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Abstract

This online appendix provides technical details on the the estimation methodology used in the

main paper, including an offset mixture representation for the stochastic volatility components, a gen-

eral outline of the Gibbs sampler and details on the exact implementation for each of the Gibbs blocks.

A1 Offset mixture representation for the stochastic volatility

components

Using νt ∼ N
(
0, ehνt

)
and µt ∼ N

(
0, ehµt

)
together with equation (18) in the main paper, we can write

νt = ehνt/2µ1t and µt = ehµt/2µ2t with µ1t and µ2t i.i.d. error terms with unit variance. A key feature

of these stochastic volatility components is that they are nonlinear but can be transformed into linear

components by taking the logarithm of their squares

ln
(
ehνt/2µ1t

)2
= hνt + ln (µ1t)

2
, ln

(
ehµt/2µ2t

)2
= hµt + ln (µ2t)

2
, (A-1)

where ln (µ1t)
2

and ln (µ2t)
2

are log-chi-square distributed with expected value −1.2704 and variance

4.93. Following Kim et al. (1998), we approximate the linear models in (A-1) by an offset mixture time

series model as

gjt = hjt + εjt, (A-2)
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for j = ν, µ, where gνt = ln
((
ehνt/2µ1t

)2
+ c
)

and gµt = ln
((
ehµt/2µ2t

)2
+ c
)

, with c = .001 being an

offset constant, and the distribution of εjt given by the following mixture of normals

f (εjt) =

M∑
n=1

qnfN
(
εjt|mn − 1.2704, s2n

)
, (A-3)

with component probabilities qn, means mn−1.2704 and variances s2j . Equivalently, this mixture density

can be written in terms of the component indicator variable κjt as

εjt| (κjt = n) ∼ N
(
mn − 1.2704, s2n

)
, with Pr (κjt = n) = qn. (A-4)

Following Kim et al. (1998), we use a mixture of M = 7 normal distributions to make the approximation

to the log-chi-square distribution sufficiently good. Values for {qn,mn, s
2
n} are provided by Kim et al. in

their Table 4.

A2 General outline of the Gibbs sampler

Taken together, equations (14) and (26) in the main paper constitute the observation equations of a

State Space (SS) model, with the unobserved states βit and hjt evolving according to the state equations

(22)-(23) and (24)-(25) respectively. In a standard linear Gaussian SS model, the Kalman filter can be

used to filter the unobserved states from the data and to construct the likelihood function such that

the unknown parameters can be estimated using Maximum Likelihood (ML). However, the stochastic

volatility components introduced in Section 3.1 and the stochastic model specification search outlined

in Section 3.2 imply a non-regular estimation problem for which the standard approach via the Kalman

filter and ML is not feasible. Instead, we use the Gibbs sampler which is a Markov Chain Monte

Carlo (MCMC) method to simulate draws from the intractable joint and marginal posterior distributions

of the unknown parameters and the unobserved states using only tractable conditional distributions.

Intuitively, this amounts to reducing the complex non-linear model into a sequence of blocks for subsets

of parameters/states that are tractable conditional on the other blocks in the sequence.

For notational convenience, define the non-centered time-varying parameter vector β∗t = (β∗0t, β
∗
1t), the

non-centered stochastic volatilities vector h∗t =
(
h∗νt, h

∗
µt

)
, the mixture indicators vector κt = (κνt, κµt),

the unknown parameter vectors θ = (θ1, . . . , θq), φβ = (β00, β10, γ, ρ, ση0 , ση1), φh = (hν0, hµ0, συν ,

συµ), φ = (δ, θ, φβ , φh) and the model indicators Mθ = (ιθ1 , . . ., ιθq ), Mφβ = (ιβ00
, ιβ10

, ιγ , ιρ, ιβ0t
, ιβ1t

),

Mφh = (ιhν , ιhµ), M = (Mθ, Mφβ , Mφh). Further let Dt= (∆ lnCt, ∆ lnYt, Zt) be the data vector.

Stacking observations over time, we denote D = {Dt}Tt=1 and similarly for β∗, h∗ and κ. The posterior

density of interest is then given by f (φ, β∗, h∗, κ,M |D). Building on Frühwirth-Schnatter and Wagner

(2010) for the stochastic model specification part, on Chib and Greenberg (1994) for the moving average

(MA) part and on Kim et al. (1998) for the stochastic volatility part, our MCMC scheme is as follows:

1. Sample the binary indicators (Mθ,Mφβ ) and the constant parameters (δ, θ, φβ) conditional on the

time-varying parameters β∗ and on the stochastic volatilities h∗. This is accomplished as:
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(a) Sample the first step parameters δ from f (δ|φβ , h∗, D).

(b) Sample the binary indicators Mθ and the MA coefficients θ:

i. Sample the binary indicators Mθ from f (Mθ|δ, φβ , φh, β∗, h∗, D) marginalizing over the

parameters θ for which variable selection is carried out.

ii. Sample the unrestricted parameters in θ from f (θ|δ, φβ , φh, β∗, h∗,Mθ, D) while setting

the restricted parameters in θ (for which the corresponding binary indicator in Mθ is 0)

equal to 0.

(c) Sample the binary indicators Mφβ and the parameters φβ :

i. Sample the binary indicators Mφβ from f
(

Mφβ |δ, θ, φh, β∗, h∗, D
)

marginalizing over the

parameters φβ for which variable selection is carried out.

ii. Sample the unrestricted parameters in φβ from f
(
φβ |δ, θ, φh, β∗, h∗,Mφβ , D

)
while setting

the restricted parameters in φβ (for which the corresponding binary indicator in Mφβ is

0) equal to 0.

2. Sample the unrestricted time-varying parameters in β∗ from f(β∗|δ, θ, φβ , h∗,Mφβ , D). The re-

stricted time-varying parameters in β∗ (for which the corresponding binary indicator is 0) are

sampled directly from their prior distribution in equation (23).

3. Sample the mixture indicators κ, the binary indicators Mφh , the constant parameters φh and the

stochastic volatilities components h∗ conditional on the constant parameters (δ, θ, φβ) and on the

time-varying parameters β∗. This is accomplished as:

(a) Sample the mixture indicators κ from f (κ|φ, β∗, h∗, D).1

(b) Sample the binary indicators Mφh and the constant parameters φh conditional on the con-

stant parameters (δ, θ, φβ), on the time-varying parameters β∗, on the stochastic volatility

components h∗ and on the mixture indicators κ:

i. Sample the binary indicators Mφh from f (Mφh |δ, θ, φβ , β∗, h∗, κ,D) marginalizing over the

parameters φh for which variable selection is carried out.

ii. Sample the unrestricted parameters in φh from f (φh|δ, θ, φβ , β∗, h∗, κ,Mφh , D) while set-

ting the restricted parameters in φh (for which the corresponding binary indicator in Mφh

is 0) equal to 0.

(c) Sample the unrestricted stochastic volatilities in h∗ from f(h∗|φ, β∗, κ,Mφh , D). The restricted

stochastic volatilities in h∗ (for which the corresponding binary indicator is 0) are sampled

directly from their prior distribution in equation (25).

1Note that the ordering of the Gibbs steps is in line with Del Negro and Primiceri (2015) who argue that the mixture
indicators κ should be drawn after the components that do not condition on κ directly but before the components that do
condition on κ.
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4. Perform a random sign switch for σηi and {β∗it}Tt=1 and for συj and {h∗jt}Tt=1, e.g., ση1 and {β∗1t}Tt=1

are left unchanged with probability 0.5 while with the same probability they are replaced by −ση1
and {−β∗1t}Tt=1.

Given an arbitrary set of starting values, sampling from these blocks is iterated J times and, after a

sufficiently large number of burn-in draws B, the sequence of draws (B + 1, ..., J) approximates a sample

from the virtual posterior distribution f (φ, β∗, h∗, κ,M |D). Details on the exact implementation of each

of the blocks can be found in Section A3. The results reported in the main paper are based on 15 000

iterations, with the first 5 000 draws discarded as a burn-in sequence.

A3 Details on the blocks in the Gibbs sampling algorithm

In this section we provide details on the exact implementation of the Gibbs sampling algorithm outlined

in Section A2 to jointly sample the binary indicators M , the constant parameters φ, the time-varying

parameters β∗, the stochastic volatilities h∗ and the mixture indicators κ.

For notational convenience, let us first define a general regression model

y = xmbm + θ (L) e, e ∼ N (0,Σ) , (A-5)

where y = (y1, . . . , yT )
′

is a (T × 1) vector stacking observations on the dependent variable yt, x =

(x′1, . . . , x
′
T )
′

is a (T × k) unrestricted predictor matrix with typical row xt, b is a (k × 1) unrestricted

parameter vector, θ (L) is a lag polynomial of order q and Σ is a diagonal matrix with elements σ2
et on

the diagonal that may vary over time to allow for heteroskedasticity of a known form. The restricted

predictor matrix xm and restricted parameter vector bm exclude those elements in x and b for which the

corresponding binary indicator in the m is zero, with m being a subset of the model M .

The MA(q) errors in equation (A-5) imply a model that is non-linear in the parameters. As suggested

by Ullah et al. (1986) and Chib and Greenberg (1994), conditional on θ a linear model can be obtained

from a recursive transformation of the data. For t = 1, . . . T let

ỹt = yt −
q∑
i=1

θiỹt−i, with ỹt = 0 for t ≤ 0, (A-6)

x̃t = xt −
q∑
i=1

θix̃t−i, with x̃t = 0 for t ≤ 0, (A-7)

and further for j = 1, . . . , q

ωjt = −
q∑
i=1

θiωj,t−i + θt+j−1, with ωjt = 0 for t ≤ 0, (A-8)

where θs = 0 for s > q. Equation (A-5) can then be transformed as

ỹ = x̃mbm + ωλ+ e = w̃m Φm + e, (A-9)
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where w̃ = (x̃, ω) with ω = (ω′1, . . . , ω
′
T )′ and ωt = (ω1t, . . . , ωqt), Φm =

(
bm′
, λ′
)′

and λ = (e0, . . . , e−q+1)
′

initial conditions that can be estimated as unknown parameters.

Conditional on θ and σ2
et, equation (A-9) is a standard linear regression with observed variables ỹ

and w̃m and heteroskedastic normal errors with known covariance matrix Σ. A naive implementation

of the Gibbs sampler would be to first sample the binary indicators in m from f (m |Φ,Σ, ỹ, w̃) and next

Φm from f (Φm |m ,Σ, ỹ, w̃). However, this approach does not result in an irreducible Markov chain as

whenever an indicator in m equals zero, the corresponding coefficient in Φ is also zero which implies that

the chain has absorbing states. Therefore, as in Frühwirth-Schnatter and Wagner (2010) we marginalize

over the parameters Φ when sampling m and next draw Φm conditional on the binary indicators in m .

The posterior distribution f (m |Σ, ỹ, w̃) can be obtained using Bayes’ Theorem as

f (m |Σ, ỹ, w̃) ∝ f (ỹ |m ,Σ, w̃ ) p (m) , (A-10)

with p (m) being the prior probability of m and f (ỹ |m ,Σ, w̃ ) the marginal likelihood of the regression

model (A-9) where the effect of the parameters Φ has been integrated out. Under the normal conjugate

prior

p (Φm ) = N (Φm
0 , V

m
0 ) , (A-11)

the closed form solution of the marginal likelihood is given by

f (ỹ |m ,Σ, w̃ ) ∝ |Σ|
−0.5 |V m

T |
0.5

|V m
0 |

0.5 exp

(
− ỹ
′Σ−1ỹ + (Φm

0 )
′
(V m

0 )
−1

Φm
0 − (Φm

T )
′
(V m
T )
−1

Φm
T

2

)
, (A-12)

where the posterior moments Φm
T and V m

T can be calculated as

Φm
T = V m

T

(
(w̃m )

′
Σ−1ỹ + (V m

0 )
−1

Φm
0

)
, (A-13)

V m
T =

(
(w̃m )

′
Σ−1w̃m + (V m

0 )
−1
)−1

. (A-14)

Following George and McCulloch (1993) we use a single-move sampler in which the binary indicators ιk

in m are sampled recursively from the Bernoulli distribution with probability

p (ιk = 1 |ι−k,Σ, ỹ, w̃ ) =
f (ιk = 1 |ι−k,Σ, ỹ, w̃ )

f (ιk = 0 |ι−k,Σ, ỹ, w̃ ) + f (ιk = 1 |ι−k,Σ, ỹ, w̃ )
, (A-15)

for k depending on the particular subset m of M . We further randomize over the sequence in which the

binary indicators are drawn.

Conditional on m , the posterior distribution of Φm is given by

p (Φm |m ,Σ, ỹ, w̃) = N (Φm
T , V

m
T ) , (A-16)

with posterior moments bm
T and V m

T given in equations (A-13)-(A-14).
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Block 1: Sampling (Mθ,Mφβ) and (δ, θ, φβ)

Block 1(a): Sampling the first step parameters δ

Conditional on the stochastic volatility component hνt, equation (14) can be written in the general

notation of equation (A-5) as: yt = ∆ lnYt, x
m
t = xt = Zt, b

m = b = δ and θ(L) = 1 such that θ(L)et = νt

and the elements in Σ are given by σ2
et = ehνt . In the notation of equation (A-9) we further have ỹt = yt,

w̃m
t = w̃t = xt and Φm = Φ = δ. The parameters in δ can then be sampled from the posterior distribution

in equation (A-16) and used to calculate Et−1 (∆ lnYt) = Ztδ, νt = ∆ lnYt − Ztδ and

ν∗t =
θ (L) νte

hµt/2√
1− ρ2ehνt/2

,

conditional on θ, ρ, hνt and hµt.

Block 1(b): Sampling the binary indicators Mθ and the MA coefficients θ

Conditional on the parameters δ, φh and φβ , on the time-varying coefficients β∗t , on the stochastic

volatility h∗µt and on the binary indicators Mφβ , equation (16) can be written in the general notation of

equation (A-5) as: yt = ∆ lnCt, xt = (1, Ztδ, β
∗
0t, β

∗
1tZtδ, ∆ lnCt−1), b = (β00, β10, ση0 , ση1 , γ) and

θ(L)et = θ(L)εt, such that the elements in Σ are given by σ2
et = σ2

εt = ehµt
/

(1− ρ2) . The values of the

binary indicators in the subset Mφβ of M then imply the restricted x
Mφβ
t and bMφβ .

Under the normal conjugate prior p (θ) = N
(
bθ0, V

θ
0

)
, the exact conditional distribution of θ is

p
(
θ|ΦMφβ ,Σ, y, x

)
∝

T∏
t=1

exp

(
−et (θ)

2

2σ2
et

)
× exp

(
−1

2

(
θ − bθ0

)′ (
V θ0
)−1 (

θ − bθ0
))

, (A-17)

where et (θ) = ỹt (θ) − w̃m
t (θ) ΦMφβ is calculated from the transformed model in equation (A-9) further

conditioning on the initial conditions λ to obtain ΦMφβ =
(
bMφβ

′
, λ′
)′

.

Direct sampling of θ using equation (A-17) is not possible, though, as et (θ) is a non-linear function of

θ. To solve this issue, Chib and Greenberg (1994) propose to linearize et (θ) around θ∗ using a first-order

Taylor expansion

et (θ) ≈ et (θ∗)−Ψt (θ − θ∗) , (A-18)

where Ψt = (Ψ1t, . . . ,Ψqt) is a 1 × q vector including the first-order derivatives of et (θ) evaluated at θ∗

obtained using the following recursion

Ψit = −et−i (θ∗)−
q∑
j=1

θ∗jΨi,t−j , (A-19)

where Ψit = 0 for t ≤ 0. An adequate approximation can be obtained by choosing θ∗ to be the non-linear
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least squares estimate of θ conditional on the other parameters in the model, which can be obtained as

θ∗ = argmin
θ

T∑
t=1

(et (θ))
2
, (A-20)

Conditioning on θ∗, equation (A-18) can then be rewritten as an approximate linear regression model

et (θ∗) + Ψtθ
∗ ≈ Ψtθ + et (θ) , (A-21)

with dependent variable et (θ∗)+Ψtθ
∗ and explanatory variables Ψt. As such, the approximate expression

in (A-21) can be written in the general notation of equation (A-5) by setting yt = et (θ∗)+Ψtθ
∗, xt = Ψt,

b = θ and θ(L) = 1 such that θ(L)et = εt and σ2
et = σ2

εt = ehµt
/

(1− ρ2) . The values of the binary

indicators in the subset Mθ of M imply the restricted xMθ
t and bMθ . In the notation of equation (A-9) we

further have ỹt = yt, w̃
m
t = xMθ

t and Φm = bMθ .

The binary indicators in Mθ can then be sampled from the posterior distribution in equation (A-10)

with marginal likelihood calculated from equation (A-12). Next, we sample θMθ using a Metropolis-

Hastings (MH) step. Suppose θMθ (i) is the current draw in the Markov chain. To obtain the next draw

θMθ (i+ 1), first draw a candidate θMθ (c) using the following normal proposal distribution

q
(
θMθ |θ∗,Σ, y, x

)
∼ N

(
ΦMθ
T , V Mθ

T

)
, (A-22)

with posterior moments ΦMθ
T and V Mθ

T calculated using equations (A-13)-(A-14). The MH step then

implies a further randomization which amounts to accepting the candidate draw θMθ (c) with probability

α
(
θMθ (i), θMθ (c)

)
= min

{
p
(
θMθ (c)|ΦMθ ,Σ, y, x

)
p (θMθ (i)|ΦMθ ,Σ, y, x)

q
(
θMθ (i)|θ∗,Σ, y, x

)
q (θMθ (c)|θ∗,Σ, y, x)

, 1

}
. (A-23)

If θMθ (c) is accepted, θMθ (i + 1) is set equal to θMθ (c) while if θMθ (c) is rejected, θMθ (i + 1) is set equal

to θMθ (i). Note that the unrestricted θ is restricted to obtain θMθ by excluding θl when ιθl = 0. In this

case θl is not sampled but set equal to zero.

Block 1(c): Sampling the binary indicators Mφβ and the second step parameters φβ

Conditional on β∗t , δ and ν∗t , equation (26) can be written in the general notation of equation (A-5) setting

yt = ∆ lnCt, xt = (1, Ztδ, β
∗
0t, β

∗
1tZtδ, ∆ lnCt−1, ν∗t ), b = (β00, β01, ση0 , ση1 , γ, ρ) and θ(L)et = θ(L)µt,

such that the elements in Σ are given by σ2
et = ehµt . Further conditioning on the MA parameters θ,

the unrestricted transformed variables ỹt and w̃t in equation (A-9) are obtained, with corresponding

unrestricted extended parameter vector Φ = (b′, λ′)
′
. The values of the binary indicators in Mφβ then

imply the restricted w̃
Mφβ
t and ΦMφβ .

First, the binary indicators in Mφβ are sampled from the posterior distribution in equation (A-10) with

marginal likelihood calculated from equation (A-12). Second, conditional on Mφβ , φβ is sampled, together

with λ, by drawing ΦMφβ from the general expression in equation (A-16). Note that the unrestricted Φ =

(β00, β10, ση0 , ση1 , γ, ρ, λ) is restricted to obtain ΦMφβ by excluding those coefficients for which the
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corresponding binary indicator in Mφβ is zero. These restricted coefficients are not sampled but set equal

to zero.

Block 2: Sampling β∗

In this block we use the forward-filtering and backward-sampling approach of Carter and Kohn (1994) and

De Jong and Shephard (1995) to sample the time-varying parameters β∗. Conditional on the coefficients

φβ , on the stochastic volatility hµt, on the first block results Ztδ and ν∗t and on the binary indicators

Mφβ , equation (26) can be rewritten as

yt = ιβ0tση0β
∗
0t + ιβ1tση1β

∗
1tx1t + θ (L)µt, (A-24)

with yt = ∆ lnCt − β00 − β10Ztδ − γ∆ lnCt−1 − ρν∗t and x1t = Ztδ. Using the recursive transformation

suggested by Ullah et al. (1986) and Chib and Greenberg (1994), the model in equation (A-24) can be

transformed to

ỹt = ιβ0t
ση0 β̃0t + ιβ1t

ση1 β̃1t + ωtλ+ µt, (A-25)

where ỹt and ωt = (ω1t, . . . , ωqt) are calculated (conditional on θ) from equations (A-6) and (A-8) and

similarly

β̃0t = β∗0t −
q∑
i=1

θiβ̃0,t−i, with β̃0t = 0 for t ≤ 0, (A-26)

β̃1t = β∗1tx1t −
q∑
i=1

θiβ̃1,t−i, with β̃1t = 0 for t ≤ 0. (A-27)

Substituting equation (23) in (A-26)-(A-27) yields

β̃0,t+1 = β∗0t −
q∑
i=1

θiβ̃0,t+1−i + η∗0t, (A-28)

β̃1,t+1 = β∗1tx1,t+1 −
q∑
i=1

θiβ̃1,t+1−i + x1,t+1η
∗
1t, (A-29)

such that the state space representation of the model in equations (A-25), (23) and (A-28)-(A-29) is given

by

ỹt − ωtλ =

ση︷ ︸︸ ︷[
(0 ση0 0 . . . 0) (0 ση1 0 . . . 0)

] αt︷ ︸︸ ︷[
α0t

α1t

]
+µt, (A-30)[

α0,t+1

α1,t+1

]
︸ ︷︷ ︸

αt+1

=

[
T0t 0

0 T1t

]
︸ ︷︷ ︸

Tt

[
α0t

α1t

]
︸ ︷︷ ︸
αt

+

[
K0t 0

0 K1t

]
︸ ︷︷ ︸

Kt

[
η∗0t

η∗1t

]
︸ ︷︷ ︸
ηt

, (A-31)
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with αi,t+1 given by



β∗i,t+1

β̃i,t+1

β̃it
...

β̃i,t−(q−2)


︸ ︷︷ ︸

αi,t+1

=



1 0 . . . 0 0

xi,t+1 −θ1 . . . −θq−1 −θq
0 1 0 0
...

. . .
...

0 0 . . . 1 0


︸ ︷︷ ︸

Tit



β∗it

β̃it
...

β̃i,t−(q−2)

β̃i,t−(q−1)


︸ ︷︷ ︸

αit

+



1

xi,t+1

0
...

0


︸ ︷︷ ︸

Kit

[
η∗it

]
, (A-32)

for i = 0, 1 and where x0t = 1 ∀t, µt ∼ N
(
0, ehµt

)
and η∗it ∼ N (0, 1). In line with equations (23) and

(A-26)-(A-27), each of the states in αt is initialized at zero.

Equations (A-30)-(A-31) constitute a standard linear Gaussian state space model, from which the

unknown state variables αt can be filtered using the standard Kalman filter. Sampling αt from its

conditional distribution can then be done using the multimove simulation smoother of Carter and Kohn

(1994) and De Jong and Shephard (1995). Using βi0, σηi and β∗it, the centered time-varying coefficients

βit in equation (20) can easily be reconstructed from equation (22). Note that in a restricted model

with ιβit = 0, σηi is excluded from ση and αit is dropped from the state vector αt. In this case, no

forward-filtering and backward-sampling for β∗it is needed as this can be sampled directly from its prior

distribution using equation (23).

Block 3: Sampling κ, Mφh, φh and h∗

Block 3(a): Sampling the mixture indicators κ

Conditional on hjt and on εjt, calculated from equation (A-2) as εjt = gjt − hjt, we first sample the

mixture indicators κjt from the conditional probability mass

p (κjt = n|hjt, εjt) ∝ qnfN
(
εjt|hjt +mn − 1.2704, s2n

)
, (A-33)

for j = ν, µ.

Block 3(b): Sampling the binary indicators Mφh and the constant parameters φh

Conditional on h∗jt, gjt and κjt and using the non-centered parameterization in equation (27), equation

(A-2) can be rewritten in the general linear regression format of (A-5) setting yt = gjt− (mκjt − 1.2704),

xt = (1, h∗jk), b = (hj0, συj ) and θ(L)et = ε̃jt = εjt − (mκjt − 1.2704) for j = ν, µ. Given the mixture

distribution of εjt defined in equation (A-4), the centered error term ε̃jt has a heteroskedastic variance

s2κjt such that Σ =diag(s2κj1 , . . . , s
2
κjT ). In the notation of equation (A-9) we further have ỹt = yt and the

unrestricted w̃t = xt and Φ = b. The values of the binary indicators in Mφh then imply the restricted

w̃
Mφh
t and ΦMφh . Hence, the binary indicators ιhj , for j = (ν, µ), in Mφh can be sampled from the posterior

distribution in equation (A-10) with marginal likelihood calculated from equation (A-12).

Next conditioning on Mφh , the parameters (hj0, συj ), for j = ν, µ in φh are sampled by drawing ΦMφh

using the general expression in equation (A-16). Note that the unrestricted Φ = (hj0, συj ) is restricted

9



to obtain ΦMφh by excluding συj when ιhj = 0. In this case συj is not sampled but set equal to zero.

Block 3(c): Sampling the stochastic volatilities h∗

Conditional on the transformed errors gjt defined under equation (A-2), on the mixture indicators κjt

and on the parameters φh, equations (A-2) and (24)-(25) can we written in the following conditional state

space representation

[
gjt −

(
mκjt − 1.2704

)
− hj0

]
=
[
συj

] [
h∗jt

]
+
[
ε̃jt

]
, (A-34)[

h∗j,t+1

]
=
[

1
] [

h∗jt

]
+
[

1
] [

υ∗jt

]
, (A-35)

for j = ν, µ, where ε̃jt = εjt −
(
mκjt − 1.2704

)
is εjt centered around zero with var(ε̃jt) = s2κjt and

var(υ∗jt) = 1. In line with equation (25), the random walk component h∗jt is initialized at zero.

As equations (A-34)-(A-35) constitute a standard linear Gaussian state space model, h∗jt can be filtered

using the Kalman filter and sampled using the multimove simulation smoother of Carter and Kohn (1994)

and De Jong and Shephard (1995). Note that in a restricted model with ιhj = 0, and hence συj = 0, no

forward-filtering and backward-sampling for h∗jt is needed as this can be sampled directly from its prior

distribution in equation (25). Using hj0, συj and h∗jt, the centered stochastic volatility component hjt in

equation (21) can easily be reconstructed from equation (24).
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