
Appendix for:

Measuring the Natural Rate of Interest:
a Note on Transitory Shocks

Kurt F. Lewis Francisco Vazquez-Grande

October 10, 2018

A Appendix

A.1 Data

The data used in this analysis is the same as the US data used in Holston, Laubach, and
Williams (2017), henceforth HLW, and it is transformed in the same way. See the data
appendix in HLW for additional specifics on obtaining the data. Real GDP data are obtained
from the BEA, inflation is calculated as the annualized quarterly growth rate of the price
index for personal consumption expenditures excluding food and energy (commonly referred
to as “core PCE inflation”). We follow HLW in using a 4-quarter moving average of inflation
in period t as a proxy for inflation expectations in that period. The short-term interest rate is
the annualized nominal effective federal funds rate, where the quarterly value is constructed
as the average of the monthly values. Prior to 1965, we use the Federal Reserve Bank of
New York’s discount rate.

A.2 State Space Formulation

Based on the system of equations in section 2 of the paper, substituting the formula for r∗t into
the output gap equation and expanding, we can come to a version of these equations that can
be expressed in the traditional observation/transition equation style of the standard state
space model. Following some algebraic manipulation, these equations are given as follows.
First, the observation equations on real GDP and inflation.

yt = y∗t − a1y
∗

t−1 − a2y
∗

t−2 − 2arρggt−1 − 2arρggt−2

−

ar

2
ρzzt−1 −
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2
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Then, the transition equations for unobserved potential real GDP, its growth rate, and the
z process.

y∗t = y∗t−1 + µg(1− ρg) + ρggt−2 + σ5ε5,t−1 + σ4ε4,t (A.3)

zt−1 = ρzzt−2 + σ3ε3,t−1 (A.4)

gt−1 = ρggt−2 + µg(1− ρg) + σ5ε5,t−1 (A.5)

These equations can be represented in state space form using the standard structure:

st = Ast−1 + But + Cwt (A.6)

xt = Dst + Fut +Gwt (A.7)

where:
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, D =

[

1 −a1 −a2 −2arρg −2arρg −
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]

,
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, G =

[

σ1 0 0 0 0

0 σ2 0 0 0

]

The ε’s are all assumed to be i.i.d. N(0, 1) variables, with the standard deviation of the
processes controlled by the σi’s.
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A.3 Bayesian estimation details

Some additional details:

• Restrictions on parameters (primarily inherited from HLW):

– We enforce that ar be negative and bY positive, following HLW in using the actual
restrictions ar < −0.0025 and bY > 0.025.

– As the sum of the coefficients on lags of inflation must sum to 1, we restrict b1 to
be between 0 and 1.

– Because of our expectation of a positive autocovariance for both gt and zt in the
event of stationarity, we restrict ρg and ρz to be positive.

The initialization for the states was duplicated from the process used in HLW: the initial
values for potential output y∗ were constructed by HP filtering the GDP series beginning
in 1960Q1, then using the trend component of the filtered output for the observations just
before the beginning of the data used in the estimation (1960 Q2, Q3 and Q4); the initial
values for g were the changes of that trend component in the second half of 1960. The initial
values for z were set to zero, as in HLW.

The estimation is performed in MATLAB using our own code to implement the random-
walk Metropolis-Hastings algorithm (see, e.g., Herbst and Schorfheide, 2015). The filter
code was written to execute the forward-filter, backward sample methodology of Frühwirth-
Schnatter (1994) and Carter and Kohn (1994, 1996) to obtain samples of the unobserved
states. We used a burn-in period of 250,000 draws before accepting every tenth draw for a
total of 500 kept draws from each of 20 chains, for a total sample of 10,000 draws from the
posterior distribution.

A.3.1 Cross- and Serial-Correlation of Error Processes

A component of assessing model fit is to examine some of the properties of the error processes
which result from the model estimates. Here, we compile the time series of errors for each
draw of θ, the model parameters. Each draw of the parameters generates time series of the
five errors and this allows us to view the correlation properties of the errors for that draw of
the parameters. Each sample of errors is compared for cross- and serial-correlation, and dis-
tributions (based on all the draws from posterior distribution of θ) of those correlations are
shown in Figures A.1 and A.2. The correlations across errors (shown in the “off-diagonal”
distributions the array of distributions) and the serial correlations of each error (the distribu-
tions shown on the diagonal of the array, shown in blue) appear to be generally distributed
in an area around zero.
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Figure A.1: Baseline: Distributions of Cross- and Serial-Correlation of the Model Errors

Notes: The diagonal of this lower-triangular array of distributions shows the distributions
of the serial correlation of each of the five error. These are shown in blue and have bold font
in the axis. The “off-diagonal” distributions are the correlations across the errors, shown in
black.

Figure A.2: Alternative: Distributions of Cross- and Serial-Correlation of the Model Errors

Notes: The diagonal of this lower-triangular array of distributions shows the distributions
of the serial correlation of each of the five error. These are shown in blue and have bold font
in the axis. The “off-diagonal” distributions are the correlations across the errors, shown in
black.
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A.4 A Flexible Specification Where g and z Are Both AR(1)

Another specification which we tested was to allow both z and g to be estimated as AR(1)
processes without forcing either to be a random walk. Allowing rhog and µg to be estimated
along with ρz did not dramatically alter the median path of r∗ that was estimated as the
alternative specification in the paper, as can be seen below in Figure A.3. This is because the
posterior distributions provide considerable evidence that the persistence parameter, ρg, can
be reasonably assumed to be one for the purposes of parsimony, see Figures A.4 and A.5. In
fact, when we conduct the same Savage-Dickey density ratio test on ρg in this specification
that we conduct on ρz in the alternative specification of the main text, we find that the data
adds weight to the posterior at the value ρg = 1, see Figure A.6. The posterior distributions
are described in Table A.1 and are generally similar to the alternative specification except
for the new parameters of g. The Newton and Raftery (1994) log marginal likelihood value
is -526, the same as that of the alternative specification.

Figure A.3: r∗ Path

Notes: The path of r∗ under the a specification in which both g and z are estimated as
AR(1) processes. The solid blue line shows the median path of the smoothed (two-sided)
estimate and the blue-shaded area is bounded by the 5th and 95th percentiles of the estimated
path. The vertical shaded bars represent NBER-dated recessions.
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Figure A.4: µg from a flexible AR(1) speci-
fication for g
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Figure A.5: ρg from a flexible AR(1) specifi-
cation for g

Notes: The posterior distributions for the parameters of the AR(1) process for g in a
specification in which both g and z are allowed to be freely estimated.
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Figure A.6: SDDR for ρg

Notes: The illustration of the Savage-Dickey density ratio for ρg in a specification in which
g and z were both estimated AR(1) processes, accounting for the pileup problem via priors.
Evidence suggests that the assumption that ρg = 1 is valid.
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Fully Flexible Specificaton

10th Perc. Median 90th Perc.

a1 0.85 1.17 1.43

a2 -0.53 -0.30 0.00

ar -0.14 -0.08 -0.04

b1 0.59 0.68 0.76

bY 0.05 0.10 0.17

σ1 0.05 0.24 0.49

σ2 0.75 0.80 0.86

σ3 0.62 2.23 5.24

σ4 0.31 0.55 0.63

σ5 0.06 0.17 0.35

ρg 0.64 0.87 0.98

ρz 0.15 0.53 0.81

µg 0.53 0.71 0.85

λg 0.11 0.33 1.01

λz 0.16 0.80 4.73

Table A.1: Information from posterior distributions of the parameters from the fully flexible
specification
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A.5 Prior Distributions of λg and λz and Pile-Up

The prior distributions for the σi’s were chosen to reflect the high degree of uncertainty
about the volatility of the hidden processes. Using uniform distributions gave us a simple
way to allow for significant mass across potentially larger values without significantly under-
weighting the region close to zero. We use restrictions on λg and λz, requiring that they
have properties that limit the risk of pileup. Indeed, Figures A.7 and A.8 compare our
implied prior distributions for λg and λz to those used by Holston et al. (2017) and Pescatori
and Turunen (2016). Our priors on λg and λz are less informative than others used in the
literature, this is especially true for the case of λz, where inverse gamma distributions with
means near the HLW point estimates actually place more mass to the left of that estimate,
very close to zero.

Figures A.9 and A.10 show that the unobserved volatility parameters display no signs of
pileup. The signals from our analysis line up with a finding from Clark and Kozicki (2005)
that λz and λg may be higher than estimated by Laubach and Williams (2003).
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Figure A.7: Priors of λg
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Figure A.8: Priors of λz

Notes: These inverse gamma prior parameters are consistent with the moments reported
on Pescatori and Turunen (2016).

Figure A.9: Posterior Distribution of σ3 Figure A.10: Posterior Distribution of σ5

Notes: Posterior Distributions of unobserved volatilities where the “pileup problem” was a
concern show no evidence of pileup.
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A.6 The Long-run natural rate

An important difference between the baseline and alternative specifications is that in the
baseline specification r∗ is, by construction, a long-run object. Having introduced transitory
shocks in the alternative specification, we will need to transform our new measure of r∗ to
align it better for a direct comparison. To do this, we extract the lower-frequency component
of the new r∗ measure. Following Del Negro, Giannone, Giannoni, and Tambalotti (2017),
we using the medium term forecast (specifically the ten-year projection) of the rate as our
long-run r∗:

r∗LRt = Et

(

r∗t+40

)

. (A.8)
Figure A.11 shows the path of long-run r∗ under the alternative specification along with

the median path from the baseline specification. The baseline specification remains in a
relatively tight area around the alternative specification for much of the sample, then plum-
mets during the financial crisis. While the median path of the baseline model drops about
three percentage points to around -1, the dip in the alternative specification, driven more
significantly by the growth rate, is significantly less. Thus, a major factor in determining the
level of long-run r∗ in 2017 would appear to be the assumption that all the shocks during
the financial crisis are permanent.
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Figure A.11: r∗ Path

Notes: A comparison of the path of long-run r∗ under the baseline and alternative models.
The solid blue line shows the median path of the smoothed (two-sided) estimate of the
alternative specification and the blue-shaded area is bounded by the 5th and 95th percentiles
of this estimated path. The dotted blue line shows the median estimated path of the long-
run r∗ under the baseline specification. The vertical shaded bars represent NBER-dated
recessions.

A.7 An Alternative Interest Rate and Sample Period

This section of the appendix provides details on the examination of the alternative sub-
sample and interest rate measure discussed in the result section of the main paper. We
examine the effects of (1) using an alternative measure of the real rate constructed using the
shadow rate of Wu and Xia (2016) and (2) of beginning the sample in 1983 at the onset of
the period referred to as the Great Moderation. We begin by replicating the main results
of the paper, shown in alternative versions of Table 2 from the main text for both of these
changes individually. The remainder of the appendix goes into greater detail on the key
implications.
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Bayesian MLE

Baseline Alternative Baseline Alternative

a1 1.242 1.137 1.520 1.518
[0.93,1.51] [0.79,1.50] [1.34, 1.70] [1.34, 1.70]

a2 -0.327 -0.235 -0.579 -0.576
[-0.59,-0.04] [-0.58,0.10] [-0.96, -0.48] [-0.97, -0.48]

ar -0.113 -0.108 -0.066 -0.063
[-0.19,-0.05] [-0.19,-0.05] [-0.09, -0.04] [-0.09, -0.03]

b1 0.681 0.673 0.674 0.676
[0.57,0.79] [0.56,0.78] [0.60, 0.74] [0.61, 0.75]

bY 0.058 0.070 0.073 0.072
[0.03,0.12] [0.03,0.14] [0.03, 0.11] [0.03, 0.12]

σ1 0.404 0.326 0.366 0.376
[0.12,0.64] [0.08,0.61] [0.21, 0.52] [0.21, 0.54]

σ2 0.803 0.797 0.792 0.793
[0.74,0.87] [0.74,0.86] [0.75, 0.84] [0.75, 0.84]

σ3 0.650 2.165 0.180 0.195
[0.09,1.91] [0.79,4.11] [0.10, 0.26] [0.10, 0.29]

σ4 0.515 0.539 0.567 0.562
[0.15,0.64] [0.10,0.65] [0.47, 0.67] [0.46, 0.67]

σ5 0.048 0.047 0.030 0.029
[0.02,0.12] [0.02,0.10] [0.02, 0.03] [0.02, 0.03]

ρz 1* 0.736 1* 0.942
[0.36,0.91] [0.79, 1.09]

(a) Estimation of the Parameters – Wu-Xia Shadow Rate

Bayesian MLE

LL(θmed) Log Marg. Like. BF Log. Like. BIC

Baseline -520 -530 0.15 -519 1091

Alternative -517 -526 6.8 -518 1096

(b) Model Comparison Under Bayesian and MLE Methods – Xu-Wia Shadow Rate

Table A.2: Panel (a) shows the medians of the marginal posterior distributions for each of
the model parameters from the baseline and alternative specifications, along with the MLE,
all estimated using the Wu-Xia shadow rate–in place of the effective federal funds rate–to
construct the real rate. The numbers in brackets represent the 90% credible set from the
posterior distributions of the parameters for the Bayesian estimation, and the 90% asymp-
totic confidence interval for the MLE, the standard errors come from the third estimation
stage. Panel (b) shows the log-likelihood of the model evaluated at θmed, the medians of the
marginal posterior distributions from Panel (a) along with the model comparison statistics
under Bayesian and MLE methods. The Log Marginal Likelihood values are built using the
Newton and Raftery (1994) methodology, and the Bayes Factor (BF) in favor of a given
model is built using the Savage-Dickey density ratio of Dickey (1971). The Bayesian Infor-
mation Criteria (BIC) is reported for the two MLE estimates. *In the baseline specification
under both estimation methods ρz is set to one.
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Bayesian MLE

Baseline Alternative Baseline Alternative

a1 1.188 1.181 1.691 1.700
[0.72,1.50] [0.80,1.46] [1.44, 1.95] [1.46, 1.94]

a2 -0.383 -0.356 -0.722 -0.723
[-0.66,-0.06] [-0.62,0.01] [-0.96, -0.48] [-0.97, -0.48]

ar -0.018 -0.024 -0.009 -0.008
[-0.065,-0.01] [-0.07,-0.01] [-0.05, 0.03] [-0.05, 0.03]

b1 0.261 0.251 0.387 0.388
[0.12,0.40] [0.56,0.78] [0.25, 0.52] [0.25, 0.53]

bY 0.153 0.159 0.025 0.025
[0.05,0.35] [0.05,0.33] [-0.01, 0.06] [-0.04, 0.09]

σ1 0.155 0.158 0.233 0.240
[0.03,0.36] [0.03,0.36] [0.09, 0.38] [0.07, 0.41]

σ2 0.628 0.629 0.577 0.576
[0.57,0.70] [0.57,0.70] [0.52, 0.64] [0.51, 0.64]

σ3 1.000 2.320 2.240 2.877
[0.12,4.01] [0.38,4.57] [-7.21, 11.69] [-11.63, 17.39]

σ4 0.40 0.397 0.412 0.411
[0.21,0.48] [0.23,0.48] [0.33, 0.50] [0.32, 0.50]

σ5 0.159 0.151 0.019 0.019
[0.08,0.25] [0.07,0.24] [0.01, 0.02] [0.01, 0.02]

ρz 1* 0.647 1* 0.922
[0.19,0.95] [0.62, 1.23]

(a) Estimation of the Parameters – Post-1983 Sample

Bayesian MLE

LL(θmed) Log Marg. Like. BF Log. Like. BIC

Baseline -240 -249 0.6 -247 543

Alternative -239 -247 1.6 -246 547

(b) Model Comparison Under Bayesian and MLE Methods – Post-1983 Sample

Table A.3: Panel (a) shows the medians of the marginal posterior distributions for each of
the model parameters from the baseline and alternative specifications, along with the MLE,
all estimated with a data sample that begins in 1983. The numbers in brackets represent
the 90% credible set from the posterior distributions of the parameters for the Bayesian
estimation, and the 90% asymptotic confidence interval for the MLE, the standard errors
come from the third estimation stage. Panel (b) shows the log-likelihood of the model
evaluated at θmed, the medians of the marginal posterior distributions from Panel (a) along
with the model comparison statistics under Bayesian and MLE methods. The Log Marginal
Likelihood values are built using the Newton and Raftery (1994) methodology, and the Bayes
Factor (BF) in favor of a given model is built using the Savage-Dickey density ratio of Dickey
(1971). The Bayesian Information Criteria (BIC) is reported for the two MLE estimates.
*In the baseline specification under both estimation methods ρz is set to one.
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A.7.1 Replacing the Federal Funds Rate with the Shadow Rate

As the federal funds rate reached a lower bound in the aftermath of the Great Recession, we
look at the effect of imputing additional monetary policy stimulus into the real rate data by
using the shadow rate of Wu and Xia (2016). This series is identical to the effective federal
funds rate except during the period of the zero lower bound; the two series are shown in
Figure A.12.
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Figure A.12: The Effective Federal Funds Rate and the Shadow Rate from Wu and Xia
(2016)

We can see from Table A.2 that fairly small changes to the parameter estimates occur as
the result of this change. For example, and as noted in Pescatori and Turunen (2016), we get
a small (insignificant) reduction in the aR parameter estimate as a result of incorporating
this different measure of monetary policy accommodation. As would be expected given the
purpose of the shadow rate, the model results display considerably more accommodation
than under the estimation that uses the effective federal funds rate to build the real rate
data. While r∗ estimates do decline slightly during the ZLB period when r∗ is estimated
using the shadow rate (more on this shortly), the resulting rate gap (rt− r∗t ) during the ZLB
episode is still considerably more negative, as shown in Figure A.13.

This more negative rate gap indicates to the model that, relative to the results when
estimating the model with the effective federal funds rate, the output gap should open wider
as a result of this increased accommodation. Accordingly, estimates of the trend growth rate
during the ZLB episode are pushed down slightly as the IS equation takes the rate gap signal
to assign more of the output growth during that period to the transitory gap component
rather than to potential output, as seen in Figure A.14.

The path of r∗ is estimated to be slightly lower, partly as a result of this lower relative
estimate of g, but the majority of the relatively small decline in r∗ comes from the non-
growth component, z. Finally, the small changes to the model’s estimates of r∗ when using
the shadow rate of Wu and Xia (2016) do not change any of the central results in the
main paper regarding the likelihood of transitory shocks to z. The Bayes Factor in favor
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Figure A.13: The rate gap (rt − r∗t )

of transitory shocks is roughly 7, in the same statistical category (in the Kass and Raftery,
1995 categorization) as the result when using the effective federal funds rate to build the
real rate data.
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Figure A.14: The growth rate of potential output, g

A.7.2 Sub-Sample Beginning in 1983

The estimation using the sub-sample period shown in Table A.3 has results which are some-
what different from the full-sample results shown in Table 2 of the main text. We begin by
looking at the estimate of the non-growth component of r∗, the principle object of interest
in our study. Figure A.15 shows that while the directional pattern of fluctuations of z re-
mains similar to that of the full sample estimated path, the magnitude of these movements
is considerably lower.

Figure A.15: z Path with 1983-2017 Sub-Sample

Notes: The blue-shaded area is bounded by the 5th and 95th percentiles of the full-sample
estimated path.

Figure A.16 shows the marginal posterior distribution of ρz under the full sample and
the sub-sample, along with the prior to demonstrate the decline in the Bayes Factor shown
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in Table A.3 that occurs when we remove the first 40% of the data. The Bayes Factor still
represents evidence in favor of the alternative specification with transitory shocks, but it has
declined to 1.6.
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Figure A.16: Prior and Posterior of ρz

This reduction in the Bayes Factor is due to the flattening of the posterior distribution of
ρz. While there is a decline in the Bayes Factor under the sub-sample, the alternative model
is still preferred, the mode of the sub-sample marginal posterior distribution is actually below
the full sample estimate, and the median declines due to the increase in posterior weight on
values of ρz closer to zero more than those near one. The removal of 40% of a data sample
is likely to reduce the precision of posterior estimates of a parameter, but the part of the
sample which is excluded in this exercise magnifies the effect. The decline in the Bayes Factor
is not so much the result of particularly compelling evidence during the Great Moderation
that ρz is precisely equal to one so much as it is the result of the Great Moderation period
emphasizing the challenges of estimating the properties of the non-growth component of r∗

via its effects on the output gap. That is, the higher uncertainty of the posterior distribution
of ρz is related to the “flatter” IS curve estimated during the subsample.
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Figure A.17: Posterior of ar estimated during the Great Moderation

Figure A.17 shows that the relationship between the rate gap and the output gap implied
by ar is estimated to be much weaker when using the post-1983 subsample in comparison to
the full sample. Recall that in estimations of this equation in the literature (e.g. this study,
Holston et al., 2017; Pescatori and Turunen, 2016) a prior restriction is imposed that the
coefficient on the real rate gap in the IS equation, ar, is negative. As the IS equation becomes
“flatter,” Figure A.16 indicates that the autoregressive properties of z become less precisely
estimated. The results in Table A.3 indicate that this problem extends to the MLE results,
but that the broad relationships across the model comparison results are similar: Bayesian
methods choose the alternative model while MLE chooses the baseline. Others have also
dealt with this issue. Pescatori and Turunen (2016) make use of this shorter sample period
and produce Bayesian estimates, dealing with the potential identification problem by use of
priors. They use tight priors on the parameters which define the time-series properties of z
to be similar to those of the original Laubach and Williams (2003) estimates. (Specifically,
they set the mean of the prior distribution for their counterpart to ρz equal to 0.99 with
a standard deviation of 0.0025. Similarly, the values in their table of prior parameters,
combined with their prior on λz shown in Figure A.8 demonstrates the very tight priors for
σz used for identification of z under the sub-sample.) These priors are able to overcome the
identification problem when using data with less volatility in inflation, interest rates and
output. In our study, however, because we are investigating the more-focused question of
whether r∗ is hit by transitory or only permanent shocks, strong prior assumptions about
the properties of z would pre-determine the results of our investigation.
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