
USER GUIDE FOR GUERRIERI-IACOVIELLO
OCCBIN TOOLKIT

JANUARY 29, 2014

CITE AS: Guerrieri, Luca, and Matteo Iacoviello (2014) �Occbin: A Toolkit to Solve
Models with Occasionally Binding Constraints Easily�, working paper, Federal Reserve
Board

Overview

Modify and run the �le setpathdynare4.m so as to point to the local Dynare installation
directory and to the directory containing the toolkit_files.
We have used successfully Dynare versions 4.3.1 on Windows and 4.3.3 on Mac.

List of Example Files

The �rst three examples refer to the three models described in the paper.

1. runsim_irrcap.m. An RBC model with a constraint on the level of investment. The
two relevant mod �les are dynrbc.mod and dynrbcirr_i.mod.

This examples shows how to declare the parameter values in an extermal �le (named
param�le_irrcap.m, called from dynrbc_steadystate.m).

If the example �le runs correctly, it will generate a �gure like the one in the �le
�gure_example.pdf

2. runsim_newkeynesian.m In this example, fv.mod is the model with the ZLB described
in the paper. Parameter values are declared in the �le param�le_fv. These parameter
values can be overwrittem in the runsim_newkeynesian �le.

3. runsim_borrcon.m In this example, borrcon.mod is a model with borrowing con-
straint that binds occasionally. Parameter values are declared in the �le param�le_borrcon.
These parameter values can be overwrittem in the runsim_borrcon �le.

Additional examples.

4. runsim_irrcap_twoconstraints.m. An RBC model with a constraint on the level
of investment and an asymmetric capital adjustment cost. This �le shows how one
can use the codes to solve a model with two occasionally binding constraints using the
function solve_two_constraints

1



5. runsim_irrcap_twoconstraints_computepolicy.m. For the same model as above,
but uses the code and the initcon option to show one can use the toolkit to derive the
model�s nonlinear policy functions.

6. runsim_cgg.m. Solves a version of the Clarida-Gali-Gertler (�The Science of Monetary
Policy: A New Keynesian Perspective, JEL, 2009) model allowing for an inertial Taylor
rule subject the zero lower bound on nominal interest rates (see equation for rnot, the
notional interest rate).

7. runsim_smetswouters.m. Solves the Smets-Wouters (AER, 2007) model allowing for
the zero lower bound on nominal interest rates (see equation for rnot, the notional
interest rate). The codes for the model were downloaded from the online Appendix on
the AEA webpage. We a¤ected minimal changes to the code for compatibility with
Dynare 4. To avoid the estimation step, some parameter values were set at their initial
level prior to estimation.

8. runsim_dnk.m. Solve a new-keynesian model with zero lower bound and government
spending. This folder shows how one can use the codes to declare the parameter values
only once in an outside �le (named param�le_dnk.m). Shows how one can use separate
sets of functions to solve model disregarding nonlinearities, or to compute impulse
responses conditional on di¤erent baseline paths for the variables.

�dnk.mod contains a standard new-keynesian model speci�ed away from the zlb con-
straint.

� dnk_zlb.mod is an exact replica of dnk.mod �le with the model speci�ed at the
constraint.

Except for the interest rate equation, the models in the two .mod �les are identical.

Description of Key Functions Used

1. The function that solves the model is:

solve_one_constraint

[zdatalinear zdatapiecewise zdatass oo_base M_base] =

solve_one_constraint(modnam, modnamstar,

constraint, constraint_relax,

shockssequence, irfshock, nperiods, maxiter, init);

Inputs:

modnam: name of .mod �le for the reference regime (excludes the .mod extension).

modnamstar: name of .mod �le for the alternative regime (excludes the .mod exten-
sion).

2



constraint: the constraint (see notes 1 and 2 below). When the condition in constraint
evaluates to true, the solution switches from the reference to the alternative regime.

constraint_relax: when the condition in constraint_relax evaluates to true, the
solution returns to the reference regime.

shockssequence: a sequence of unforeseen shocks under which one wants to solve the
model (size T�nshocks).
irfshock: label for innovation for IRFs, from Dynare .mod �le (one or more of the
�varexo�).

nperiods: simulation horizon (can be longer than the sequence of shocks de�ned in
shockssequence; must be long enough to ensure convergence back to the reference
model at the end of the simulation horizon and may need to be varied depending on
the sequence of shocks).

maxiter: maximum number of iterations allowed for the solution algorithm (20 if not
speci�ed).

init: the initial position for the vector of state variables, in deviation from steady
state (if not speci�ed, the default is steady state). The ordering follows the de�nition
order in the .mod �les.

Outputs:

zdatalinear: an array containing paths for all endogenous variables ignoring the
occasionally binding constraint (the linear solution), in deviation from steady state.
Each column is a variable, the order is the de�nition order in the .mod �les.

zdatapiecewise: an array containing paths for all endogenous variables satisfying
the occasionally binding constraint (the occbin/piecewise solution), in deviation from
steady state. Each column is a variable, the order is the de�nition order in the .mod
�les.

zdatass: the steady state values of the variables. The ordering follows the de�nition
order in the .mod �les.

oobase_, Mbase_ : structures produced by Dynare for the reference model � see
Dynare User Guide.

2. The function that solves the model with two constraints is

[zdatalinear zdatapiecewise zdatass oo_00 M_00] =

solve_two_constraints(modnam_00,modnam_10,modnam_01,modnam_11,...

constraint1, constraint2,...

constraint_relax1, constraint_relax2,...

shockssequence,irfshock,nperiods,curb_retrench,maxiter,init);

3



Inputs:

modnam_00: name of the .mod �le for reference regime (excludes the .mod extension).

modnam_10: name of the .mod �le for the alternative regime governed by the �rst
constraint.

modnam_01: name of the .mod �le for the alternative regime governed by the second
constraint.

modnam_11: name of the .mod �le for the case in which both constraints force a switch
to their alternative regimes.

constraint1: the �rst constraint (see notes 1 and 2 below). If constraint1 evaluates
to true, then the solution switches to the alternative regime for condition 1. In that
case, if constraint2 (described below) evaluates to false, then the model solution
switches to enforcing the conditions for an equilibrium in modnam_10. Otherwise, if
constraint2 also evaluates to true, then the model solution switches to enforcing the
conditions for an equilibrium in modnam_11.

constraint_relax1: when the condition in constraint_relax1 evaluates to true,
the solution returns to the reference regime for constraint1.

constraint2: the second constraint (see notes 1 and 2 below).

constraint_relax2: when the condition in constraint_relax2 evaluates to true,
the solution returns to the reference regime for constraint2.

shockssequence: a sequence of unforeseen shocks under which one wants to solve the
model

irfshock: label for innovation for IRFs, from Dynare .mod �le (one or more of the
�varexo�)

nperiods: simulation horizon (can be longer than the sequence of shocks de�ned in
shockssequence; must be long enough to ensure convergence back to the reference
model at the end of the simulation horizon and may need to be varied depending on
the sequence of shocks).

curb_retrench: a scalar equal to 0 or 1. Default is 0. When set to 0, it updates the
guess based of regimes based on the previous iteration. When set to 1, it updates in
a manner similar to a Gauss-Jacobi scheme, slowing the iterations down by updating
the guess of regimes only one period at a time.

maxiter: maximum number of iterations allowed for the solution algorithm (20 if not
speci�ed).

init: the initial position for the vector of state variables, in deviation from steady
state (if not speci�ed, the default is a vector of zero implying that the initial conditions
coincide with the steady state). The ordering follows the de�nition order in the .mod
�les.

4



Outputs:

zdatalinear: an array containing paths for all endogenous variables ignoring the
occasionally binding constraint (the linear solution), in deviation from steady state.
Each column is a variable, the order is the de�nition order in the .mod �les.

zdatapiecewise: an array containing paths for all endogenous variables satisfying
the occasionally binding constraint (the occbin/piecewise solution), in deviation from
steady state. Each column is a variable, the order is the de�nition order in the .mod
�les.

zdatass: a vector that holds the steady state values of the endogenous variables (
following the de�nition order in the .mod �le).

oo00_, M00_ : structures produced by Dynare for the reference model �see Dynare
User Guide.

3. The functions solve_one_constraint and solve_two_constraints assume that the
endogenous, exogenous variables and the model parameters are declared in exactly the
same order in all .mod �les.

In general, to create the additional �les, it pays to simply make a replica of the reference
.mod �le and amend the relevant equations.

4. The only restrictions for the .mod �les is that they may accommodate at
most one lag and one lead of the endogenous variables. The conditions that govern
the switching across the reference and alternative(s) model(s) may only involve con-
temporaneous variables. With appropriate rede�nitions, these restrictions come at no
loss of generality.

Additional Notes

1. Writing the constraint

Model with irreversible capital. The original occasionally binding constraint in
the model is

it � log (� � Iss)

where it is natural logarithm of investment (see mod �le), Iss is steady state investment
in levels, and � is a parameter.

For the constraint to be violated, in the candidate solution calculated under the as-
sumption that the constraint does not bind the following must be true

it < log (� � Iss)

Rewrite each variable as
xt � ext + xss
5



In the runsim_irrcap.m code, the constraint will have to be expressed in linearized
form as eit + iss < log (� � Iss)() eit < log (�)
and the string constraint will be

i < log(PHII)

Therefore note that in the mod �le, i will denote the variable, whereas in the constraint
the same i will denote the variable minus its steady state level.

Model with borrowing constraint. The occasionally binding constraint speci�es
that Bt = mYt; which implies that �t > 0. This constraint is violated if in the candidate
solution the following is true

�t < 0

Rewrite �t as
�t � e�t + �ss

In the runsim_borrcon.m �le, the constraint will be expressed in linearized form ase�t + �ss < 0() e�t < ��ss.
and the string constraint will be

lambda < �lambda_ss

To write constraint_relax, note that the constraint will then bind again if at any
point borrowing exceeds its upper bound. That is

eBt +Bss > m�eYt + Yss�() eBt > meYt,
and the string constraint_relax will be

B > mY

2. In the toolbox, constraint and constraint_relax only admit contemporane-
ous endogenous variables. Note that there is no loss of generality since appropriate
rede�nitions can accommodate a general lead and lag structure.

3. In all runsim_*.m �les, we declare M_ and oo_ to be global variables (for use by
Dynare)

4. One does not need to specify the steady state of any alternative model. All models are
approximated around the steady state of the reference model (which needs to satisfy
the Blanchard-Kahn conditions). Since local and global stability need not coincide,
the conditions for an equilibrium in the alternative regime(s) need not satisfy the BK
conditions.

6



5. Values for the parameters (whether in the .mod or in external �les) are speci�ed only
for the reference model. Parameter values speci�ed for the alternative model(s) are
ignored by the code (but not the list of parameters, which is used for an error check).
If a parameter only enters the alternative model, it needs to be declared as parameter
and assigned a value in the reference model.

6. We have strived to minimize possible con�icts between local variables used in coding the
solution algorithm and parameter names declared in the .mod �les. We have reserved
variable names with a trailing underscore �i.e., names such as �myfavoritevariablename_�
�for the solution routines. Variable names with trailing underscores should be avoided
in the .mod �les.

7


