The expected observational covariance is obtained as

E
(
Σt|t
)

:= Qt|t =
St

nt +M − 1
.

The time-t Kalman gain (KGt) is obtained as

KGt =
(

Ωt|t−1x
′

t

)(
xtΩt|t−1x

′

t +Qt|t

)−1

.

Given the Kalman gain, the coefficients and the system covariance are updated as

βt|t = βt|t−1 +KGtet

and

Ωt|t = Ωt|t−1 +KGtxtΩt|t−1.

1.2 Spike-and-slab interpretation of the prior

Here we provide an interpretation of our proposed prior structure in the main paper as

a spike-and-slab prior. This is meant as an illustration of our prior structure from a

different angle. Note that the notation introduced in this sub-section only applies locally

and is not used elsewhere in the main text or the online appendix. Our starting point is

the same type of time-varying parameter VAR with exogenous variables we consider in

the main paper:

yt = xtβt + εt, εt ∼ N (0,Σt)

βt+1 = βt + ut, ut ∼ N (0,Ωt) .
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As in the main paper, we divide the set of exogenous variables into two groups: Nx

denotes the number of variables which are asset specific and considered as relevant only

for a specific exchange rate. Thus, we have, k = M (1 + p ·M +Nx +Nxx) elements in

βt.

The initial conditions for the time-varying VAR coefficients can be viewed as time

t = 0 priors for the parameters βt. For each coefficient in VAR equation i, i = 1, ...,M ,

and lag/predictor j, j = 1, ..., k/M , we use a variable selection prior of the form

β0,i,j ∼ ki,j,tN (0, Vi,j) + (1− ki,j,t)δ0

ki,j,t ∼ DML,

where δ0 denotes the Dirac delta which assigns point mass at zero, and DML denotes

dynamic model learning. Each indicator variable ki,j,t can take on a value of zero or one

in each time period. When ki,j,t = 1 the prior for β0,i,j is N (0, Vi,j) and when ki,j,t = 0

the coefficient is exactly zero (and, hence, covariate j does not enter VAR equation i).

Whether ki,j,t is one or zero is decided probabilistically via the DML procedure.1 We make

the time-dependency of the ks explicit here, using subscript t. To streamline notation,

we do not use time-subscripts for the γs in the main text, although they are re-selected

each period.

We choose Vi,j, which contains the prior variances for the included coefficients, using

ideas from the Minnesota prior:

Vi,j = s2
i×



γ1 for intercepts

γ2
r2s2i

for coefficients on lag r of variable i (own lag)

γ3
r2s2k

for coefficients on lag r of endogenous variable k, k 6= i

γ(3+l) for coefficients on the lth asset-specific exogenous variable

γ(Nx+3+m) for coefficients on the mth non asset-specific exogenous variable

where r = 1, ..., p indexes lag-length, k = 1, ...,M indexes VAR equations, l = 1, ..., Nx

1It would be possible to treat ki,j,t as unknown parameters and include them in the Bayesian posterior.
But these parameters are time-varying and directly drawing from them in an MCMC algorithm would
be computationally burdensome. This motivates our use of DML which uses discounting methods to
produce a computationally feasible approach. It is also worth noting that the selection indicators are
updated online. That is, as new data becomes available the investor only needs to input the latest
observation to update from ki,j,t to ki,j,t+1.
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indexes asset-specific predictors, m = 1, ..., Nxx indexes non asset-specific exogenous

predictors, while s2
i denotes the OLS estimate of the residual variance of a univariate

AR(p) for variable i.

1.3 Dynamic asset allocation and evaluation of economic utility

1.3.1 Portfolio allocation

We design an international asset allocation strategy that involves trading the US dollar

and nine other currencies. Consider a US investor who builds a portfolio by allocating

their wealth between ten bonds: one domestic (US), and the nine foreign bonds. The US

bond return is rf . Define yt = (y1,t, ..., y9,t)
′. At each period, the foreign bonds yield a

riskless return in the local currency but a risky return due to currency fluctuations in US

dollars. The expectation of the risky return from the investment in country i′s bonds,

ri,t, at time t − 1 is equal to Et−1 (ri,t) = inti,t−1 + yi,t.
2 The only risk the US investor

is exposed to is foreign exchange (FX) risk. Every period the investor takes two steps.

First, they use the currently selected model (i.e., the model with the highest discounted

sum of predictive likelihoods) to forecast the one-period ahead exchange rate returns

and the predictive covariance matrix. Second, using these predictions, they dynamically

rebalance their portfolio by calculating the new optimal weights. This setup is designed

to assess the economic value of exchange rate predictability and to dissect which sources

of information are valuable for asset allocation.

We evaluate our models within a dynamic mean-variance framework, implementing

a maximum expected return strategy. That is, we consider an investor who tries to find

the point on the efficient frontier with the highest possible (ex-ante) return, subject to

achieving a target conditional volatility and a given horizon of the investor (one-month

ahead for our main results). Define rt = (r1,t, ..., r9,t)
′, µt|t−1 = Et−1(rt) as its expectation.

The portfolio allocation problem involves choosing weights, wt= (w1,t, ..., w9,t)
′ attached

to each of the 9 foreign bonds (with 1 −
∑9

i=1wi,t being the weight attached to the

2We use yi,t, the discrete exchange rate returns, rather than log returns ∆st, as, in the context of
portfolio optimization, it is important to distinguish discrete and log returns.
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domestic bond):

max
wt

{
µp,t|t−1 = w

′

tµt|t−1 + (1− w′tι)rf − τ
(
ι′
∣∣∣∣wt − wt−1 ◦

1 + rt
1 + rp,t

∣∣∣∣)}
subject to(

σ∗p
)2

= w′t
δnt−1

δnt−1 − 2

(
xt−1Ωt|t−1x

′

t−1 +Qt|t−1

)
︸ ︷︷ ︸

estimate of the predictive covariance matrix

wt,

where µp,t|t−1 is the conditional expected portfolio return and
(
σ∗p
)2

the target portfolio

variance. ι is a vector of ones and the arguments of the predictive covariance matrix are

all produced by our estimation algorithm; see the Technical Appendix 1.1 for definitions.

We also here and below use notation where the portfolio return before transaction costs

is

Rp,t = 1 + rp,t−1 = 1 +
(

1− w′

t−1ι
)
rf + w

′

t−1rt.

In addition, we let RTC
p,t denote period-t gross return after transaction costs, τ .

Our specification of the portfolio allocation problem takes into account proportional

transaction costs, τ , ex ante (i.e., at the time of the portfolio construction).3 Following

Della Corte and Tsiakas (2012), we set τ = 0.0008. For our main results, we choose

σ∗p = 10% as target portfolio volatility of the conditional portfolio returns.

1.3.2 Evaluation of economic utility

Quadratic utility

Our econometric model provides forecasts of the mean vector of returns and the

covariance matrix. To assess the economic utility of the forecasts, we employ the method

proposed by West, Edison, and Cho (1993). In a mean-variance framework with quadratic

utility, we can express the investor’s realized utility in period t as

U (Wt) = Wt −
ρ

2
W 2
t = Wt−1Rp,t −

ρW 2
t−1

2
(Rp,t)

2 ,

where Wt is the investor’s wealth in t, ρ determines their risk preferences.

The investor’s degree of relative risk aversion θt = ρWt

1−ρWt
is set to a constant value

θ. We choose θ = 2 for our main results (and θ = 6 for robustness checks). Then,

3Maurer and Pezzo (2018) show the importance of treating transaction costs in FX portfolios ex ante
rather than ex post. Doing so avoids unnecessary trading and reduces transaction costs.
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the average realized utility, U(·), can be employed to consistently estimate the expected

utility achieved by a given level of initial wealth (West, Edison, and Cho, 1993). With

initial wealth W0, the average utility for an investor can be expressed as

U (·) = W0

{
T−1∑
t=0

RTC
p,t+1 −

θ

2 (1 + θ)

(
RTC
p,t+1

)2

}
.

The advantage of the representation above is that, for a fixed value of θ, the relative risk

aversion is constant and utility is linearly homogenous in wealth. In contrast, for standard

quadratic utility without restrictions on θ, relative risk aversion would be increasing in

wealth, which is not likely to represent a typical investor’s preferences. Here, having

constant relative risk aversion, we can set W0 = $1.

Performance measures Our main evaluation criterion is based on the dynamic

mean-variance framework and quadratic utility. Comparing two competing forecasting

models involves comparing the average utilities generated by the respective forecasting

models. We assess the economic value of different forecasting approaches by equating the

average utility generated by a portfolio strategy which is based on (a particular version

of) the VAR approach and the average utility achieved by a portfolio strategy relying on

a simple random walk. Φ is the the maximum (monthly) performance fee an investor is

willing to pay to switch from the random walk to the specific VAR configuration. The

estimated value of Φ ensures that the following equation holds:

T−1∑
t=0

{(
RTC,∗
p,t+1 − ΦTC

)
− θ

2 (1 + θ)

(
RTC,∗
p,t+1 − ΦTC

)2
}

=
T−1∑
t=0

{
RTC
p,t+1 −

θ

2 (1 + θ)

(
RTC
p,t+1

)2
}

,

where RTC,∗
p,t+1 is the gross portfolio return constructed using the expected return and

covariance forecasts from the dynamically selected best model configuration and RTC
p,t+1

is implied by the benchmark random walk (without drift) model. The superscript TC

indicates that all quantities are computed after adjusting for transaction costs.

As a second measure of economic utility, we report the Sharpe ratio. Despite

its popularity as a risk measure, it is well known that the Sharpe ratio comes with

a few drawbacks in the context of evaluating dynamic portfolio strategies; see, for

example, Marquering and Verbeek (2004) or Han (2006). This is why we primarily

rely on performance fees as an evaluation criterion, while Sharpe ratios are reported as a
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complementary measure.

1.4 Fundamental exchange rate models

This section defines the fundamental exchange rate models which are used in the paper.

One of these (UIP) is used in the main results in the body of th paper. The remainder

are used in this online appendix.

1.4.1 Fama regression/UIP

The UIP condition is the fundamental parity condition for foreign exchange market

efficiency under risk neutrality. This condition postulates that the difference in interest

rates between two countries should equal the expected change in exchange rates between

the countries’ currencies (Engel, 2013):

Et∆st+1 = intt − int∗t ,

where ∆st+1 ≡ st+1 − st. Et∆st+1 denotes the expected change (at time t for t + 1)

of log exchange rates, denominated as US dollar per foreign currency. intt (int∗t ) is

the one-period nominal interest rate US (foreign) securities. The following forecasting

equation arises under the assumption that Et∆st+1 equals ∆st+1, where st denotes the

log of realized exchange rates:

∆st+1 = intt − int∗t .

We use intt − int∗t as a predictor.

1.4.2 Purchasing power parity

Throughout the PPP literature, the real exchange rate is usually modelled as

qt = st − pt + p∗t ,

where qt is the log of the real exchange rate and pt (p∗t ) are the logs of the US (foreign)

price levels (Rogoff, 1996). PPP postulates a constant real exchange rate, resulting in
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the price differential as the fundamental nominal exchange rate:

fPPP = (pt − p∗t )

and rely on current deviations from this exchange rate as a predictor for ∆st+1, that is,

if PPP holds, we expect that ∆st+1 = (fPPP − st) holds. Thus, we use fPPP − st as a

predictor.

1.4.3 Monetary fundamentals

The main feature of the monetary approach is that the exchange rate between two

countries is determined via the relative development of money supply and industrial

production (Dornbusch, 1976; Bilson, 1978). The underlying idea is that an increase in

the relative money supply depreciates the US dollar, while the opposite holds for relative

industrial production. A simplified version of the monetary approach adopted in previous

studies (Mark and Sul, 2001) can be expressed as

fMON = (mt −m∗t )− (ipt − ip∗t ),

where mt − m∗t denotes the (log) money supply and ipt − ip∗t refers to (log) industrial

production differentials. This implies ∆st+1 = fMON − st and we use fMON − st as a

predictor.

1.4.4 Taylor rule fundamentals

The Taylor rule states that a central bank adjusts the short-run nominal interest rate

in order to respond to inflation (π) and the output gap (ou). Postulating such Taylor

rules for two countries and subtracting one from the other, an equation is derived with

the interest rate differential on the left-hand side and the inflation and output gap on

the right-hand side.4 Provided that at least one of the two central banks also targets the

PPP level of the exchange rate, the real exchange rate also appears on the right-hand

side of the equation. The underlying idea is that both central banks follow a Taylor-rule

4The output gap is approximated as the deviation of industrial production from trend output which
is calculated based on the Hodrick-Prescott filter with smoothing parameter λ = 14, 400. For estimating
the Hodrick-Prescott trend out of sample, we only use data that would have been available at the given
point in time.
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model and determine the interest rate differential which drives the exchange rate. We

rely on a simple baseline specification with ad-hoc weights for inflation and output gap

which also incorporates the real exchange rate:

∆st+1 = 1.5(πt − π∗t ) + 0.1(out − ou∗t ) + 0.1qt.

We use 1.5(πt − π∗t ) + 0.1(out − ou∗t ) + 0.1qt as a predictor.

2 Data Appendix

Variable Source

Consumer prices, seasonally adjusted OECD

End-of-month dollar exchange rates Datastream

Industrial production and GDP, seasonally adjusted OCED

Money supply, seasonally adjusted OCED

LIBOR and Eurodeposit interest rates Datastream

FXDIS: Disagreement among exchange rate forecaster measured by standard deviation Consensus Economics

10 Year Government Bonds Datastream

CBOE Volatility Index (VIX) Federal Reserve

FXVOL: J.P. Morgan G10 currency volatility index Bloomberg

West Texas Intermediate Oil Price, denominated in US Dollar Federal Reserve

3 Simulation experiment: model incompleteness

Model incompleteness refers to the situation that all of the entertained individual

forecasting models are allowed to be false (Geweke and Amisano, 2011). Given the

complexity of exchange rate dynamics, we do not assume that any of our entertained

individual forecasting models reflects the true DGP. Rather, we consider a dynamic model

learning mechanism that switches among differently specified model configurations to

approximate the true DGP as closely as possible and acknowledge that the DGP changes

through time. Our implementation of the model learning strategy involves only one

parameter (α). It is thus parsimonious, limiting concerns about estimation error and

can be interpreted as a shortcut to approximate complex nonlinear behavior in a timely

manner. In this small simulation experiment we focus on the important aspect of our

model learning strategy to timely detect the most appropriate DGP among a set of models
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in an incomplete model setting and changing DGPs.

We use a simulation setup considered in Billio, Casarin, Ravazzolo, and van Dijk

(2013) and generate a random sample from the following autoregressive model with

breaks:

yt = 0.1 + 0.3I(T0,T ] (t) +
(
0.6− 0.4I(T0,T ] (t)

)
yt−1 + εt,

for t = 1, ..., T , with εt ∼ N (0, σ2) , σ = 0.05, T0 = 50 and T = 100. I(z] (A) takes the

value 1 if z ∈ A and 0 otherwise. y0 = 0.25.

We apply our dynamic learning strategy to the following set of prediction models:

M1 : y1t = 0.1 + 0.6y1t−1 + ε1t

M2 : y2t = 0.4 + 0.2y2t−1 + ε2t

M3 : y3t = 0.9 + 0.1y3t−1 + ε3t

with εit ∼ N (0, σ2) independent for i = 1, 2, 3 and assume yi0 = 0.25, i = 1, 2, 3 and

σ = 0.05. The model set is incomplete, but includes two models (M1 and M2) that are

equivalent versions of the true model in the two parts of the sample.

We apply our dynamic model learning strategy to the simulated data. That is, we

calculate the discounted predictive likelihood for each of the models (M1, M2 and M3)

and select the model (and value of the discount factor) which would have generated the

highest product of predictive likelihoods until the given point in time. As we do for our

application to exchange rate forecasting, we only consider information that would have

been available at a certain point in time. Instead of excluding dynamic learning by setting

α = 1, we choose the same range of the discount factor as we do in our application to

exchange rate forecasting: α ∈ {0.50; 0.70; 0.80; 0.90; 0.99; 1}. We simulated 1, 000 runs

and recorded how often each of the models was chosen at each point in time. Figure

1 presents the results. It shows that (i) in almost all cases the appropriate stochastic

process was selected, (ii) the structural break was recognized quickly and that (iii) model

3 rightly played no role.
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Figure 1: Dynamic Model Learning
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The figure shows the number of simulation runs in which each of the three models was selected at each

point in time by the dynamic model learning strategy. The red line represents model 1, the grey line

model 2, and the purple line model 3.

4 Empirical Appendix

4.1 Point and interval forecasts

Bayesian methods provide the full predictive density, from which we can produce interval

and point forecasts as a byproduct. Although our primary interest is on exploiting density

forecasts for asset allocation, it is instructive to have a look at point and interval forecasts.

In particular, the second column of Table 1 shows the empirical coverage rates (for a

nominal coverage rate of 90%) for all currencies. These reveal good coverage properties,

albeit very slightly too conservative.

The third column of Table 1 reports the ratio of mean squared forecasting errors

relative to the simple random walk with constant volatility. Ratios below one indicate

better point forecasting performance in terms of squared loss of the DML with UIP

forecasts compared to those produced by the random walk. Our evidence on point

forecasting is ambiguous with some ratios below and some above one. This finding once

more shows how difficult it is to beat a simple random walk in terms of point forecasting

accuracy. On the other hand, our previous results show that it is more fruitful to focus

on density forecasts and exploit them for portfolio management.

Figure 2 plots point forecasts and credible intervals for each country in our sample

along with the realizations. The predictive credible intervals show good coverage. This

figure also illustrates, for every country, the importance of allowing for time-varying
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volatilities, particularly around the time of the subprime crisis where volatility forecast

first increases significantly before gradually adjusting to the pre-crisis level.

As we a adopt a Wishart matrix discounting (WMD) approach for the error covariance

matrix, we are able to provide credibility intervals for our estimates of volatility and

correlations. Figure 3 presents the point estimates of annualized volatility along with

the 90% credibility intervals for the nine exchange rates. Figure 4 plots the point

estimates of correlations along with the 90% credibility intervals for four selected exchange

rates returns which display different patterns. The correlation between AUD and NZD

increases to almost one at the end of the sample which reflects the well-established co-

movements between these currencies. On the other hand, the intensity of the relationship

between JPY and GBP strongly decreases, potentially due to country-specific drivers of

the GBP exchange rate as a result of Brexit. Overall, these figures illustrate that this

dimension of model flexibility is able to capture relevant global currency dynamics.

Figure 2: Interval and Point Forecasts

1
9

9
6

2
0

0
0

2
0

0
5

2
0

1
0

2
0

1
5

-0.2

0

0.2
AUD

1
9

9
6

2
0

0
0

2
0

0
5

2
0

1
0

2
0

1
5

-0.2

-0.1

0

0.1
CAD

1
9

9
6

2
0

0
0

2
0

0
5

2
0

1
0

2
0

1
5

-0.2

-0.1

0

0.1 EUR

1
9

9
6

2
0

0
0

2
0

0
5

2
0

1
0

2
0

1
5

-0.1

0

0.1

0.2
JPY

1
9

9
6

2
0

0
0

2
0

0
5

2
0

1
0

2
0

1
5

-0.2

0

0.2
NZD

1
9

9
6

2
0

0
0

2
0

0
5

2
0

1
0

2
0

1
5

-0.2

-0.1

0

0.1
NOK

1
9

9
6

2
0

0
0

2
0

0
5

2
0

1
0

2
0

1
5

-0.2

0

0.2
SWK

1
9

9
6

2
0

0
0

2
0

0
5

2
0

1
0

2
0

1
5

-0.2

0

0.2 CHF

1
9

9
6

2
0

0
0

2
0

0
5

2
0

1
0

2
0

1
5

-0.2

-0.1

0

0.1 GBP

The figure shows the point forecast of exchange rate returns (red line) along with the 90% credibility

intervals (dark grey) of the DML with UIP strategy. The realized exchange rate returns are indicated in

light grey.
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Figure 3: Volatility Forecasts and Credibility Intervals
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The figure shows the point forecast of annualized volatility (red line) along with the 90% credibility

intervals (dark grey) of the DML with UIP strategy.

Figure 4: Correlation Forecasts and Credibility Intervals
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The figure shows the point forecast of correlations (red line) along with the 90% credibility intervals (dark

grey) of the DML with UIP strategy.

15



Table 1: Evaluation of Interval and Point Forecasts

Currency Nominal coverage: 90% MSFE ratio

AUD 90% 1.03
CAD 88% 0.99
EUR 92% 1.06
JPY 93% 1.03
NZD 89% 0.98
NOK 91% 1.02
SWK 93% 0.99
CHF 93% 1.03
GBP 93% 0.97

The table summarizes the the coverage statistics of the interval forecasts and the relative point forecasting accuracy (MSFE

ratio) of the DML with UIP model against the random walk.

4.2 Time-variation in performance

4.2.1 Evolution of wealth

Figure 5 compares the evolution of wealth for an investor who begins with one dollar and

relies on DML with UIP to the wealth of an investor who uses a multivariate random

walk with constant covariance to construct their portfolio. As is evident from the figure,

the outperformance of DML with UIP is large, with the most striking gains around the

time of the subprime crisis.
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Figure 5: Evolution of Wealth
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The figure depicts the evolution of wealth in the DML with UIP model and in the random walk model.

4.2.2 Cumulative differences in log predictive likelihoods

Figure 6 depicts the cumulative differences in predictive log likelihoods between DML

with UIP and the random walk (with constant volatility). The out-performance of DML

with UIP is most pronounced in the time of the subprime crisis.

4.2.3 Test statistics for Giacomini-Rossi Fluctuation test

The MSFE ratio is a measure of the global performance. It tells us whether the DML

with UIP or the random walk have given more precise point forecasts in a mean squared

error sense. However, we do not learn from this measure how the relative forecasting

power has evolved over time. As we seek to shed some light on the evolution through

time, we also provide a measure of local forecasting performance. A useful device for

exploring time-variation in forecasting performance is the Fluctuation test by Giacomini

and Rossi (2010). Figure 7 depicts (standardized) sequences of differences between the

MSFE of the random walk and the MSFE of the DML with UIP model computed over

rolling windows of 60 observations. Positive (negative) values of such differences indicate
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Figure 6: Cumulative Differences in Predictive Log Likelihoods
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The figure shows the cumulative differences in predictive log likelihoods between DML with UIP and the

random walk with constant volatility.

that DML with UIP forecasts better (worse) than the random walk. Figure 7 highlights

that the relative forecasting performance is highly unstable across currencies and over

time. This finding aligns with Rossi (2013). The standardized sequences of differences

between the MSFE of the random walk and the MSFE of the DML with UIP provide the

test statistics of the Fluctuation test. To carry out the Fluctuation test, i.e., testing the

null hypothesis that the local relative MSFE equals zero at each point in time, requires

computing critical values. Calculation of critical values in the Fluctuation test rests on

the assumption that a rolling or fixed estimation window has been used for generating

the out-of-sample forecasts. The out-of-sample forecasts in our setup were produced

using exponential discounting. Hence, we cannot compute valid critical values for our

application. This is, however, not a major concern since Figure 7 shows that the absolute

values of the test statistics are greater than two only for few currencies at very few points

in time. The null hypothesis of equal forecasting performance would thus essentially

never be rejected at conventional significance levels.
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Figure 7: Fluctuation Test Statistics
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The figure shows Fluctuation test statistics through time. Positive values of the Fluctuation statistic

imply that DML with UIP does better than the random walk.

4.3 Alternative sets of regressors

For our main results we did not include some of the traditional regressors used by exchange

rate forecasters due to data revision concerns. But if we are willing to use final vintage

data (as opposed to data that forecasters would have had in real time), we can extend our

set of regressors to include purchasing power parity (PPP), the monetary model (MON)

and an asymmetric Taylor Rule (ASYTAY). The Technical Appendix 1.4 provides details

of what these are and how they are calculated.

Table 2 shows that including these fundamentals would not improve the performance

of an investor’s portfolio. Besides these conventional fundamentals, we also experimented

with yield curve factors which are commonly used to exploit the terms structure of interest

rates and the arising macroeconomic effects (Wright, 2011). This can be considered as an

extension of the simple interest rate spread. However, in line with Berge (2014) including

a level, slope and curvature factor does not improve our forecasts. The findings are

available upon request.
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Table 2: Alternative Set of Regressors

ΦTC SR SRTC PLL
DML with UIP 464∗ 1.12∗ 0.94∗ 22.01∗

DML with PPP 217 0.90 0.71 22.00∗

DML with MON 251 0.94 0.75 22.03∗

DML with ASYTAY 263 0.95 0.76 22.02∗

DML with ALL REGRESSORS 332 0.98 0.80 22.01∗

DML 327 1.01∗ 0.82∗ 22.02∗

The table summarizes the economic and statistical evaluation of our forecasts from different model configurations for

the period from 1996:01to 2016:12. We measure statistical significance for differences in performance fees (ΦTC) and

joint predictive log likelihoods (PLLs) using the (one-sided) Diebold and Mariano (1995) t-test using heteroskedasticity

and autocorrelation robust (HAC) standard errors. We evaluate whether the Sharpe ratio before/after transaction costs

(SR/SRTC) of a model is different from that of the random walk (with constant volatility) benchmark based on the (one-

sided version of the) Ledoit and Wolf (2008) bootstrap test. We compute the Ledoit and Wolf (2008) test statistics with a

serial correlation-robust variance, using the pre-whitened quadratic spectral estimator of Andrews and Monahan (1992).

One star indicates significance at 10% level; two stars significance at 5% level; and three stars significance at 1% level.

4.4 Alternative priors

We have experimented with many prior specifications that lie within our DML framework

and, in particular, experimented with alternative choices of grids for the Minnesota

shrinkage parameters. Results were robust. If we use a refined grid for the values

of the hyperparameters, we find very slight forecast improvements (at the cost of

increasing the computation time). This shows that our specification of grid points for

the hyperparameters is sufficiently flexible to cover the model space. In this section, we

discuss some alternative, more restrictive, prior specifications. Overall, we find that the

rich shrinkage patterns we use pay off compared to more restrictive settings.

4.4.1 ”Dense” prior structure

In this sub-section, we discuss a prior structure that represents a ”dense” rather than

a ”sparse” modelling approach. We investigate how our results change when enforcing

a ”dense” prior rather than letting the data choose between a ”dense” and a ”sparse”

structure. A dense prior is one where VAR lags and exogenous regressors cannot be

removed from the model, instead only the degree of shrinkage intensity for each of the

(blocks) of variables is selected (i.e. the prior shrinkage parameters cannot be set to be

exactly zero as we do in our approach. We specify an alternative prior that features a
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dense structure as described in the following paragraph.

For γ2 and γ3, the shrinkage parameters for own and cross lags, we use grids of

{0.0001; 0.01; 0.1} and also the shrinkage parameter for UIP is estimated using a grid of

{0.0001; 0.01; 0.1}. We do not take into account other exogenous variables in this setting.

Table 3 summarizes the results for this alternative selection of grid points for the

shrinkage priors. It is evident that economic performance for the dense prior is inferior to

the prior used for our main results, while the PLLs are similar. If the grid point 0.0001

is removed, performance deteriorates dramatically, with an annualized performance of

−289 basis points and considerably lower PLL (21.70).

Table 3: ”Dense” Prior Structure

ΦTC SR SRTC PLL

DML with UIP 285 1.00 0.78 22.00∗

Type of restrictions: Model selection dynamics
DML (α = 1) −321 0.29 0.21 21.71∗

DML (α = 0.99) −163 0.53 0.34 21.72∗

DML (α = 0.90) 83 0.74 0.57 21.95∗

DML (α = 0.80) 189 0.92 0.71 22.00∗

DML (α = 0.70) 278 1.03 0.81 22.05∗

DML (α = 0.50) 231 0.96 0.74 22.03∗

The table summarizes the economic and statistical evaluation of our forecasts from the DML and restricted versions thereof

for the period from 1996:01 to 2016:12. We measure statistical significance for differences in performance fees (ΦTC) and

joint predictive log likelihoods (PLLs) based on the (one-sided) Diebold and Mariano (1995) t-test using heteroskedasticity

and autocorrelation robust (HAC) standard errors. We evaluate whether the Sharpe ratio before/after transaction costs

(SR/SRTC) of a model is different from that of the random walk (with constant volatility) benchmark using the (one-sided

version of the) Ledoit and Wolf (2008) bootstrap test. We compute the Ledoit and Wolf (2008) test statistics with a serial

correlation-robust variance, using the pre-whitened quadratic spectral estimator of Andrews and Monahan (1992). One

star indicates significance at 10% level; two stars significance at 5% level; and three stars significance at 1% level.

4.4.2 VAR with tight prior

We also explored a VAR for the nine exchange rates without any exogenous regressors and

a very tight prior for the VAR coefficients. This setting is similar to Carriero, Kapetanios,

and Marcellino (2009). For γ2 and γ3, the shrinkage parameters for own and cross lags,

we use grids of {10−4; 10−5; 10−6}. Although we find that for seven out of nine exchange

rates the MSFE error is slightly lower than that of the random walk, results in terms of

density forecasting accuracy and economic measures are inferior to our baseline setting:

PLL = 21.73, ΦTC = 164, SR = 0.64 and SRTC = 0.62.
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4.4.3 Treating the exogenous variables as endogenous

We also investigate how the results change if the exogenous variables are not treated as

such. Instead they are included as endogenous variables in the VAR. That is, instead of

working with a 9 variable VAR with exogenous variables, we work with a 37 dimensional

VAR involving the 9 exchange rates, 3 asset-specific variables, UIP, INT DIFF, STOCK

GROWTH, (i.e. there are 3 such variables for each of 9 countries, hence this adds 27

variables to the VAR) and 1 non-asset specific variable, OIL. With this much larger VAR

it is computationally infeasible to do a grid search over seven different prior shrinkage

parameters. Accordingly, we employ the framework proposed by Koop and Korobilis

(2013) which involves a single shrinkage parameter. We label this the KK-Minnesota-

prior. The strategy of using a single shrinkage parameter for imposing shrinkage on all

model parameters (except the intercept) is commonly used in the large Bayesian VAR

literature; see Giannone, Lenza, and Primiceri (2015), Koop and Korobilis (2013) and

Bańbura, Giannone, and Reichlin (2010). Following Koop and Korobilis (2013), the value

of the single shrinkage parameter γ is adaptively (in each time period) selected from the

grid γ ∈ {10−5; 0.001; 0.005; 0.01; 0.05; 0.1} and the shrinkage parameter of the intercepts

a is set to 100 to be uninformative. The structure of this simpler version of the Minnesota

prior is

Ω0,i,jj =

 a · s2
i , a = 100 for INTERCEPTS

γ
r2

, γ ∈ {10−5; 0.001; 0.005; 0.01; 0.05; 0.1} for r = 1, ..., 6.
.

Table 4 unambiguously conveys the message that the more restrictive structure of the

Koop and Korobilis (2013) framework is clearly inferior in this exchange rate forecasting

exercise compared to our proposed setting, both in statistical terms and even more so in

economic terms. This highlights that allowing for different degrees of prior shrinkage on

different blocks of parameters is empirically warranted.

4.5 Time-varying coefficients

In the preceding section, all of our VARs involved constant coefficients (but had time-

varying volatilities). Time-variation in VAR coefficients can easily be added, but leads to

inferior forecasting performance. To show this, we present results using a DML with
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Table 4: KK-Minnesota-Prior

ΦTC SR SRTC PLL

DML with UIP −96 0.42 0.36 21.84
Type of restrictions: Model selection dynamics
DML (α = 1) −201 0.33 0.30 21.63
DML (α = 0.99) −201 0.33 0.30 21.63
DML (α = 0.90) −287 0.29 0.23 21.79
DML (α = 0.80) −210 0.35 0.30 21.84
DML (α = 0.70) −116 0.43 0.38 21.86
DML (α = 0.50) −21 0.51 0.45 21.87

The table summarizes the economic and statistical evaluation of the KK-Minnesota-prior for the period from 1996:01 to

2016:12. We measure statistical significance for differences in performance fees (ΦTC) and joint predictive log likelihoods

(PLLs) based on the (one-sided) Diebold and Mariano (1995) t-test using heteroskedasticity and autocorrelation robust

(HAC) standard errors. We evaluate whether the Sharpe ratio before/after transaction costs (SR/SRTC) of a model is

different from that of the random walk (with constant volatility) benchmark using the (one-sided version of the) Ledoit and

Wolf (2008) bootstrap test. We compute the Ledoit and Wolf (2008) test statistics with a serial correlation-robust variance,

using the pre-whitened quadratic spectral estimator of Andrews and Monahan (1992). One star indicates significance at

10% level; two stars significance at 5% level; and three stars significance at 1% level.

UIP specification identical to that used in the preceding section except that it sets

λ = 0.99. Results are presented in Table 5. In comparison to the constant parameter

case (λ = 1) in our main results, we find that using time-varying VAR coefficients is in

general detrimental for forecasting performance, particularly when evaluating forecasts

in terms of the economic performance measures. We find strong evidence that allowing

for abrupt switching between different models for handling the evolving relationship

between exchange rates and fundamentals as highlighted by Sarno and Valente (2009).

But allowing for gradual change in parameters is not a useful addition. An exception

is the specification ”DML without own/cross lags but with ALL REGRESSORS”. In

this case time-varying parameters do not turn out to be detrimental. It appears that, in

specifications that involve estimation of many parameters for the VAR lags, time-variation

in parameters leads to lower performance. This finding aligns with the econometric

literature with respect to time-varying VAR parameters in medium-size VARs (Chan

and Eisenstat, 2018; Koop and Korobilis, 2013).

4.6 Additional results on portfolio performance

In this sub-section, we explore in greater detail the portfolio performance implied by our

flexible DML with UIP model and the portfolio performance based on the random walk.
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Table 5: TVP-VAR

ΦTC SR SRTC PLL

DML with UIP 189 0.85 0.70 22.00∗

Alternative sets of regressors
DML with INT DIFF 114 0.77 0.62 21.98∗

DML with STOCK GROWTH 32 0.71 0.55 21.99
DML with OIL −20 0.64 0.49 21.95
DML with ALL REGRESSORS 202 0.83 0.69 21.99∗

DML with NO REGRESSORS 42 0.71 0.55 22.00∗

Type of restrictions: VAR lags
DML without own lags (γ2 = 0) and NO REGRESSORS −111 0.45 0.38 21.89∗

DML without cross lags (γ3 = 0) and NO REGRESSORS −107 0.55 0.39 21.82∗∗

DML without own/cross lags (γ2 = γ3 = 0) and NO REGRESSORS 5 0.54 0.53 21.72∗∗

DML without own/cross lags (γ2 = γ3 = 0) but with ALL REGRESSORS 289 0.81 0.75 22.00∗

Type of restrictions: Model selection dynamics
DML (α = 1) −325 0.37 0.20 21.65
DML (α = 0.99) −247 0.44 0.27 21.67
DML (α = 0.90) 0 0.63 0.51 21.95
DML (α = 0.80) 66 0.70 0.56 21.97
DML (α = 0.70) 42 0.71 0.56 22.00∗

DML (α = 0.50) −29 0.65 0.48 21.98

The table summarizes the economic and statistical evaluation of our forecasts from the TVP-VAR for the period from

1996:01 to 2016:12. We measure statistical significance for differences in performance fees (ΦTC) and joint predictive log

likelihoods (PLLs) based on the (one-sided) Diebold and Mariano (1995) t-test using heteroskedasticity and autocorrelation

robust (HAC) standard errors. Restrictions on α correspond to the specification DML with NO REGRESSORS. We

evaluate whether the Sharpe ratio (SR) of a model is different from that of the random walk (with constant volatility)

benchmark using the (one-sided version of the) Ledoit and Wolf (2008) bootstrap test. We compute the Ledoit and Wolf

(2008) test statistics with a serial correlation-robust variance, using the pre-whitened quadratic spectral estimator of

Andrews and Monahan (1992). One star indicates significance at 10% level; two stars significance at 5% level; and three

stars significance at 1% level.

4.6.1 Statistics of the portfolio results

Table 6 compares descriptive statistics of the portfolio performance based on the DML

with UIP model and the random walk. The mean return (measured at a monthly

frequency) is almost twice as high based on the DLM with UIP model than based on

the random walk. The annualized volatility of portfolio returns is 10.81% (3.12%×
√

12)

and is hence only slightly higher than the target portfolio volatility of 10%. Skewness of

portfolio returns is substantially higher based on DLM with UIP, while the kurtosis is

considerably lower than in the random walk case. Altogether, the portfolio characteristics

of the DML with UIP model are clearly superior to those of the random walk. In addition,

the characteristics of the portfolio returns based on the DML with UIP strategy are also

more favourable for risk management and diversification purposes: the correlation of

the returns to equities (proxied by S&P500 returns) is even negative and the first-order

autocorrelation of returns and squared returns is lower than in case of the portfolio returns
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based on the random walk.

Table 6: Statistics of Portfolio Results

DML with UIP Random walk
Mean return (in %) 1.22 0.69
Volatility ( in %) 3.12 3.50
Skewness −0.15 −0.94
Kurtosis 3.18 5.18
Positive returns (>0 in %) 68 62
First-order autocorrelation of returns 0.06 0.12
First-order autocorrelation of squared returns 0.06 0.23
Correlation to S&P 500 returns −0.05 0.22

The table summarizes the portfolio results from the DML with UIP model and the random walk for the period from 1996:01

to 2016:12.

4.6.2 Evolution of portfolio weights

It is of interest how the portfolio weights have evolved through time. Figure 8 and

Figure 9 depict the evolution of portfolio weights for the bonds of the high-interest-rate

countries (NOK, NZD, AUD, GBP) and for the bonds of the low-interest-rate countries

(CHF, EUR, JPY, USD), respectively. The figures show that there is considerable

portfolio rebalancing over time. However, the implied portfolio weights are not excessive

and are hence implementable by an investor without imposing additional restrictions on

portfolio weights. Remember that our portfolio optimization exercises take into account

transaction costs ex ante and the results in Section 4.6.1 reveal that expected and realized

volatility of portfolio returns are close together. Figure 10 shows the average portfolio

weight for the bonds of low-interest-rate currencies and high-interest-rate currencies. The

pattern is not surprising: the average portfolio weights of the high-interest-rate currencies

are all positive, while the average portfolio weight of the low-interest-rate currencies JPY

and CHF is negative and only marginally positive for EUR. The largest average short

position has been the CHF, while the weight for the JPY is only moderately negative.

Interestingly, those patterns are in line with the findings by Ackermann, Pohl, and

Schmedders (2016). The clearly positive net position of the USD (+1.06) was to be

expected as the USD is the domestic currency in our portfolio setup and therefore short-

term USD is the risk-free asset. This means that, on average, long and short positions in
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foreign bonds have been approximately zero.

Figure 8: Portfolio Weights for the Bonds of the High-Interest-Rate Countries
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This figure shows the evolution of the portfolio weights for the bonds of the high-interest-rate currencies

based on the DML with UIP model.

4.6.3 Restrictions on portfolio weights

Table 7 summarizes the effect of restrictions on portfolio weights on economic utility and

the Sharpe ratio. Restricting the portfolio weights to [−1; 1] leads to even slightly better

portfolio performance than in the case where the portfolio weights are left unrestricted.

This is good news from a risk-management perspective since excessive portfolio weights

are not required to achieve high utility gains. However, severe restrictions on the portfolio

weights are clearly detrimental for portfolio performance.

4.6.4 Global Harvest Index as benchmark

We consider the Deutsche Bank Global Currency Harvest Index as an additional

benchmark strategy. This index can be seen as a proxy for carry trade returns as a

style strategy. Figure 11 shows that the wealth path generated by our random walk

model and the evolution of the Global Currency Harvest Index are broadly similar. The

correlation between the returns is 0.60. This result is not surprising, given that our
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Figure 9: Portfolio Weights for the Bonds of the Low-Interest-Rate Countries
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This figure shows the evolution of the portfolio weights for the bonds of the low-interest-rate currencies

based on the DML with UIP model.

Table 7: Restrictions on Portfolio Weights

DML with UIP

Weight restriction ΦTC SR SRTC

No restriction 464∗ 1.12∗∗ 0.93∗∗

[−1; 1] 468∗ 1.13∗∗ 0.95∗∗

[−0.5; 0.5] 305 0.97 0.82
[−0.25; 0.25] −8 0.67 0.57
[−0.1; 0.1] −320 0.32 0.25
Equal weights −602 −0.11 −0.11

The table summarizes the effect of restrictions on the portfolio weights on economic utility and the Sharpe ratio. One star

indicates significance at 10% level; two stars indicate significance at the 5% level.

random walk strategy and the strategy underlying the Global Currency Harvest Index

are both carry trade strategies, only differing with respect to implementation details.

The Global Currency Harvest Index does not start before 2000:09 and there are some

missing data observations which we imputed by (linear) interpolation. The findings are

essentially similar to the original carry trade strategy we consider and therefore leaves
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Figure 10: Average Portfolio Weights
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This figure shows the average portfolio weights for the bonds based on the DML with UIP model.

our results unchanged.

4.6.5 Portfolio performance when removing one currency

To assess the sensitivity of the portfolio performance, we compute the Sharpe ratios when

we respectively remove one currency from the set of currencies and set the respective

portfolio weight to 0. Table 8 shows that there is not one particular currency that drives

the results. Not surprisingly, enforcing dollar neutrality leads, in relative terms, to the

largest decrease in the Sharpe ratio.

4.6.6 Results for single currencies

We also analyze the case where only one foreign bond is considered for investment in

addition to the risk-less USD bond (from the perspective of a US investor). Table 9 reports
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Figure 11: Evolution of Wealth Relative to Carry Trade Strategies
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The figure depicts the evolution of wealth for the DML with UIP strategy, the random walk model and the Global Currency

Harvest Index.

the results and once again sends the story that there does not emerge one particular

currency that leads to attractive portfolio results and reinforces our finding that market

timing in a large set of currencies is key for economic utility gains. In Table 9, we also

report the ratio of univariate predictive log scores relative to the random walk (Pred Log

Score ratio) and, once more, find that forecasting gains stem from taking into account

cross dynamics in the multivariate approach rather than from particular currencies. We

stress that, given our multivariate approach, the reported results for the univariate case

are somewhat artificial for the Sharpe ratios and predictive log scores.

4.7 Additional robustness checks

In this sub-section, we briefly mention a couple of additional specifications we considered.

Spillover effects

The first of these investigated whether spillover effects involving macroeconomic

fundamentals might be important. Such third-country effects have been discussed in
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Table 8: Removing Single Currencies

Removed currency SR SRTC

AUD 1.01∗ 0.84∗

CAD 1.09∗ 0.93∗

EUR 1.08∗ 0.91∗

JPY 1.06∗ 0.88∗

NZD 0.97∗ 0.80∗

NOK 1.10∗ 0.93∗

SWK 0.99∗ 0.83∗

CHF 1.09∗ 0.93∗

GBP 0.97∗ 0.80∗

USD 0.90 0.71

The table reports the Sharpe ratios for the DML with UIP model if one particular is left out in each row. We evaluate

whether the Sharpe ratio of a model is different from that of the random walk (with constant volatility) benchmark using

the (one-sided version of the) Ledoit and Wolf (2008) bootstrap test. We compute the Ledoit and Wolf (2008) test statistics

with a serial correlation-robust variance, using the pre-whitened quadratic spectral estimator of Andrews and Monahan

(1992). One star indicates significance at 10% level.

Table 9: Single Currencies

Currency SR SRTC Pred Log Score ratio

AUD 0.33 0.29 1.0220
CAD 0.17 0.12 1.0401
EUR 0.26 0.21 1.0076
JPY 0.32 0.27 1.0104
NZD 0.38 0.34 1.0366
NOK 0.02 0.01 1.0156
SWK 0.22 0.19 1.0117
CHF 0.04 0.01 1.0174
GBP 0.20 0.16 1.0216

The first two columns of the table summarize the Sharpe ratios (before and after transaction costs) for the DML with UIP

model if only one currency is considered for investment in addition to the USD. In the third column, we report the ratio

of predictive log scores (Log Pred Score ratio) for the DML with UIP model against the random walk for each country.

Berg and Mark (2015). For instance, instead of including only the UIP for the UK

in the equation for the UK currency (as we do), we can also include the UIPs for all

the other currencies as well. If we do this, results are not noticeably affected. Our

VAR specification allows spillovers between the exchange rates for different countries.

This kind of spillover we have found to improve forecasts. Adding spillovers involving

macroeconomic fundamentals results in no additional benefits.

Alternative measure of portfolio performance
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As an alternative performance measure we also investigated the manipulation-proof

performance measure proposed by Goetzmann, Ingersoll, Spiegel, and Welch (2007). The

advantage of this criterion is that we do not have to assume a particular utility function.

The results compared to the reported quadratic utility case are very similar and available

upon request.

Alternative risk aversion

It is of interest whether the economic utility gains can also be achieved by investors with

higher risk aversion. To explore this issue, we also considered the risk aversion coefficient

θ = 6 instead of θ = 2. For this case, we found even larger utility gains than in our

baseline setting, achieving an annualized performance fee of 525 basis points, that is

ΦTC = 525, for the DML with UIP model (464 basis points in the base case) .

Specific degrees of time variation for different blocks of coefficients

As discussed previously, we have found that working with a constant coefficient VAR

by setting λ = 1 leads to improved forecast performance over λ = 0.99. But these

specifications assume the same λ applies to all the VAR coefficients. It is theoretically

possible that, by allowing for different degrees of shrinkage for different blocks of

coefficients, forecast performance can be improved. In practice, we have done extensive

experimentation and have not found any forecast improvements by doing so.

Alternative grid for the decay factor α

We also considered a more refined grid for choosing α, namely α ∈ {0.40 : 0.01 : 1.00}.

In this case, α = 0.73 is selected from the data over the entire period and, hence, is quite

similar to our benchmark results (α = 0.70). The results for the refined grid are almost

exactly the same as in our base case.

4.8 The backward elimination approach

We explore how the backward elimination (BE) approach applied by Kouwenberg,

Markiewicz, Verhoeks, and Zwinkels (2017) for exchange rate forecasting works in our

setting, that is, for the sample from 1986:01 to 2016:12 and the G10 currencies. As

potential predictors, we consider UIP, INT DIFF, STOCK GROWTH, OIL and the first

own lag of each exchange rate in an AR1 model. Each of these predictors along with an

intercept defines an exchange rate model, leaving us with 5 different univariate forecasting

models. We slightly extend the procedure used by Kouwenberg, Markiewicz, Verhoeks,
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and Zwinkels (2017) to allow for density forecasts rather than point forecasts only. To

this end, we use Bayesian predictive regressions with diffuse normal-inverse gamma priors.

Apart from that, we follow their procedure for forecasting exchange rates using backward

elimination:

Step 1: In-sample estimation of the models

We estimate the 5 exchange rate models individually using data in the in-sample

estimation period [t0, t1] from time t0 to t1, where initially t0 = 1986:01 and t1 = 1993:12.

Hence, the first estimation sample contains 96 monthly observations. Subsequently, the

5 exchange rate models are re-estimated using an expanding window in each cycle.

Step 2: Generating pseudo out-of-sample forecasts with individual models

At the end of the in-sample estimation period [t0, t1], we generate one-step-ahead forecasts

Ei
t1

(∆st1+1) for time t1 + 1, with i = 1, 2, ..., 5 indicating the exchange rate model.

Steps 1 and 2 are now repeated another 23 times, with t1 moved forward 1 period in

every iteration, until we have created 24 out-of-sample forecasts from t2 = 1994:01 until

t3 = 1995:12. We refer to [t2, t3] as the out-of-sample forecast evaluation period. The

univariate predictive regressions in steps 1 and 2 are Bayesian regressions with diffuse

normal-inverse gamma priors. Hence, in terms of point forecasting, our results are

essentially the same as in non-Bayesian regressions.

Step 3: Model selection based on forecast errors and backward elimination

In this step, we compare the forecast errors of the 5 models in the evaluation period [t2, t3]

and select the models that generate the most accurate point predictions of the exchange

rate. We do so by regressing the realized exchange rate returns in [t2, t3] on the 5 model

forecast series Ei
t1

(∆st1+1), using a (non-Bayesian) multivariate regression model in this

step:

∆st = α +
N∑
i=1

βi,tE
i
t−1 (∆st) + εt

for t = t2, t2 + 1, . . . , t3, and Ei
t−1 (∆st) is the one-step-ahead model (i)-based forecast at

time t− 1. In this step, we estimate the weights, βi,t, that should be attributed to each

model-based forecast. We first include all 5 forecasting models in the regression equation.

Second, we eliminate insignificant variables one by one (stepwise), effectively setting the

estimated coefficients to 0
(
β̂i,t = 0

)
, using a p-value of 5% as the cutoff for significance.
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Convergence is reached when either all remaining forecasts have significant coefficients

or a random walk model with drift α remains. Given that the evaluation period [t2, t3]

covers 24 monthly observations in the first cycle, this procedure is initially applied to 24

observations and subsequently to an expanding window.

Step 4: Generate one out-of-sample combination forecast

We create one out-of-sample combination forecast for time t3 + 1 by using the estimated

β̂i,t coefficients from the final regression model in step 3:

EBE
t (∆st+1) =

∑N
i=1 β̂i,tE

i
t (∆st+1),

where EBE
t indicates the one-period-ahead forecast based on the BE weights at time

t = t3. Several of the β̂i,t coefficients may be equal to 0, depending on the outcome of

the BE procedure. Steps 1, 2, 3, and 4 are now repeated, each time adding one more

observation to the in-sample estimation window [t0, t1] by increasing t1 by 1, and adding

one more observation to the out-of-sample model selection period [t2, t3] by increasing t3

by 1. Eventually, the BE procedure makes 252 out-of-sample forecasts of the exchange

rate, covering the period from 1996:01 to 2016:12. We use these 252 forecasts to evaluate

the performance of the BE rule. We leave the obtained β̂i,t coefficients unrestricted for

generating the point forecasts and adjust the weights in the case of density prediction to

ensure that the combination provides a predictive density.

We evaluate the backward elimination rule in terms of statistical and economic

forecasting gains. Further, we compute how often each model was selected by the

backward elimination rule. Table 10 reports the relative frequency each model was

selected and the MSFE ratio against the random walk. It is evident that each of the

models is either never or rarely selected. Hence, given such a high degree of shrinkage,

the overall forecasts are typically closer to the random walk forecasts than the point

forecasts of our DML with UIP strategy or other DML strategies.

Comparing the density forecasts of our DML with UIP strategy and the BE procedure,

we recall that our DML with UIP strategy is a multivariate approach and we obtain the

average joint predictive log likelikood (PLL). In case of the univariate BE procedure,

we cannot compute the average joint predictive log likelihood. Instead, we compute the

average sum of individual log predictive likelihoods. Note that the average is computed

over the forecast evaluation period and the sum is computed over the currencies. The ratio
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Table 10: Model Selection Frequencies and Point Forecasting Accuracy

Model AUD CAD EUR JPY NZD NOK SWK CHF GBP
AR1 0% 7% 0% 0% 0% 2% 0% 0% 0%
UIP 1% 3% 0% 0% 0% 2% 11% 0% 7%
INT DIFF 0% 1% 0% 0% 0% 2% 0% 0% 0%
STOCK GROWTH 1% 0% 0% 0% 12% 0% 0% 0% 0%
OIL 0% 0% 0% 0% 4% 0% 3% 0% 0%

MSFE ratio 1.0127 1.0147 1.0000 1.0000 1.0066 0.9966 1.0168 1.0000 1.0308

This table reports how often the 5 individual forecasting models were selected by the backward model elimination rule (rows

2− 6). The model selection rule was applied in 252 consecutive months from 1996:01 to 2016:12. The last row of the table

reports the relative point forecasting accuracy (MSFE ratio) of the approach against the random walk (without drift).

between the average joint predictive log likelihood of our DML with UIP strategy and the

average sum of individual predictive log likelihoods of the BE procedure is 1.21 in case of

constant volatilities in the BE procedure. If we consider time-varying volatilities in the

BE procedure (using a decay factor of 0.97 as we have in the DML with UIP strategy),

the ratio is 1.18. These large gains relative to the BE rule in terms of predictive log

likelihoods point to the importance of a multivariate forecasting approach for exchange

rates with respect to density forecasting accuracy.

In addition to the statistical performance, we also evaluate the BE rule in economic

terms. To do so, we use a strategy that has also been applied in Kouwenberg, Markiewicz,

Verhoeks, and Zwinkels (2017). We calculate the returns of an investment strategy that

buys (sells) one unit of the foreign currency vis-à-vis the US dollar when the model

predicts an appreciation (depreciation) of the foreign currency. Here, we calculate the

return (r) to this strategy without interest rate differentials, hence, capturing only the

foreign exchange rate returns. The (raw) foreign-exchange return is given by

r =
Et−1 (∆si)

|Et−1 (∆st) |
∆st.

We subsequently form equal-weighted portfolios of the nine foreign currencies. The

annualized Sharpe ratio of this strategy is 0.08 before transaction costs.

We stress that Kouwenberg, Markiewicz, Verhoeks, and Zwinkels (2017) consider a

broader set of regressors and use quarterly data. These difference to our setting might

offer an explanation why the backward elimination procedure struggles to differentiate

from a strategy based on the random walk in our setup.
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4.9 Results for the long sample

In this sub-section, we report some additional key results for our long sample period

which starts in 1973:01 and for which we compute out-of-sample results from 1990:01 to

2016:12. Due to data availability we do not consider the inclusion of exogenous regressors

for this sample period.

Table 11 summarizes the results. As is the case for the short sample, DML

substantially outperforms the multivariate random walk (i.e. DML without own/cross

lags) both in terms of PLLs and economic criteria. Here again, fast model switching

is found to be crucially important for the accuracy of density forecasts and portfolio

allocation. The optimal decay factor α is found to be 0.80 over the entire evaluation

period and is thus comparable to the optimal decay factor of the short period (α = 0.70).

As for our short sample, we consider the G10 currencies.

Figure 12 illustrates the high frequency of model change when the decay factor is

chosen from the data. The vertical axis plots the model numbers from 1 to 32 against time

for two cases. The set of models begins with model number 1 which is the multivariate

random walk without drift and ends with model number 32 which is one of the most

flexible models (i.e. the VAR model with an intercept, own lags with shrinkage parameter

γ2 = 0.9 and cross lags with shrinkage parameter γ3 = 0.9). The two lines in Figure 12 are

for DML (with α selected in a time-varying manner) and DML (α = 1). In our flexible

specification where the decay factor is chosen from the data, model change occurs much

more frequently than in the case when there is no discounting of forecasting performance

(α = 1). Many different models are selected over time. The individual specification which

is picked most frequently is the multivariate random walk (in approximately half of the

cases). This )prominent role of the multivariate random walk reinforces the story that

sparsity is a key aspect. Figure 13 shows which blocks of variables are included at each

point in time (coloured diamonds). Blank spaces in the graph depict the time-varying

sparsity induced by DML, that is, periods where a block of variables is not selected.

Typically, we observe persistence in the selection of a block of variables.

Figure 14 compares the evolution of wealth for an investor who begins with one

dollar and relies on DML to the wealth of an investor who uses a multivariate random

walk with constant covariance to construct their portfolio. As for the short sample, the

outperformance of DML is large, with the most striking gains around the time of the
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subprime crisis.

Overall, all key findings for the short sample period also apply for the long sample.

Table 11: Evaluation of Forecasting Results

ΦTC SR SRTC PLL

DML 485∗∗ 1.08∗∗ 0.92∗∗ 22.05
Type of restrictions: VAR lags
DML without own lags (γ2 = 0) 365∗ 0.82∗ 0.72∗ 21.86
DML without cross lags (γ3 = 0) 278 0.80 0.66 21.78
DML without own/cross lags (γ2 = γ3 = 0) 17 0.47 0.46 21.65
Type of restrictions: Model selection dynamics
DML (α = 1) −255 0.35 0.19 21.65
DML (α = 0.99) −194 0.40 0.24 21.65
DML (α = 0.90) 238 0.78 0.65 21.88
DML (α = 0.80) 485∗∗ 1.08∗∗ 0.92∗∗ 22.05
DML (α = 0.70) 478∗ 1.07∗∗ 0.90∗ 22.06
DML (α = 0.50) 409∗ 1.04∗∗ 0.84∗∗ 22.05

The table summarizes the economic and statistical evaluation of our forecasts from the DML and restricted versions thereof

for the period from 1990:01 to 2016:12. We measure statistical significance for differences in performance fees (ΦTC) and

joint predictive log likelihoods (PLLs) based on the (one-sided) Diebold and Mariano (1995) t-test using heteroskedasticity

and autocorrelation robust (HAC) standard errors. We evaluate whether the Sharpe ratio before/after transaction costs

(SR/SRTC) of a model is different from that of the random walk (with constant volatility) benchmark using the (one-sided

version of the) Ledoit and Wolf (2008) bootstrap test. We compute the Ledoit and Wolf (2008) test statistics with a serial

correlation-robust variance, using the pre-whitened quadratic spectral estimator of Andrews and Monahan (1992). One

star indicates significance at 10% level; two stars significance at 5% level; and three stars significance at 1% level.
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Figure 12: Frequency of Model Change
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The figure displays the frequency of model change over time using the long sample. The vertical axis

represents the model configurations 1, ..., 32. The red line depicts the evolution of the selected model

configuration for α = 1. The grey line shows the evolution of the selected model configuration when is

dynamically chosen from the grid of values α ∈ {0.50; 0.70; 0.80; 0.90; 0.99; 1}.
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Figure 13: Inclusion of Blocks of Variables
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The figure displays which blocks of variables are included at each point in time. “Included” means the

respective γi is not 0.

Figure 14: Evolution of Wealth
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The figure depicts the evolution of wealth in the DML model and the random walk model.
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