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Abstract 

In the process of revision, the original paper was substantially improved, but had 
become too long for publication in printed form. Therefore, hard decisions had to 
be made in shortening the paper to the required length. This full version of the 
paper, including the omitted material is included in this online supplement. 
While this extended supplement is logically self-contained, it should ideally be 
read in conjunction with the printed version. In particular, the online material 
includes detailed discussion of the needs of submarket delineation, additional 
discussion placing our work within the context of the literature, more details on 
estimation and extended empirical results. 
 

KEYWORDS: Spatial heterogeneity; Endogenous spatial dependence; Housing 
submarkets; Spatial lag model; Geographically weighted regression; Functional linear 
regression. 

JEL CLASSIFICATION: C21; R31; C38; C51. 

"(Social) space is a (social) product ... the space thus produced also serves as a 
tool of thought and of action; that in addition to being a means of production it 
is also a means of control, and hence of domination, of power. ... Change life! 
Change Society! These ideas lose completely their meaning without producing 
an appropriate space." (Lefebvre, 1974 [1991], p.26, p.59). 
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1. Introduction 

Endogenous evolution of urban space, as emphasized by Lefebvre (1974 [1991]), is 
central to spatial dynamics in urban housing markets. Definition of housing 
submarkets, at both conceptual and empirical levels, is important in this context. 
Understanding endogenous housing segmentation enables researchers to study spatial 
variation in housing prices, improving lenders’ and investors’ abilities to price the risk 
associated with financing homeownership; at the same time it reduces search costs to 
housing consumers (Malpezzi, 2003, Goodman and Thibodeau, 2007).  

By its nature housing is a heterogeneous good, characterized by a diverse set of 
attributes (Lancaster, 1966; Rosen, 1974) and segmented and structured by complex 
spatial patterns. Different social groups, with specific tastes, preferences and economic 
capabilities tend to be organized into distinct territorial clusters (Galster, 2001), ranging 
from national or regional scale, through metropolitan areas, to below the metropolitan 
level (Follain and Malpezzi, 1980; Rothenberg et al., 1991; Maclennan and Tu, 1996; 
Bourassa et al., 1999). However the literature does not suggest an unequivocal and 
unique spatial approach to analyse this issue, encompassing different philosophies, 
techniques and criteria.  

Housing markets are complex. Rather than being defined by a single combination of a 
quantity and a price, the market equilibrium for a heterogeneous good such as a house 
is given by the combination of a vector of hedonic characteristics with a vector of 
hedonic prices which, under an appropriate function specification, produce an overall 
price for the good (Lancaster, 1966; Rothenberg et al., 1991). Thus, the existence of a 
unique vector of hedonic prices, combined with a distribution of houses with different 
hedonic characteristics, is a necessary condition for the existence of a single 
equilibrium and a unique market. However, what we generally observe is the co-
existence of several submarkets, corresponding to different market equilibrium in each 
of these submarkets (Rothenberg et al., 1991). 

There are several reasons to explain this empirical evidence. First, houses are durable 
goods that cannot be continuously adjusted to changes in demand. New houses can be 
designed in order to meet the expected demand requirements. However, once they are 
built, any change to their characteristics is a costly and sometimes an impossible task, a 
rigidity which tends to create a permanent lag between supply and consumer tastes. 
Second, the existence of significant search costs and information asymmetries makes 
branding an important market feature (Williamson, 2000). Such branding corresponds 
to clusters of relatively homogeneous houses designed to meet the requirements of 
particular social groups. Because a house is simultaneously a consumer good, an asset 
and a status benchmark (Marques et al., 2012), branding not only facilitates search but 
tends to endure in housing clusters, homogeneous in hedonic characteristics and prices 
as well as in the social composition of residents.  

Supply rigidities and transaction costs are then the main drivers of heterogeneity, 
shaping the territory as landscapes of submarkets. Such landscapes can be either 
represented as sets of hedonic functions, each with one particular vector of hedonic 
prices, or as a continuous transition of vectors, represented by an hedonic functional. 
The application of a functional representation to the empirical study of housing hedonic 
price models is one of the main objectives of this paper.      

Because of such inherent heterogeneity over space, understanding housing markets and 
the conduct of housing policy crucially depends on delineation of submarkets 
(Rothenberg et al., 1991). Each such submarket is characterized by different supply and 
demand curves and a different equilibrium. A multitude of criteria have been proposed 
in the literature for defining housing markets and their constituent submarkets. In 
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general, the delineation of submarkets can be based on a priori judgments such as pre-
existing administrative boundaries or subjective knowledge, but equally, by using the 
structure of data to apply analytical methods such as hierarchical models or non-
parametric spatial statistical models; see, for example, McMillen (1996) and Goodman 
and Thibodeau (2007).  

These analytical methods are based on the theoretical assumptions underlying the 
definition of submarkets. As discussed in the next section, there are three main 
approaches, viewing submarkets as defined by three possible criteria: i) similarity in 
hedonic characteristics; ii) similarity in hedonic prices; or iii) close substitutability of 
housing units. We argue that spatial clustering based simultaneously on criteria i) and 
ii) is a sufficient condition for criterion iii) to hold. Since criterion i) is directly 
observable, we focus on ii). Thus, the central object of our inference is a regression 
model where the dependent variable is logarithm of house prices per square meter and 
housing features are regressors. The partial effect of these housing features varies over 
a two-dimensional territory. In this paper, we focus on a single regressor, logarithm of 
living area, so that the functional regression coefficient β(s) can be interpreted as an 
elasticity which reflects a positive but decreasing marginal utility of living area. 
Generally, -1 < β(s) < 0; when the elasticity approaches zero consumers show a very 
low satiation of living space, while a value close to negative unity (-1)  reflects a 
submarket with a rigid demand for living space.  

Appropriate characterization of spatial structure is a key element of such analyses. 
Specifically, three distinct aspects of space – spatial heterogeneity, spatial dependence 
and spatial scale – are central to understanding the spatial organization of housing 
submarkets. Anselin (1988b:1) defines spatial heterogeneity as the "heterogeneity 
inherent in the delineation of spatial units and from contextual variation over space." 
In the context of a hedonic pricing model estimated using spatial panel data, this can 
modelled as cross sectional fixed effects and slope heterogeneity. In this paper, we 
consider a spatial cross section context, where spatial heterogeneity is modelled as 
variation across spatial submarkets in intercepts (spatial fixed effects) and spatially 
varying (heterogeneous) slopes of a regression model. By contrast, spatial dependence 
is associated with spatial spillover effects, contagion and diffusion; typically, this 
results in spatial autocorrelation between different spatial units (Anselin, 1988a,b). 
Additionally, choice of an appropriate spatial scale is important (Malpezzi, 2003). 
Spatial scale is not so much an econometric, but an important empirical issue; whether 
an urban scale is the most suitable, or whether the appropriate scale for analysis should 
be peri-urban (including an urban centre, adjoining suburbs and the countryside), 
regional or national, depends on both the spatial phenomenon under analysis and the 
specific spatial context. At the empirical level, the correct treatment of spatial 
heterogeneity increases the prediction accuracy of the estimated hedonic models and, in 
many cases, negates spatial strong dependence (Pesaran, 2006; Pesaran and Tosetti, 
2011).1 

We study how estimates of the above hedonic regression model can be used to identify 
submarkets, following the criterion of similar hedonic prices and characteristics by 
clustering jointly on the surface of the functional partial effect β(s) and the regressor 
surface x(s). Further, following the current literature (Bhattacharjee et al., 2012), once 

                                                 
1 Even though spatial heterogeneity and spatial dependence are theoretically distinct problems, adequate 
treatment of common factors with heterogeneous slopes is necessary for inference on structural spatial 
dependence (Bhattacharjee and Holly, 2013); see also McMillen (2003). 
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such submarkets have been delineated, spatial dependence can be examined by 
estimating cross- and within-submarket spatial weights. 

Therefore, we propose a new framework to analyse housing markets, based on a 
synthesis of spatial econometrics, functional data analysis (FDA) and locally/ 
geographically weighted regression (GWR). We consider a simple spatial lag model, 
regressing logarithm of price per square meter of living space on logarithm of house 
area, allowing for spatial heterogeneity (spatial fixed effects and slope heterogeneity) 
and endogenous spatial dependence captured by a spatial weights matrix W. This, in 
turn, leads to a functional regression model where the response variable is scalar and 
the functional regressor is a spatially weighted version of the average functional surface 
of the regressor. When kernel weights are used, the model is very similar to GWR. This 
synthesis of GWR and FDA offers a spatial statistical model that is very rich and 
enable the full range of spatial analyses of housing markets.  

The above model addresses two main limitations of previous approaches. First, the 
framework allows submarkets to evolve endogenously and abstracts from the 
requirement to delineate housing submarkets a priori. The submarkets can be 
delineated ex post by spatial clustering, or even simple hierarchical clustering, of the 
estimated functional regression slope and hedonic feature surfaces. Second, 
endogeneity in spatial structure and estimated spatial weights can be naturally 
incorporated into the model. Application to the housing market of the Aveiro-Ílhavo 
urban conglomeration in Portugal implies submarkets that emphasize the historical and 
endogenous evolution of the urban spatial structure.   

The paper is organised as follows. Section 2 discusses some recent developments in the 
spatial econometrics literature applied to the hedonic pricing model, followed by 
delineation of submarkets in section 3. Section 4 highlights limitations of the spatial 
econometrics framework, discusses alternative approaches and proposes a new 
synthesis of several methods. Based on this synthesis, section 5 develops methodology 
for submarket delineation, followed by an application to the urban housing market of 
Aveiro and Ílhavo in Section 6. Finally, section 7 concludes. 

2. Spatial Econometric Hedonic House Price Models 

Smith et al. (1988) and Marques et al. (2012) discuss several spatial problems of 
current interest that are fundamental for understanding the housing market, covering 
supply and demand sides, price formation and policy. Of specific relevance in the 
current context is the use of hedonic models to study spatio-temporal dynamics and 
price formation.   

Typically, hedonic and repeated sales models of local or regional house prices reflect 
not only geographically varying price effects, but also substantial clustering. Malpezzi 
(2003) argues that this is the outcome of supply rigidities, search costs and social 
segregation. Attempts have been made to explain such spatial clustering by 
neighbourhood characteristics such as crime rates, schooling, transport infrastructure 
and quality of public services, and social interaction and segregation; see, for example, 
Rothenberg et al. (1991). Therefore, empirical estimation of hedonic housing price 
models and the use of such estimates for evidence and policy have to take spatial 
effects explicitly into account. 

2.1. Hedonic pricing model 

Building on the early work of Lancaster (1966) and Rosen (1974), hedonic pricing 
models continue to be actively used in housing studies. In particular, valuation of 
housing attributes (including living space), neighbourhood features and access to 
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central and local services, and construction of price indices based on single sales data, 
have been addressed through hedonic specifications; see Maclennan (1977) for a classic 
and critical discussion, and Malpezzi (2003) for an excellent review. 

In hedonic pricing models, dwelling unit values (or proxies such as prices or rents) are 
regressed on a bundle of characteristics of the unit that determine the value: 

 ,,,,, TCLNSfY       (1) 

where Y denotes the value of the house (typically logarithm of price, or logarithm of 
price per unit area), and S, N, L, C and T denote respectively, structural characteristics 
of the dwelling (living space, type of construction, tenure, etc.); neighbourhood 
characteristics (and local amenities); location within the market (or access to 
employment/ business centre); other characteristics (access to utilities and public 
services, such as clean water supply, electricity, central heating, etc.); and the time 
when the value is observed. 

Estimating the hedonic price function using a collection of observed housing values 
and dwelling unit characteristics yields a set of implicit prices for housing 
characteristics that are essentially willingness-to-pay estimates. This allows analysis of 
various upgrading scenarios, targeted to specific subgroups, defined either by socio-
economic characteristics or by location. Thus, the model facilitates understanding of 
residential location, and therefore urban structure, and provides valuable input towards 
urban planning and housing policy.  

The two main limitations of traditional hedonic models are the frequent assumption that 
hedonic prices do not vary spatially and inadequate attention to spatial spillover effects. 
To overcome these problems, we consider a hedonic model incorporating both spatial 
variation in the relationship between housing price and living space, as well as spatial 
dependence. Following Bhattacharjee et al. (2012), we adopt a semi-log form, where 
logarithm of price per square meter of living space is regressed on logarithm of house 
area, conditioning on several other hedonic housing characteristics, used as control 
variables.  

2.2. Spatial issues in hedonic pricing estimates 

The recent literature has discussed the potential bias and loss of efficiency that can 
result when spatial effects are ignored in the estimation of hedonic models; see, for 
example, LeSage and Pace (2009), Anselin and Lozano-Gracia (2008) and Anselin      
et al. (2010). Specifically, substantial biases can result both from inadequate modelling 
of endogenous spatial effects and inadequate attention to spatial heterogeneity, while 
heteroscedasticity and spillovers in unobservable errors lead to large inefficiency. 

As discussed above, spatial patterns in housing markets arise primarily from a 
combination of spatial heterogeneity and spatial dependence (Anselin, 1988a,b). Spatial 
dependence is associated with spatial spillover effects while spatial heterogeneity arises 
from contextual variation in space and results in spatially varying slopes and intercepts 
of a regression model (Anselin, 1988b). Additionally, choice of a spatial scale 
appropriate to a given application context is also important. We now turn to a 
discussion of spatial issues in the construction of hedonic pricing models, including all 
of the three above aspects of space.  

2.2.1. Spatial scale and housing submarkets  

Definition of submarkets is important at both conceptual and empirical levels. Housing 
markets are local and diverse, and hedonic price estimation requires careful delineation 
of these markets. The definition of submarkets in practice ranges from the national or 
regional scale, through metropolitan areas, to below the metropolitan level. Malpezzi 
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(2003) argues that one reason why the metropolitan area is appealing as the unit of 
analysis is that these areas are usually thought of as labour markets, which may 
therefore be approximately coincident with housing markets. On the other hand, 
submarkets below the metropolitan level can be segmented by location (central 
city/suburb), or by housing quality, or even by race or income levels. Such 
segmentation facilitates both understanding of residential neighbourhood choice and 
devising appropriate urban housing policy.  

The definition of the most appropriate scale in the analysis of urban spatial patterns is a 
crucial aspect. A spatial configuration at a certain scale is not necessarily the same  at 
another one, in other words, a specific urban pattern which appear to be structured at 
one scale, may appear to be disordered at other scales (Miller, 1978), leading to the so 
called “ecological fallacy” (Fujita and Thisse, 2002). According to Anas et al. (1998), 
one of the reasons for this uncertainty is the different effects of agglomeration 
economies that emerge at specific scales.  

In the specific case the empirical application here, the urban area of Aveiro has the 
adequate size and variability to illustrate the issue of spatial heterogeneity in the 
shadow (hedonic) price of housing space, at the same time as allowing for spatial 
spillovers in house prices. 

2.2.2. Spatial heterogeneity and spatial patterns  

The model for spatial heterogeneity must, in principle, be based on a theoretical 
framework explaining why and how housing markets are segmented. As discussed 
earlier, the literature has defined submarkets either by similarity in hedonic housing 
characters (Rothenberg et al., 1991; Adair et al., 1996; Maclennan and Tu, 1996; 
Bourassa et al., 1999; Watkins, 2001), by similarity in hedonic prices (Dale-Johnson, 
1982; Rothenberg et al., 1991), or by close substitutability of housing units (Goodman 
and Thibodeau 2007; Pryce, 2013). 

In the first approach, a submarket is a collection of locations, or housing units located 
therein, that have similar bundle quality or, in other words, supplies a similar set of 
hedonic characteristics. The degree of similarity required to define a submarket is a 
debateable issue, particularly since a perfectly homogeneous location may be very 
small and therefore not useful for estimating hedonic models, which needs a minimum 
level of variety in order to enable reliable estimation (Bourassa et al., 2003). In any 
case, the delineation of submarkets implied by this approach can be directly applied to 
the data, using a clustering methodology that may be spatial, or may not. This approach 
has a logic that stresses the role of branding and social segregation as the driver of 
submarkets. 

The second approach defines submarkets as locations where hedonic (shadow) prices 
for different features are homogeneous. Submarkets can then be interpreted as clusters 
of houses with characteristics which are adjusted to a particular demand behaviour 
reflected in a set of equilibrium prices. The approach was proposed by Bourassa et al. 
(2003) as a means to improve the accuracy of price predictions. More importantly, the 
approach is intimately related to the basic philosophy of hedonic models stating that, 
within the same submarket, the implicit prices corresponding to each housing feature 
must be homogeneous. Thus, the delineation of submarkets based on hedonic prices 
depends on the capacity to encompass slope heterogeneity, across space, in the 
estimation of the hedonic model; this paper addresses this problem using methodology 
based on functional data analysis.   

The third criterion for defining submarkets is based on the degree of substitutability 
(Grigsby, 1963). Pryce (2013) measures substitutability by the cross-price elasticities of 
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price at different locations, estimated using data on spatial panels. A key assumption 
underlying this methodology is that one can estimate a regression model where the 
logarithm of house prices at one location is regressed on log-price at the same location 
at another time point together with a time trend. This time trend is, then, the sole latent 
factor that can contribute to spatial strong dependence. Inclusion of this regressor 
therefore ensures that the spatial structure contains only spatial weak dependence, in 
the sense of Pesaran and Tosetti (2011).2 By contrast, we take the view that, in the 
context of a hedonic house price model based on cross-section data, a collection of 
suitably chosen housing characteristics constitutes a more natural set of latent factors. 
One may expect that inclusion of these factors account for any strong spatial 
dependence, which would then render the spatial model as containing only spatial weak 
dependence. Inference on substitutability using spatial cross-section data is in the 
domain of this paper.    

Under what conditions are the above approaches equivalent? It is possible to envisage 
situations where homogeneity in hedonic characteristics does not imply close 
substitutability. If two locations with similar houses, similar provision of local services 
and amenities and similar accessibility to the centre are inhabited by two different 
social groups (for example, young highly educated professionals and middle-aged 
middle class), it is expected that different tastes and different responses to fashion will 
generate local branding effects which both mitigate against substitutability and create 
differences in hedonic prices. Nevertheless, two locations with both similar 
characteristics and hedonic prices must be good substitutes, as it will be very difficult 
to make a distinction between them. Therefore, we argue that simultaneous similarity in 
hedonic prices and characteristics is a sufficient condition for substitutability. However, 
this is not a necessary condition, because two types of houses with very different 
hedonic characteristics can be good substitutes. For example, a flat in a central location 
can be an alternative to a more peripheral detached house with a similar price; hence, 
nearby location is also required. 

Therefore, when the delineation of submarkets using hedonic characteristics and 
hedonic prices criteria overlap, the outcome also corresponds to submarkets where the 
close substitutability criterion holds. However, when we extend the discussion to larger 
areas with some internal heterogeneity, the problem becomes more complex. Such 
heterogeneity makes it very unlikely that submarkets delineated by hedonic prices or 
hedonic characteristics overlap. It is more reasonable to expect partial overlap, 
implying that each criterion produces a specific set of submarkets which, although 
related to each other, represent distinct dimensions of preference. Therefore, the 
delineation of submarkets by combining physical characteristics and hedonic prices 
seems to be a good principle and we can assume that the trade-off between physical and 
price homogeneity still reflects a high degree of substitutability. In other words, two 
identical houses in terms of prices and characteristics located within the same spatial 
context, a submarket in our definition, are good substitutes.  

The conceptual notion behind spatial submarkets discussed above implies that the price 
determining (hedonic) mechanism can be heterogeneous over space. This spatial 
heterogeneity, reflecting the absence of a single equilibrium in the housing market, can 
originate from demand and/ or supply side factors, institutional barriers or 
discrimination, each of which can cause differentials across neighbourhoods in the way 
                                                 
2 Pryce (2013) does not explicitly state this assumption, but it is implied by the methodology.  The 
methodology rests on computation of inflation in house prices at different locations, which assumes such 
an underlying spatial model, together with the assumption that inclusion of the time trend ensures spatial 
weak dependence; otherwise, such estimation would be biased. 
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housing attributes are valued by consumers and house prices determined (Anselin et al., 
2010). However, if spatial submarkets exist and are ignored, an average price across all 
the territory is estimated that ignores submarket heterogeneity.  

As discussed above, heterogeneity is a key element of housing markets and its 
disregard seriously affects the understanding market diversification – a central element 
of the housing market. Worse still, average prices estimated by OLS are likely to be 
biased because the error term of the regression model may be correlated with the 
included regressors.  

The standard urban model in the Alonso-Muth-Mills tradition predicts a generally 
declining pattern of prices with distance from the centre of the city, though there may 
be spatial variation in relative preference for centrality. Other models based on 
localised amenities or multiple centres imply a stronger impact of access to local 
amenities. Like distances, the implicit prices for dwelling characteristics and size may 
also vary spatially, reflecting either supply constraints or residential sorting. Follain and 
Malpezzi (1980) and Adair et al. (1996), among others, have examined intra-urban 
variation in the price of housing amenities using hedonic models.  

There are two main methods proposed in the literature. In the first, one allows 
coefficients in the hedonic pricing model to vary across submarkets, and use the 
estimated variation to infer on residential neighbourhood choice and urban spatial 
structure. The second, and increasingly more popular approach, is geographically 
weighted regressions (GWR) (Fotheringham et al., 1998), a specific form of local 
regression that we discuss later. 

2.2.3. Spatial dependence and spatial weights matrix 

In contrast to spatial heterogeneity, spatial dependence leads to spatial autocorrelation, 
implying that prices of nearby houses tend to be more similar than those of houses that 
are farther apart. Likewise, average price of houses in nearby or related submarkets 
may be correlated more strongly. A common explanation for spatial autocorrelation is 
spatial spillovers or contagion effects. However, incorrectly modelled spatial 
heterogeneity, measurement errors in explanatory variables and omitted variables can 
also lead to spatial autocorrelation (Anselin and Griffith, 1988). Perhaps most 
importantly, unmodelled spatial patterns in hedonic features lead to spatial dependence 
in the nature of the Spatial Durbin model; see, for example, LeSage and Pace (2009).  

Spatial dependence is very common in housing markets, and a feature that we use in 
this paper to develop inferences for a functional regression model. Recent empirical 
literature has addressed issues of bias and loss of efficiency that can result when spatial 
effects are ignored in the estimation of hedonic models,3 and the use of spatial 
econometric models to address spatial autocorrelation is becoming increasingly 
standard; see, for example, Anselin et al. (2010). 

The usual approach to the representation of spatial interactions is to define a spatial 
weights matrix, denoted W, which represents a theoretical and a priori characterisation 
of the nature and strength of spatial interactions between different submarkets or 
dwellings.4 These spatial weights represent patterns of diffusion of prices and 
unobservables over space, and thereby provide a meaningful and easily interpretable 
representation of spatial interaction (spatial autocorrelation).  

                                                 
3 See, for example, LeSage and Pace (2009) and Anselin and Lozano-Gracia (2008). 
4 For a setting with n spatial units, W is an n×n matrix with zero diagonal elements. The off-diagonal 
elements are typically either dummy variables for contiguity or inversely proportional to the distance 
between a pair of units, so that spillovers between a pair of units that are farther apart is lower. 
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Given a particular choice of the spatial weights matrix, there are two important and 
distinct ways in which spatial dependence is modelled in spatial regression analysis – 
the spatial lag model and the spatial error model. In the former, the hedonic regression 
includes as an additional regressor the spatial lag of the dependent variable y (which in 
this case is price), represented by Wy:       
    ,  XyWy       (2)  

where X denote the combination of hedonic characteristics (S, N, L, C and T) and the 
regression errors (ε) are completely idiosyncratic. By contrast, in the spatial error 
model, the regression errors are spatially dependent on their spatial lag, Wε:  
   .  ,   WXy        (3) 

The implications of spatial interaction on estimation of these two models are different. 
In the spatial lag model, the endogenous spatial lag implies that OLS estimates not 
accounting for spatial interaction would be biased, while in the spatial error model, they 
will be unbiased but inefficient.  

A common approach is to first estimate the hedonic pricing model under the spatial 
error assumption. Next, to judge whether endogenous spatial lags are relevant, one can 
perform a test for spatial lag dependence by nesting the spatial error model within a 
hybrid model incorporating both spatial lag and spatial error dependence; for more 
discussion on sequential model selection in the spatial context, see Bhattacharjee et al. 
(2012). Some recent literature (LeSage and Pace, 2009) argues that the choice of 
appropriate spatial weights not so crucial for the accuracy of a spatial model’s 
estimates. Yet, the correct specification of spatial weights is important when the main 
goal is to analyse spatial dynamics and how they determine spatial structure in general 
equilibrium (Arbia, 2014; Bhattacharjee et al., 2014).5   

The spatial weights are typically modelled either as spatial contiguity, or as functions 
of geographic or economic distance. The distance between two spatial units reflects 
their proximity with respect to prices or unobservables, so that the spatial interaction 
between a set of units (dwellings) can be represented as a function of the economic 
distances between them. However, spatial data may be anisotropic, where spatial 
autocorrelation is a function of both distance and the direction separating points in 
space (Gillen et al., 2001). Further, spatial interactions may be driven by other factors, 
such as trade weights, transport cost, travel time, and socio-cultural distances. The 
choice typically differs widely across applications, depending not only on the specific 
economic context but also on availability of data. The problem of choosing spatial 
weights is a key issue in many applications; see, for example, Harris et al. (2011) and 
Bhattacharjee and Jensen-Butler (2013). 

2.3. Interconnection between the three aspects 

Recently, Bhattacharjee et al. (2012) developed a framework that emphasizes the 
connection between urban spaces and housing markets and places focus all the three 
distinct but interconnected features of space – spatial heterogeneity, spatial dependence 
and spatial scale. Further, while the traditional literature assumed an a priori known 
structure of spatial dependence in terms of a pre-specified spatial weights matrix, and 
then examined spatial dependence and spatial heterogeneity within a spatial context 
implied by the pattern of spatial weights, a branch of the current literature treats these 
                                                 
5 The literature suggests that the accuracy of spatial weights affects profoundly the estimation of spatial 
dependence models (Anselin, 2002; Harris et al., 2011). In particular, estimate of the spatial persistence 
(the spatial autoregressive parameter) is sensitive to the choice of W (Harris et al., 2011) and likewise 
inferences on spatial general equilibrium effects (Arbia, 2014). 
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weights as unknown and an object of econometric inference. Based on a given 
definition of urban submarkets (or a fixed set of spatial locations) and panel data on 
these spatial units, Bhattacharjee and Holly (2013) and Bhattacharjee and Jensen-Butler 
(2013) developed several methods to estimate the spatial weights matrix between the 
submarkets.   

Bhattacharjee et al. (2012) extended the panel estimation methodology in Bhattacharjee 
and Jensen-Butler (2013) under the structural assumption of symmetric spatial weights 
to a purely cross-section setting. Their methodology combines spatial hedonic analysis 
based on orthogonal factors with a method for inferences on unknown spatial weights 
matrix under the structural constraint of symmetric spatial weights. First a suitable 
spatial scale is fixed. Next, at the above chosen scale, the housing market is segmented 
into submarkets, based on a combination of several criteria: administrative boundaries, 
hedonic prices and socio-cultural segmentation. Given the above segmentation into 
submarkets, spatial dependence relates to inferences on spatial weights representing 
spillovers across different submarkets, and those between houses within the same 
submarket. Since, spatial strong dependence in this model arises from the underlying 
factor structure, estimation of spatial weights is based on matching residuals across 
submarkets by closeness across a vector of estimated statistical factors. Finally, spatial 
heterogeneity is used to inform spatially varying coefficients, spatial structural change 
and heteroscedasticity.  

The resulting spatial model is useful for understanding relative importance of various 
elements – housing characteristics and access to central and local amenities, as well as 
interactions within and between housing submarkets – and provides useful inferences 
on residential location, urban planning and policy. Substantial gains are also obtained 
with regard to house price prediction. However, whereas Bhattacharjee et al. (2012) 
focussed on estimation and inferences on an unknown W in a setting where the 
delineation of submarkets was assumed known a priori, the current paper focuses on 
identifying submarkets in a setting where spatial structure (represented by W) may be 
estimated and potentially endogenous. 

3. Delineation of Housing Submarkets 

As discussed above, defining and delineating submarkets is an area of considerable 
debate and multiple alternate approaches. The task of dividing a large market into 
submarkets raises numerous theoretical and methodological questions (Rothenberg      
et al., 1991). One problem is the definition of submarket. Theoretically, a submarket 
corresponds to a local equilibrium between supply and demand. However, the way this 
concept translates into measurement and modelling leads to difficult questions about 
the levels of aggregation and about the methods which can be used to cluster basic 
spatial units in order to define submarkets. In practice, these questions are often 
answered in an ad-hoc manner, using as the basis predefined or otherwise convenient 
geographical boundaries. In some cases, statistical tests are used to determine whether 
the a priori submarkets are indeed distinct (Bourassa et al., 1999). 

3.1. Submarkets based on similarity in hedonic characteristics and prices 

Difficulties of implementation and interpretation with such ad hoc procedures have led 
to recent attempts to use more systematic methods for defining submarkets. Typically, 
such analyses proceed first by conducting principal component analysis or factor 
analysis on a large number of hedonic characteristics of houses to combine these into a 
small number of meaningful factors. Next, clustering methods are used to obtain a set 
of submarkets that maximise the degree of internal homogeneity (within each 
submarket) and external heterogeneity (across different submarkets); see Bourassa      
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et al. (1999) for further discussion. While the philosophical underpinnings of the above 
methods are not clearly expressed in the literature, they can be viewed as being closely 
related to the definition of submarkets by similarity in hedonic housing characteristics 
(Rothenberg et al., 1991).  

An alternative approach is to apply the criterion of homogeneous hedonic prices, using 
as a measure of homogeneity small residuals from a hedonic pricing model estimated 
separately for each submarket; see, for example, Bourassa et al. (1999, 2003). The 
objective for such an approach is to use the notion of submarkets to optimise the 
accuracy of hedonic predictions for mass appraisal purposes. However, as we argued 
above, homogeneity in hedonic prices is deeply rooted in the basic concepts which 
underlie hedonic models.  

It can be argued that the two approaches are not entirely satisfactory from a housing 
economics point of view. This is because they do not pay explicit attention to the 
demand side of the housing market, which is where individual households make 
neighbourhood and housing choice decisions. Similarity in hedonic housing 
characteristics relate explicitly to the supply side, and similarity in hedonic prices relate 
to market equilibria in submarkets. While the supply side is endogenously related to the 
demand side through the market equilibria, and prices are therefore also determined by 
both supply and demand through the equilibrating process, there is no direct way to 
understand the demand side of the market. For this purpose, the concept of 
substitutability is useful to the extent that it can be interpreted as reflecting the 
synthetic valuation of houses by buyers (Pryce, 2013).   

3.2. Submarkets based on substitutability 

Grigsby et al. (1987) define submarkets as a set of dwellings that are reasonably close 
substitutes for one another, but relatively poor substitutes for dwellings in other 
submarkets. An approach proposed recently by Pryce (2013) attempts to get to the heart 
of the above key issue, by taking house prices as the sole determinant of housing 
choice6 and by evaluating the cross-price elasticity of price for each pair of housing 
properties.  

Then, two houses are deemed to lie within the same submarket if this cross-price 
elasticity is close to unity, implying therefore that the two houses are substitutable. 
Pryce (2013) uses house price inflation for computation of the elasticities, and 
illustrates the methodology for delineating submarkets using data on Glasgow, 
Scotland, UK. While the above methodology was not provided any specific structural 
interpretation, placing it within the context of a structural spatial econometric model is 
useful for our discussion. 

The underlying structural model in Pryce (2013) is a spatial error model:    
   ,  ,

1 tttttt
Wyy  


      (4) 

where yt denotes the vector of prices (in logarithms) across all houses, and yt–1 its 
lagged value, so that εt denotes the growth rate in prices. Then, the elements of W are 
the cross-price elasticities for each pair of houses.7 The model does not include any 

                                                 
6 Taking house prices, rather than hedonic characteristics, as the sole basis for evaluation of 
substitutability is not an innocuous modelling assumption. See Pryce (2013) for discussion on the 
motivation behind this assumption, which is sharply distinct from most of the literature. 
7 Since εt denotes the growth rate in prices, the spatial error part of (5) models how growth rate in an 
index location is related linearly to the growth rates at all the other locations, the corresponding 
coefficients being elements of W. Hence, these elements are essentially cross-price elasticities. In Pryce 
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explanatory variables except for lagged logarithm of prices with unit coefficient, which 
is assumed to ensure that the regression errors (growth rates) are stationary in the 
temporal domain. Nevertheless, the model itself is structural because it assumes that the 
process of diffusion of shocks (idiosyncratic errors, ηt) is driven by an underlying 
spatial structure represented in W. The underlying spatial structure is inferred from the 
estimates, and this in turn determines the delineation of submarkets.  

From a spatial econometric point of view, this approach deals with potential temporal 
nonstationarity, by inclusion of the lag on the right hand side. This also suggests an 
interpretation of elasticity as the measure of a cause-effect relationship which, by 
nature, is time lagged. However, spatial nonstationarity is a potential problem. This 
would be evident if some elements of W are close to unity (or even larger), which 
would imply violation of the spatial granularity condition (Pesaran and Tosetti, 2011).  

Further, violation of this stationarity condition is expected in this setting because cross-
price elasticities are by definition close to unity for houses within the same submarket. 
By such delineation of submarkets, one can ensure that cross submarket spatial 
diffusion is bounded, and therefore the spillover of house price shocks across the 
submarkets is spatially stationary. However, spatial weights of houses within the same 
submarket will be large. Therefore, without suitable modifications, the above model (4) 
cannot be cast into the framework of spatial econometrics.  

3.3. Submarkets based on a structural spatial lag model 

This indicates that the above model should be extended in two ways. First, violation of 
the spatial granularity condition points towards spatial strong dependence, which is 
caused by ignoring the effect of common factors (Pesaran, 2006; Pesaran and Tosetti, 
2011). The solution is to include regressors that will take strong dependence out of the 
model; see Bhattacharjee and Holly (2013) for further discussion. In the current 
context, hedonic characteristics can be added to the model, allowing the cross-price 
elasticities to be measured more robustly.  

Second, assumption of a spatial error model is somewhat simplistic. If we really believe 
that house prices are spatially endogenously determined by the interaction between 
housing choices of economic agents, the spatial lag model (2) will be more appropriate 
and permit stronger structural interpretations.  

In a setting where W is unknown (Bhattacharjee and Holly, 2013; Bhattacharjee and 
Jensen-Butler, 2013), W and ρ are not separately identifiable. Hence, we assume 
without loss of generality that ρ = 1. Further, in this case, an unknown W is not in 
general identified. Further structural assumptions are required for identification. 
Following Bhattacharjee and Jensen-Butler (2013), we make the assumption that W is 
symmetric. In applications, spatial weights matrix W is often based on distances, which 
are symmetric by definition.  

Thus, we make the following assumption. 

Assumption 1. Spatial lag model. The dependent variable y follows a spatial lag 
model          

     .11    WIXWIyXWyy              (5)  

with full spatial heterogeneity in both the slope and intercept (heterogeneity in β across 
the territory, plus location fixed effects). W is unknown but symmetric, and satisfies the 

                                                                                                                                              
(2013), two houses are viewed as being substitutable if the cross-price elasticity is close to unity, which 
in Equation (5) implies the corresponding spatial weights are close to unity. 
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spatial granularity condition 1)( W , where  
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of W. The regression errors,  , have mean zero, and X are potentially stochastic 
regressors with positive definite covariance matrix that are uncorrelated with  .   

The spatial granularity condition implies that there is no spatial strong dependence 
(Pesaran and Tosetti, 2011). If there were latent factors causing violation of the spatial 
granularity condition, these factors are included as regressors in the model (5). 

As an illustration, consider a simple spatial lag model regressing logarithm of price per 
square meter (y) on logarithm of living space (x), allowing for spatial heterogeneity and 
endogenous spatial dependence. Further, to fix ideas, let us first consider a sample of 
only two locations with potentially different slopes, with only one house in each 
location. Then:         
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   (6)         

where the final step follows under the assumption that the spatial weights are very 
small compared to unity, so that    WIWI  1 . This assumption is valid if the 
inclusion of X as a regressor takes out spatial strong dependence from the model, in 
which case the spatial granularity condition in Assumption 1 holds.  

Equation (6) emphasizes that both y1 and y2 are endogenously determined by each 
other, and in addition are functions of x1, x2, β1 and β2. Endogenous spatial lags have 
the following additional implication under the spatial lag model (5). The response at 
location i, yi, is a function of the regressor at the same location (xi) with slope βi, but 
also the regressor at every other location j, xj, but with a different slope (wij βj). 

Further, conceptually, y1, y2, x1, x2, β1 and β2 can all be thought of as functions of   
space (S), where s ϵ S is a representative point in the spatial domain S. We assume that 
these are sufficiently smooth functions so that all partial derivatives are well defined.  

Assumption 2. Smoothness. The functional regression coefficient, β(s) is smoothly 
varying over the spatial domain S, which is a convex set. That is, β(s) has derivatives at 
every s ϵ S. Likewise, the functional random variables x(s) and y(s) have mean 
functions, )(sX  and )(sY  respectively, that are smoothly varying over S.  

By Assumption 2, the partial derivatives ∂β/∂s, ∂x/∂s and ∂y/∂s are well defined. Then, 
we have the following result, where all partial derivatives are interpreted with respect 
to space, s ϵ S. 

Theorem 1: Under Assumptions 1 and 2, similarity in hedonic characteristics, prices 
and location together imply that two different houses are substitutable, that is the 
cross-price elasticity of price is close to unity. 

Proof: By the granularity condition in Assumption 1, the elements of W are small, and 

hence up to first order Taylor expansion,    WIWI  1
. Also, the idiosyncratic 

errors can be ignored in computation of cross-price elasticities. Then, for any two 
distinct houses in locations i and j:    
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where     11/1  ijji ww  since the spatial weights are symmetric (Assumption 1). 

Thus, sufficient conditions for houses i and j to be (approximately) substitutable are 
that:  (i) xi ≈ xj; (ii) βi ≈ βj; and (iii) the locations i and j are in each other’s 
neighbourhood, so that by Assumption 2, dβi ≈ dβj and dxi ≈ dxj. The proof in the 
general case follows by noting that computation of elasticities involves only a pairwise 
comparison between 2 properties i and j, and other houses can be ignored because 
elements of W are small.  

The above result has very important implications for delineation of submarkets. First, a 
sufficient condition for (houses in) locations i and j to be substitutable is that the 
spatially varying means of the hedonic characteristic x and the β’s in the two locations 
match, and their slopes match as well. This implies spatial clustering of the x’s and the 
β’s, together with smoothness assumption (Assumption 2). Thus, two locations are in 
the same submarket if their x’s and β’s match, and the locations are close to each other, 
so that the derivatives also match. In other words, based on the close substitutability 
definition, submarkets may be delineated by spatial clustering on both these two 
dimensions at the same time.  

Second, the insights can be easily extended to the case of multiple regressors (or 
hedonic factors). In this case, clustering should include all the included hedonic factors 
as well as their spatially varying slopes. Third, the methodology in Pryce (2013) is only 
appropriate if there are no regressors. In this case, the cross-price elasticities will be 
solely determined by elements of W. However, because of spatial nonstationarity, the 
model will then not offer any useful structural interpretation, and the estimates of 
elasticities are also likely to be biased. 

Then, how can one implement such a procedure for delineating submarkets, in a way 
that is computationally feasible? For this, we develop a synthesis of several empirical 
approaches rather than a purely spatial econometric framework. Next, we turn to a 
discussion of some related methods and our proposed synthesis.  

4. A Synthesis of Empirical Approaches 

Spatial econometrics aids unique understanding of spatial housing markets, in terms of 
neighbourhood choice, housing preferences, and the evolution of urban spatial 
structure. The recent literature has considered unknown and endogenous spatial weights 
(Bhattacharjee and Holly, 2013; Bhattacharjee and Jensen-Butler, 2013; Bailey et al., 
2014; Kelejian and Piras, 2014) as well as interconnections between spatial 
heterogeneity, spatial dependence and spatial scale (Bhattacharjee et al., 2012). Thus, 
there are important implications for place based urban planning and housing policy, 
informed by a clear understanding of the links between space and housing.  

4.1. The limits of spatial econometrics? 

There are, however, two leading aspects where the framework needs to be extended and 
enhanced. First, while the above framework uniquely combines spatial heterogeneity 
and spatial dependence, the way spatial dependence is modelled is somewhat 
unsatisfactory. Specifically, in restricting spatial spillovers to a spatial error model, 
adequate attention is not paid to endogenous evolution of space itself. At the same time, 
it is perhaps inevitable that housing markets are endogenously related over space. 
Location choices and consequently prices are not only spatially contingent, but also 
potentially directly connected, which implies that spatial dependence through a spatial 
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lag model is more appropriate. While traditional research has paid elaborate attention to 
spatial lag dependence, for example, Anselin and Lozano-Gracia (2008) and Anselin   
et al. (2010), this has been in a context where the spatial weights are known a priori, 
and there is no spatial heterogeneity. When these spatial interactions are unknown and 
are themselves objects of inference, endogeneity issues become quite complex. Here, a 
new framework for modelling and analysis is required. 

Second, the above framework assumes a segmentation into housing submarkets which 
is given a priori. A better alternative method is the delineation of submarkets based on 
hedonic characteristics and prices that are spatially heterogeneous within a spatial 
context where spatial dependence is endogenous. Once again, this requires a new 
framework. 

4.2. Some alternate approaches 

We now turn to alternative perspectives from the geography and statistics literatures, 
specifically local regressions (for example, geographically weighted regressions, 
GWR), functional data analysis (FDA) and spatial statistics.  

4.2.1. Geographically (or locally) weighted regression 

In the literature, spatial heterogeneity is typically modelled using locally weighted 
regressions (McMillen, 1996), of which the Geographically Weighted Regression 
(GWR) approach (Fotheringham et al., 1998) is perhaps the most popular.8 GWR 
replaces the single regression coefficient in a linear model with a series of 
(geographically weighted) estimates for a number of spatial data points. This provides a 
range of location-specific parameter estimates that can be mapped. This methodology 
arguably provides the best practice in understanding relationships that vary over space. 
GWR is a kernel based nonparametric regression method where   

    ,)()()()( ,,  








S

ihii
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ih dssfsXdssfsYE      (8)     

where Y and X are both defined over a territory S determined by a medium or large 
urban housing market, i is a location within the spatial domain S, fh,i (s) is a kernel 
density with bandwidth h and centred on location i, the regression slope βi varies over 
space, and αi can be interpreted as a location specific fixed effect. In effect, this method 
provides pointwise estimates βi of the regression effect of a kernel weighted local 
average of Y on a similarly kernel weighted local average of X. 

4.2.2. Functional data analysis 

Functional data analysis (FDA) is a framework and collection of tools for statistical 
analysis of functional data, which refers to curves, surfaces or anything else that varies 
over a continuum; see Ramsay and Silverman (2005, 2006) for extensive book-length 
discussions. The continuum is often taken as time, but may also be spatial location, 
wavelength, probability, etc.  

The main challenge in FDA is that functional data (curves or surfaces) are intrinsically 
infinite dimensional, even when sample sizes are limited. Hence these data have to be 

                                                 
8 Two other alternatives are not considered here, First, spatial expansion method (EM) is a popular 
method where regression coefficients are estimated as a function of other locational attributes (such as 
longitude and latitude) (Cassetti, 1972). This is somewhat restrictive compared to GWR which produces 
more complex variability over space (Fotheringham et al., 1998). Second, LeSage (2004) proposed 
Bayesian GWR inference. However, our work here is in a classical domain. We have neither suitable 
priors nor adequate Bayesian methods applicable to the functional regression model in a spatial context. 
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projected on the span of a limited basis, assuming that the data are intrinsically smooth, 
while observed data are potentially bumpy because of measurement error. For such 
smoothing, FDA often makes use of the information in the slopes and curvatures of 
curves, as reflected in their derivatives. Plots of first and second derivatives as 
functions of the continuous domain, or plots of second derivative values as functions of 
first derivative values, may reveal important aspects of the data generating processes. 
Hence, curve estimation methods designed to yield good derivative estimates often play 
a critical role in functional data analysis. 

In the typical application where the functional domain is time, inferences are based on 
projection to a basis space. Typically, a Fourier basis is used for periodic data or 
smoothing splines for data that are not periodic (Ramsay and Silverman, 2005, 2006). 
In our spatial context, the functional linear regression model takes the form: 

         ,
S ii sxsyE                (9) 

where the response (y) is scalar, and the regressor (x) and slope (β) are functional.  
The domain of our functional data is not time, but two-dimensional space. This makes 
application of FDA in our context more challenging. Spatial data, unlike time series, 
has no well-defined ordering of observations, and neither a sense of progression. This 
makes construction of a suitable basis function difficult. A Fourier basis may not be 
suitable, and there is no well-defined extension of the spline basis to two dimensional 
space. Therefore, we consider the basis space given by functional principal 
components, and adapt to our spatial context an intuitive and powerful estimator 
proposed by Cai and Hall (2006) and Hall and Horowitz (2007). 

4.2.3. Spatial statistics 

Guillas and Lai (2010) have also proposed a methodology for functional linear 
regression based on bivariate splines over triangulations which we intend to explore in 
future work. However, the bivariate spline approach is not entirely satisfactory because 
it does not take into explicit consideration the spatial context of the housing market 
application, in terms of the geography of the region under study and spatial 
dependence. This is the explicit domain of spatial statistics, which is a collection of 
methods and tools for quantitative analysis of spatial data and the statistical modelling 
of spatial variability and uncertainty.  

The literature of spatial statistics is large and has substantial intersection with spatial 
econometrics. Our specific focus lies on multivariate spatial models, which has in 
recent years proven an effective tool for analysing spatially related multidimensional 
data arising from a common underlying spatial process. Many spatial problems, 
including the housing market application here, are inherently multivariate, meaning that 
two or more variables are recorded at each spatial location simultaneously. With rapid 
enhancements in geographic information systems (GIS) technology that enables us to 
analyse and display such data at varying spatial resolutions, multivariate spatial 
analysis is becoming more relevant and popular.  

Sain and Cressie (2007) viewed the developments of spatial analysis in two main 
categories: models for geostatistical data (that is, the indices of data points belong to a 
continuous set) and models for lattice data or spatial grids (data with indices in a 
discrete or countable set), while specifically mentioning that research in the latter 
direction is not equally well developed. Which category our domain would lie in partly 
depends on the data generating process. However, most spatial housing market data are 
aggregated into specific prespecified spatial grids, however fine the scale of these grids 
may be. In this sense, our data belongs to the latter category.  
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There is a substantial and rapidly expanding literature on spatial grids. Most of this 
literature assumes a multivariate generalized linear mixed model with the spatial effects 
modelled by a multivariate Gaussian conditional autoregressive (CAR) model (Besag, 
1974; Mardia, 1988). These models are quite similar to those used in spatial 
econometrics, but with a spatial weights matrix that is often even more rigidly defined 
– typically as a row normalized version of an adjacency matrix.  

Bayesian inferences on this model have considered spatial clustering; see, for example, 
Knorr-Held and Raßer (2000) and Booth et al. (2008). Given the implications of 
Theorem 1, this literature is of potential interest in our context. However, suitable 
classical inferences on spatial clustering are yet to be developed, beyond the obvious 
step of adding location co-ordinates to the list of variables to be clustered (in this case, 
x and β). Improved small area methods may also be useful in this context; see, for 
example, Hall and Maiti (2006). 

4.3. A Proposed Synthesis of Different Perspectives 

Here, we propose a new framework, based on a synthesis of spatial econometrics, 
functional data analysis and spatial statistics for the analyses of housing markets. This 
framework addresses some of the limitations of the previous approaches.  

Intuition suggests that such a synthesis may be promising. For illustration, consider 
again the simple spatial lag model in (6) specific to two housing properties, but 
incorporating heterogeneity in slopes. As discussed above, the reduced form 
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    (10)             

implies a regression model where, in addition to xiβi, the right hand side also includes 
xjβj, but with a much smaller weight, since wji << 1. This in turn suggests the 
functional regression model where the response variable is scalar and the functional 
regressor is xi(s) = xi fh,i(s) with kernel weights fh,i(s) proportional to the elements of   

. This intuition easily generalises to multiple locations and houses. 

Thus, the spatial lag model is a special case of the functional regression model, 
corresponding to a particular definition of the functional regressor. The above 
representation is also very similar to GWR, in the sense that, as the bandwidth h goes 
close to zero, GWR and functional regression becomes very similar. This suggests that 
a synthesis of perspectives from spatial econometrics, GWR and FDA offers a spatial 
statistical model that is likely to be very rich and enable the full range of spatial 
analyses of housing markets. Importantly, the model offers efficiency and robustness 
by using information from neighbours through the spatial weights matrix. 

The above model addresses both the limitations of the previous approaches. First, the 
proposed framework takes the regressor (xi) and (kernel) spatial weights, fh,i(s), 
together, and combines these into a functional regressor, xi(s). This allows inference on 
a functional slope to proceed beyond the limitations of exogenously specified 
submarkets or spatial weights. Now, endogeneity in the weights can in principle be 
addressed in standard ways. One would need either a dynamic model for how these 
weights evolve over time, or use suitable instruments for xi(s).  

Second, the framework allows submarkets to evolve endogenously and abstracts from 
the requirement to delineate housing submarkets a priori. As discussed before, one 
view posits a submarket is characterised as a collection of locations that have a similar 
bundle "quality", that is, close hedonic substitutability (Rothenberg et al., 1991; 

   WIWI  1
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Bourassa et al., 2003). Alternatively, submarkets may be defined by housing units that 
are closely substitutable (Grigsby, 1963; Pryce, 2013).  

In the context of a hedonic model with homogenous slopes, the two definitions are 
equivalent. However, this is not true when there is heterogeneity across submarkets. 
This heterogeneity is not only in hedonic characters, but equally importantly in the 
shadow prices assigned to such features. As our Theorem 1 suggests, in the presence of 
such heterogeneity, housing submarkets should be delineated by spatial clustering 
jointly of the functional partial effect β(s) and the functional surface of the hedonic 
characteristics x(s). 

5. Methodology  

The precursor to all the above analyses, beginning with delineation of submarkets is the 
estimating of a functional regression model      

          (11) 

where yi is a scalar response at location i, x(s) is defined over a spatial domain S 
corresponding to a medium or large urban housing market (and, unlike the typical 
functional regression model, not a subset of the positive real line R+), and fh,i(s) is a 
kernel density with bandwidth h and centred on location i.  

5.1. Estimating the Functional Regression Model 

The functional linear regression model (11) is based on a large (and potentially infinite) 
dimensional functional regressor that needs to be regularised. Hence, estimation 
proceeds by projection to a suitable basis space. We choose a method based on 
functional principal components (FPC) developed in Cai and Hall (2006) and Hall and 
Horowitz (2007), which we find intuitively appealing in the current context.9  

However, estimating the model using functional principal components presents some 
challenges in our setting.  For a specific location i, the functional surface of xi(s) is a 
weighted form of xi, with the weights given by a kernel fh,i(s). This kernel places a large 
weight in the neighbourhood of location i, but relatively small weights elsewhere. This 
implies that the functional surface has very sparse information which in turn requires a 
large number of principal components and also produces a poor approximation. 
Econometrically, this is a problem of regularisation. Here, we develop a variant of 
functional principal components that works in this situation. 

Our data generating process is as follows. The data constitute a collection of dependent 
pairs (X1,Y1), (X2,Y2),…,(Xn,Yn) indexed on n locations on a compact space S ⊂ R². For 
a specific location i ϵ S, both Y and X are scalar random variables. The response 
variables Yi are generated by a functional linear regression model 
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9 There are other popular choices of basis space, such as a Fourier basis, spline smoothing and, in the 
specific case of a spatial domain, the bivariate spline.  
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The errors εi are potentially spatially dependent, but are identically distributed with 
finite variance and zero mean. The errors are also independent of the explanatory 
variables, but there no distributional assumptions are required.  

The main problem with model (12) is that the functional regressor surface of Xi
* is very 

irregular. Even if the mean of the underlying regressor, )(uX , has smooth variation 
over the set S, the combination of a large (unit) weight at location i with a kernel 
function elsewhere renders Xi

* very irregular and spiky. Hence, usual regularisation by 
principal components as in Cai and Hall (2006) and Hall and Horowitz (2007) is almost 
impossible. The tuning parameter in Hall and Horowitz (2007) required here will be 
very large, and spacings between eigenvalues will be very small, so that the results in 
Hall and Horowitz (2007) are not directly applicable.  

Hence, our approach focuses on directly regularising the surface of )(uX  using 
functional principal components. To motivate the approach, consider the surface of the 
functional regressor Xi

* for the specific observation i. The challenge here is the spiky 
nature of Xi

*, due to a very large (unit) weight at the location of observation i, together 
with much lower weights (fij) at other locations. Our object of inference here is the 
functional surface of the regression coefficient (β) which we have assumed to be 
relatively smooth (Assumption 2). Hence, the regressor at this location can be 
potentially combined with values in its neighbourhood. By averaging, the irregularity 
of the functional regressor surface can therefore be reduced. This suggests that 
partitioning S into several (K) regions (say,  KPPP ,,, 21  ) may be a good starting 
point. This approach may also be viewed as a first stage of regularisation, where the 
basis function is a histogram sieve. 

The above approach is in line with functional data where the regressor is observed at a 
(large) number of fixed time points. However, since the number of such partitions is 
typically very large, and can in principle even exceed the sample size (n), a second 
stage of regularisation is required on the averaged regressor process. In our case, we 
use functional principal components on the averaged regressor process across the 
partitions, that is on ( Kxxx ,,, 21  ), where .,,1),|( KkPiXEx kik   The 

procedure poses two major challenges: (a) by averaging, we would lose variability 
across observations, and therefore implementation of functional principal components 
is challenging; and (b) if we were to implement principal components, we need to 
develop a method similar to Hall and Horowitz (2007) to then use these principal 
components to  estimate the functional surface of the regression coefficient (β)? 

For (a), the same spike that was a problem earlier now helps once a histogram sieve 
(partition) has been placed. To see this, consider the compact space S partitioned into K 
regions KPPP ,,, 21  , with corresponding sample sizes Knnn ,,, 21  , with .  nnk  

With a small abuse of notation to simplify expressions, we denote by k(i)=k the 
partition that observation i belongs to, that is i ϵ Pk. Then, the sieve functional 
regressor for observation i is 

   ].,,,1,,,,[ 11,111,1222111 KiKKkkikkiiiiiikkikii xfnxfnxfnXfxfnxfnxfn      (13) 

Dividing the j-th element of the functional regressor vector (13) by the scalar 
exogenous weight nj fij, we have        
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Because there is now variation in the functional regressor surface across observations 
within each partition as well, functional principal components can be implemented. At 

the same time, 0


iii

iiii

fn

xfX  as n→∞, so that in large samples, (14) approximates the 

average process. Thus it is expected to be smooth over space since, by Assumption 2, 
the functional surface of the average )(sX  is smooth. In large samples, when variation 

in Xi does not matter for the construction of the functional regressor, ,* ZXX   where 

 KxxxX ,,, 21   and Z is a vector that takes value 1 at location i and 0 otherwise. 

With (b) note that, for the data within a specific partition Pk, the functional regression 
coefficient for the partition is βk times nk fkk, where the coefficient itself corresponds to 
the k-th element of X**. Note also that, within this same partition, there is no cross-
section variation in the other elements of X**, and hence their effects are encompassed 
within a fixed effect for the partition. Hence, the entire functional surface of the 
regression coefficient can be estimated by a functional regression model where the 
dependent variable is measured in deviations from the local (within partition) mean, 
and the functional regressor is given by equation (14).  

In our application, we have a finite but large-dimensional setting where the number of 
partitions (K) is large. Below, we assume that the spatial design, given by Z, is held 
fixed in repeated sampling. We obtain a final estimator ̂  by dividing the k-th element 
of the functional regression estimator by the known deterministic scalar nk fkk.  

Thus, consider the modified linear functional regression model:       
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   (15) 

The **
iX ’s are random functions, S ⊂ R² denotes a compact set on which each such 

function is defined, the intercept a and the errors εi are scalars and the slope b, the main 
object of inference, is a function.  

Let (X**, Y, ε) denote a generic ( **
iX , Yi, εi). Define      
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where 
i iXnX (.)(.) **1** . Write the spectral expansions of K and K̂ as:  

              ,ˆˆˆ,ˆ      ,,
11
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jjj
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where 021    and ,, 21   are the eigenvalue and corresponding orthonormal 
eigenvector sequences of the linear operator with kernel K, and similarly

0ˆˆ 21    and ,ˆ,ˆ
21   for the kernel K̂ . The sequences  jj  ˆ,ˆ  of eigenvalues 

and eigenvectors of the empirical covariance matrix of X** constitute an estimator of 
 jj  , . Then, the functional principal components estimator (Cai and Hall, 2006; Hall 

and Horowitz, 2007) of the regression slope the slope b(.) is given by   
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where the spectral cutoff m is a tuning parameter, ,ˆˆˆ   ,ˆˆˆ 1  
jjjjj gggb   and    
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Note that the functional regression estimator at (16) is a least squares estimator, 
depending only on the sample covariance function of the functional regressor X**, 
truncated at a finite cutoff for the spectral expansion, and the covariance function of Y 
and X**. Thus, it is essentially a method of moments estimator that requires neither 
independent errors nor a specified error distribution. Instead, it is based on mean zero 
errors and orthogonality of the regressor and the errors. This is useful in our context.  

Note that, the errors in our reduced form spatial model (7) are correlated. Further, the 
functional regressor in our spatial setting can be endogenous, either because of 
endogenous (or estimated) spatial weights, or because the underlying regressor X is 
itself endogenous. In such cases, an instrumental variables estimator can be constructed 
along the above lines. Finally, note that, given the nature of our problem, Y is measured 
in terms of deviation from the local (within partition) mean, thus allowing for spatial 
fixed effects.  

Next, we make assumptions required for consistency and convergence rates of the 
above functional principal components estimator. 

Assumption 3: Technical assumptions for functional regression inference. 

(a) The data are generated by fixed spatial design, so that Z is not stochastic. 

(b) All other technical assumptions in Hall and Horowitz (2007) hold. Specifically, 
conditions on the distribution of X** (the spatial functional regressor), 
distribution of ε, eigenvalues and Fourier coefficients hold.  

i) X has finite fourth moments, and hence so does X**. The error εi are 
identically distributed with zero mean and finite variance not exceeding 
some constant C. 

ii) Consider the Karhunen-Loève expansion of the random function X**: 

,)(
1

**** 




j jjXEX   where the j  are pairwise uncorrelated 

random variables that have zero means and variances j  that are 

eigenvalues of the expansion. The j  satisfy the spacing condition 
11

1


   jCjj  for all j and some exponent α > 1. 

iii) Let jjj gb 1   where    )()()( uEXuXEYYEug   and 

 jj gg  . The bj’s satisfy 1, 2
1   Cjbj . 

iv) The tuning parameter m increases with n such that   2/1/ nm is 
bounded away from zero and infinity. 

Then, the functional surface b(s) can be estimated by the functional principal 
components estimator in Hall and Horowitz (2007). However, ultimately our object of 
inference is the functional surface of β(s) in (12) and not the b(s) in (15). Assumption 
3(a) provides a simple way to go from the )(ˆ sb , estimated by functional principal 

components as in (16), to the )(ˆ s . In the finite but large dimensional setting, or 
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equivalently with a histogram sieve placed on the spatial domain, one simply has 

kkkk Psfnsbs  ),/()(ˆ)(̂ .  

Assumptions 3(b) are explicitly stated in Hall and Horowitz (2007). Condition 3(b)i) is 
standard. The condition (b)ii) ensures that all eigenvalues have unit multiplicity, and 
their spacing decreases exponentially, so that the estimator can be obtained with a small 
smoothing spectral cutoff. Assumption (b)iii) ensures that the Fourier coefficients are 
bounded below and above. Condition (b)iv) ensures that the number of basis function 
terms used in the smoothing process of b is much lower than n.  

Then, we have the following result. 

Theorem 2 (Hall and Horowitz, 2007): Let   ,,C  denote the set of distributions F 
of (X**, Y) that satisfy Assumption 3 for given values of C, α and δ. Let B denote a class 
of measurable functions b  of the data    nn YXYX ,,,, **

1
**

1   generated by (15). Then, 

).()(ˆ sbsb
P

  Specifically,         
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which then imply that for each F ,       

         .ˆ 2/122   nObb pS
  

For the technical details of the proof and associated discussion, refer to Hall and 
Horowitz (2007). The functional principal components estimator is a method of 
moments estimator. The identical distribution condition for the errors is stated in 
Assumption 3(b)i), but is not required in the proof of Theorem 2 beyond the zero 
covariance between X** and ε. The technique of proof is somewhat nonstandard, in 
showing that the supremum and infimum have the same rate of convergence, and 
moreover in using probability (PF) rather than expectation (EF) in the supremum 
statement. The rate of convergence     2/12 n  is generic to noisy inverse problems.  

The main result was shown in Hall and Horowitz (2007). Our main innovation here is 
to adapt the above general result to a spiky functional regressor surface. This we 
achieve by using a histogram sieve.  

Corollary 1: Under Assumption 3, )()(ˆ ss
P

   and for each F ,   

         .ˆ 2/122   nOpS
  

Proof: The proof follows directly from Theorem 1, noting that by Assumption 3(a),      

nk fkk is a fixed scalar. Since kkkk Psfnsbs  ),/()(ˆ)(̂ , the result follows. 

 

Intuitively, the above result may hold and estimator would be well-defined even if we 
had random (but independent) sampling over space. In this case, Z would have a 
multinomial distribution over spatial partitions (or sieves), and spatial stationarity 
would then imply that plim nk fjk = wjk, for some inter-partition spatial weights matrix 
W(K×K). In particular, plim nk fkk = wkk, where wkk is the intra-partition spatial weight in 
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partition Pk.
10 However, relaxing the potentially strong Assumption 3(a) appears to be 

technically difficult, and is retained for future work. 

As discussed above, the functional principal components estimator is essentially a 
method of moments estimator of the functional regression coefficient b(s) based on 
orthogonality of the error ε with both X and W. This estimator is consistent only when 
W is exogenous. If W is endogenous, then an instrument is required. Such a functional 
instrument V has to be strictly exogenous but correlated with the functional regressor 
Xi

**. The instrument V may be based, for example, on a weights matrix where the 
elements are functions of geographic distances, which are exogenous by construction.  

Kelejian and Piras (2014) consider an application to demand for cigarettes in the USA, 
where consumers living close to the border of a state can travel some distance into the 
neighbouring state to buy their tobacco. However, they would do so only if the travel 
distance is small and the prices in the neighbouring state are lower. This implies a 
weights matrix that is a combination of geographic distances and prices, and is 
endogenous because prices are endogenous. Endogenous spatial weights can also arise 
if the weights matrix is estimated using the same data. For example, in the context of 
our application here, a natural choice is the estimator of a symmetric spatial weights 
matrix proposed in Bhattacharjee et al. (2012). 

The natural extension of the above estimation to the endogenous functional regressor 
case is based on the covariance function of a suitable functional instrument V. Note 
that, in the case of simple linear regression where the OLS is given by 

,/ˆ XXXYbOLS   the corresponding IV estimator is VXVYbIV  /ˆ .  

As before, define    
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Then, the following functional principal components IV estimator of the regression 
slope b(.) can be proposed:         
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      (17)  

where m is the spectral tuning parameter, ,ˆˆˆ   ,ˆˆˆ
,

1  
jVYjjjj gggb   and    

         .ˆˆ,ˆˆ   ,ˆˆˆ
**,

1    tstsGGGB jjXVjjjj         

The numerator in (17) is the principal components estimator (Hall and Horowitz, 2007) 
of the functional regression of Y on the functional instrument V, and the denominator an 
estimator for the regression of X** on V. Thus, under a suitable instrument validity 
condition, the estimator in (17) will be consistent for b(s). 

                                                 
10 The spatial weights matrix W has zero diagonal elements. Note however that, in a partitioned spatial 
domain (or sieve) context, there will be non-zero intra-partition spatial weights reflecting the interaction 
between different units (houses) within the same partition; see Bhattacharjee et al. (2012). 
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Assumption 4: Technical assumptions for functional IV regression inference. 

(a) Instrument validity:    
      .,  allfor   0)()(  )]()([ , **** SStstEVtVsEXsXEtsG   

(b) Technical assumptions in Hall and Horowitz (2007) hold for both the functional 
regressions: Y on V, and X** on V.  

i) V has finite fourth moments. The errors in the above two regressions are 
identically distributed with zero mean and finite variance not exceeding 
some constant C. 

ii) Consider the Karhunen-Loève expansion of the random function V: 

,)(
1






j

jjVEV   where the j  are pairwise uncorrelated random 

variables that have zero means and variances j  that are eigenvalues of 

the expansion. The j  satisfy the spacing condition 11
1


   jCjj  

for all j and some exponent α>1. 

iii) Let jjj gb 1   and jjj GB 1  , where  jj gg  , 

   )()()( uEVuVEYYEug   and    )()(, tstsGG jjj  . The 

bj’s and Bj’s satisfy   1,, max 2
1   CjBb jj . 

iv) The tuning parameter m increases with n such that   2/1/ nm is 
bounded away from zero and infinity. 

Assumption 4(b) are very similar to Assumption 3. Assumption 4(a) imposes non-zero 
covariance between the functional regressor and the instrument everywhere over the 
spatial domain S. This assumption can be relaxed at the cost of analytical complexity.  

Corollary 2: Under Assumption 4, )()(ˆ ss
P

IV    where kkkkIVIV Psfnsbs  ),/()(ˆ)(̂ .  

Proof: By Theorem 1, the numerator and denominator of )(ˆ sbIV  converge to the 

respective functional regression coefficients, and hence the ratio converges in 

probability. That is, )()(ˆ sbsb
P

IV  . Then the proof follows as in Corollary 1, noting that 

nk fkk is a fixed number.  

Optimal choice of instruments possible in this context, and weak instrument robust 
inference is a potential area of future research. Also, there can be alternate estimators. 
For example, we can define an estimator      
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where m is the spectral tuning parameter and 0  is a cutoff for the estimated 
covariance between X** and V. Technical details relating to statistical properties of this 
estimator need further work, and is left outside the purview of the current paper. The 

main challenge lies in dealing with sample covariances jB̂  that are close to zero.  

In the remainder of this paper, including the empirical application, we focus on an 
exogenous weights matrix. However, as discussed above the proposed framework 
based on the functional regression model allows us to construct estimators that allow 
for potential endogeneity of spatial structure. This extends the literature substantially. 
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The traditional spatial econometrics literature has focussed either on spatial dependence 
or on spatial heterogeneity, but not both of these aspects together. The recent literature 
has developed methods for estimating the spatial weights (Bhattacharjee and Holly, 
2013; Bhattacharjee and Jensen-Butler, 2013; Bailey et al., 2014), as well as inferences 
where the spatial weights are endogenous and known a priori (Kelejian and Piras, 
2014). By contrast, this paper presents inferences for endogenous (and potentially 
unknown) spatial structure together with spatial heterogeneity. 

5.2. Implementation of the Functional Principal Components Estimator 

Our objective is to estimate a spatial lag model with spatial heterogeneity in the slope 
of a specific regressor, with spatial weights defined exogenously. In our empirical 
application, we define spatial weights by a kernel function, as in (11). Inferences are 
conducted by expressing the spatial lag model in reduced form as a functional 
regression model (6), where the functional regressor has the form given by (12).  

First, the spatial domain S is partitioned into a large number (K) of small areas, denoted 
 KIII ,,, 21  . Next, we obtain average values of the hedonic characteristic in each of 
these k locations, combined into a spatial vector  Kxxx ,,, 21  . Finally, we conduct 
functional principal components on this vector of spatial averages. However, the above 
vector does not have any cross section variation. This is because the cross section 
variation in xi is sacrificed in the process of aggregation by averaging. To recover this 
information, we replace kx , for observation i ϵ Ik, with     
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 ,               

where f0i = fh,i(Ik) is the modal kernel density centred on the location of i, and nk denotes 
the sample size in partition Ik.  

Correspondingly, we transform the response variable (y) into local mean deviations: 

.   ,*
kkii Iiyyy   Then, functional regression proceeds by obtaining a small number 

of functional principal components and regressing the transformed response variable 
(y* ) on these functional principal components. 

The steps of the estimation method are as follows: 

1. Partition the territory into k potential submarkets, denoted  KIII ,,, 21  . For 
each house i, identify the partition j to which it belongs: kIi . 

2. Construct functional average surface as     
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and the response variable as .   ,*
kjii Iiyyy   

3. Conduct functional principal components on Xi
**, estimate the m principal 

component factors   Kmm ,ˆ,,ˆ,ˆ
21   , with corresponding eigenvalues 

0ˆˆˆ 21  m  . 

4. Obtain the functional principal components estimator as (16):   
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where ,ˆˆˆ   ,ˆˆˆ 1  
jjjjj gggb   and        
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5. Finally obtain the estimated FPC surface of the functional regression coefficient 

as )/()(ˆ)(ˆ
0ikkk fnIbI  . 

The estimation methodology can now be applied to the data.  

5.3. Submarket Delineation by Spatial Clustering  

Once the functional regression slope surface is estimated, Theorem 1 suggests using the 
surface )(ˆ s  and )(sx  to identify housing submarkets by spatial clustering. The notion 
of clustering here is also closely related to projections on the effective dimension 
reduction (EDR) space; see Li and Hsing (2010). Based on the importance accorded to 
spatiality, there are several ways such clustering can be undertaken: spatial clustering 
(Knorr-Held and Raßer, 2000); clustering based only on similarities in functional 
variables (Booth et al., 2008); or clustering based on a combination of spatial proximity 
and similarity in characteristic space, either by an intersection between both criteria 
(Feng et al., 2012), or by penalties on smoothness over the spatial domain. 

We estimate submarkets using a two-stage procedure. First we estimate the functional 
surfaces )(ˆ s  and )(sx , by spatial functional regression and spatial local averaging, 
respectively. Then, in the second stage, we estimate submarkets by applying Ward’s 
aggregative clustering jointly to )(ˆ s  and )(sx ; see Everitt (1993). Theorem 1 shows 
that submarket delineation in our context should be conducted by spatial clustering. 
However, the full development of spatial clustering methods in a spatial functional 
setting lies outside the domain of the current research, and is retained for future work. 
Importantly, the clusters estimated in our application are observed to have a strong 
spatial orientation, which relaxes the necessity to conduct spatial clustering in our case. 
Hence, we identify submarkets simply by Ward’s aggregative method, which at each 
stage joins the two subclusters that result in the minimum increase in the degree of 
within-cluster heterogeneity (sum of squares).  

Several other lines of methodological development follow from the framework and 
methods developed here. First, in future research, we plan to conduct inference on 
spatial structure, that is on an unknown spatial weights matrix W. Specifically, the error 
term of the reduced form spatial functional regression model (7) is (I – W) –1 ε. Thus, 
the error term is spatially correlated, and such spatial correlation can potentially be 
used to learn about the spatial structure (that is, W). Specifically, if the elements of ε 
were initially uncorrelated, the covariance structure of estimated residuals from the 
functional regression model can be used to infer on the spatial filtering necessary to 
reduce the residual vector to white noise, which has a 1–1 correspondence with the 
unknown spatial weights matrix W. Note that, since the functional principal 
components regression estimator is based on moments, spatial correlation in the 
reduced form errors is allowed in this setting. 

There are other promising alternative approaches to inferences on an unknown W. First, 
the submarkets identified in the previous step can be used to estimate within and 
between submarket spatial weights using methods similar to Bhattacharjee et al. 
(2012). Second, the methodology in Bhattacharjee and Holly (2013) can be extended to 
estimate W using instruments (and corresponding moment conditions) obtained by 
using information from finer spatial scales. 



Online supplementary material 

 27

Finally, estimation and inferences on spatial structure based on an unknown spatial 
weights matrix W has another important advantage. In principle, functional analyses on 
the partial effects and other variables can borrow strength over the network (defined by 
W) using ideas and concepts from small area statistics; see, for example, Hall and Maiti 
(2006, 2012). Perhaps most importantly, the proposed framework offers the possibility 
of studying the endogenous evolution of urban spatial structure. All these lines of 
future research are exciting. 

6. Application to the Aveiro-Ílhavo Urban Housing Market in Portugal  

Now, we apply the methodology described in previous sections to analyse housing 
submarkets in a specific urban housing market – the neighbouring municipalities of 
Aveiro and Ílhavo located in the Centro (central) Region of Portugal (Figure 1). The 
municipality of Aveiro has a total area of 200 km² and a total population of 78,454; the 
municipality of Ílhavo has an area of 75 km2 and 38,317 inhabitants (Census of 
Portugal, 2011). Leaving aside the area of the lagoon (the shaded area in Figure 1), the 
population density is 600 inhabitants per km2, which is typical for an urban 
agglomeration in Portugal. 

 
 Figure 1 – Location of the study area: Municipalities of Aveiro and Ílhavo 

The above spatial domain is divided into the following main zones, each representing 
aggregation of smaller administrative areas with relatively homogeneous 
neighbourhoods and house prices (see Figure 2):  

i) The inner city of Aveiro, with a population of 32,000 inhabitants, which is the 
core of the urban municipality. 

ii) The smaller city of Ílhavo, with a population of 5,000 inhabitants, which is the 
second urban centre of the agglomeration. 

iii) A semi-rural area with 30,000 inhabitants, where a significant part of the land is 
used for agriculture, but almost the entire population works in the 
manufacturing and service sectors, spread all over the urban agglomeration. 
Housing constitutes a mixture of new urban settlements with blocks of flats and 
clusters of detached houses and old rural settlements, following a typical local 
pattern of strings of houses extended along the roads. 

iv) A suburban area with 33,500 inhabitants spread around the city of Aveiro, with 
a settlement and employment pattern similar to the above semi-rural area but 
with a higher proportion of  new urban settlements. 
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v) Gafanha da Nazaré, with a population of 13,000 inhabitants, is where the port of 
Aveiro is located. This zone is characterized by a mix of industrial and 
residential areas. 

vi) The seaside resorts Barra and Costa Nova, with a permanent population of 
3,000 inhabitants and where secondary residences and holiday rental properties 
dominate.  

As the above description shows, the area, with approximately 116,500 inhabitants, has 
enough variation over space to enable use of the methods and framework proposed here 
to delineate the Aveiro-Ílhavo urban housing market into different submarkets. 

 
Figure 2 – Major zones of the municipalities of Aveiro and Ílhavo 

The database used for this empirical work is provided by the firm Janela Digital S.A., 
which owns and manages the real estate portal database Casa Sapo. This portal is the 
largest site in Portugal of real estate advertisement. The data pertain to the time period 
October 2000 and March 2010 and include around 4 million records of properties 
available for transaction in Portugal, covering the entire national territory. For the 
specific case of Aveiro and Ílhavo, the database included 47,188 different properties. 
This empirical work used 12,467 observations on completed transactions; cases where 
data were incomplete or inconsistent were removed after careful consideration.11  

In addition to the price of each property, the database includes two main categories of 
variables to describe each dwelling: i) the intrinsic physical attributes, and ii) the 
location and neighbourhood of the building; see Bhattacharjee et al. (2012) for a full 
discussion. The first group includes number of rooms, state of preservation 
(restoration), age of construction and area (living space, built area, etc.). A set of other 
physical housing characteristics, obtained from a free text field where real estate 

                                                 
11 For a detailed description of the main challenges in cleaning the data and construction of housing 
attribute variables (intrinsic, location and neighbourhood), see Bhattacharjee et al. (2012). 
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advertisers describe the property, was also used. The second group of attributes is 
related to the housing location and to the characteristics of the neighbourhood, 
aggregated into a set of distances from different urban, local utility, recreation and 
transport facilities (Marques et al., 2012). 

Since only a small proportion of houses were fully geo-referenced, the houses were 
placed within into the smallest homogeneous areas that the database can describe, and 
the centres of such areas were geo-referenced; Figure 3 provides the locations of these 
76 areas (which we call zones), which constitute our partition of the spatial domain. 

 

Figure 3 - Housing location by zones  

The data reflect large variation in housing characteristics (Bhattacharjee at al., 2012). 
For example, the average price (in euros per square meter) is 1,126 and its variation 
ranges from 178 up to 5,714 across the 76 zones. The average dwelling dimension 
across the 76 zones is 149 m2, varying between 20 m2 and 600 m2.  

Of the 12,467 sample dwellings, 28.4% are single houses, 71.6% are flats and 12.3% 
are duplex (flats with two floors); 39.3% have a balcony, 18.2% have a terrace, 16.1% 
have garage space, of which 63.8% have a garage; 43.3% have central heating while 
28.9% have a fireplace. Location attributes show large spatial variation as well. On 
average, houses are located at 3.2 km from the CBD, while the maximum distance to 
the CBD is 16 km. 

In order to capture the main dimensions of the housing characteristics, maximum 
likelihood factor analysis with orthogonal varimax rotation was applied to the hedonic 
housing attributes. It is important to verify that the extracted factors do not reflect 
solely statistical properties but behavioural collections of housing characteristics 
(Maclennan, 1977; Malpezzi, 2003). The factors thus extracted nicely align into 
housing features. The hedonic features were organised into 5 factors, which together 
explain 54% of the total variation in 43 hedonic characteristics: 19 internal physical 
characteristics of a house and 24 location attributes. The factors provide clear 
interpretation in terms of behavioural collections of housing characteristics: of the 5 
factors, 3 relate to location attributes (factor 1 - accessibility to the centre or central 
amenities; factor 2 - accessibility to local amenities; factor 3 - accessibility to beaches) 
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and the other two represent the intrinsic attributes of dwellings (factor 4 - housing 
dimension; and factor 5 - additional desirable features).12 

We estimate a hedonic model using the above data, modeling house prices as a function 
of living area, the above 5 factors, and time on the market.13 In this paper, specific 
attention is focused on living area, the shadow price for which is expected to vary over 
the spatial domain, and may be considered a good candidate to analyse housing spatial 
segmentation in the Aveiro-Ílhavo area. Therefore, our functional regression slope, 
β(s), corresponds to living area, and the remaining attributes are assumed to have 
spatially fixed coefficients and used as control variables. 

Our central inference is reported in three maps based on clustering along three different 
characters that represent the spatial housing segmentation for Aveiro and Ílhavo. For 
this purpose, cluster analysis (Everitt, 1993) was applied to: i) housing living area 
(measured in square meters) averaged across all houses within each zone, )(sx  (Figure 

4); ii) the estimated functional regression coefficient )(ˆ s , representing the shadow 
price of living space, using the methods developed in section 5 (Figure 5); and finally, 
iii) cluster analysis based on a combination of both )(sx  and )(ˆ s  (Figure 7). Theorem 
1 (section 3) emphasizes spatial clustering, which we do not explicitly apply here. 
However, the clusters reflect clear spatial concentration. 

Legend: 

 
 

 

Number 
of zones

Mean 
(ln Area m2)

Std. Deviation
(ln Area m2)

Mean 
(Area m2) 

Submarket 1 17 4.588 0.090 98.298 
Submarket 2 24 4.869 0.085 130.191 
Submarket 3 9 5.164 0.047 174.863 
Submarket 4 24 5.434 0.113 229.064 
Submarket 5 2 6.144 0.010 465.914 

Figure 4 - Submarkets based on Ward’s linkage clusters: 
Housing characteristics– living space of house (m2) 

 

                                                 
12 See Bhattacharjee et al. (2012) for details on how these factors were constructed and defined. Table 11 
in Bhattacharjee et al. (2012) reports a detailed description of the factors. 
13 The prices reported in the dataset are asking prices and not final transaction prices. Time on the market 
is included to capture the wedge between asking and final prices (Bhattacharjee et al., 2012). 
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Legend: 

 
 
 
 

 Number of zones
Mean 

(FDA elasticity) 
Std. Deviation 

(FDA elasticity) 
Submarket 1 18 0.845 0.056 
Submarket 2 22 0.713 0.026 
Submarket 3 11 0.614 0.020 
Submarket 4 15 0.498 0.026 
Submarket 5 10 0.381 0.050 

 

Figure 5 - Submarkets based on Ward’s linkage clusters:  
Functional surface – Living area elasticity of house price 

Figure 4 represents the territorial distribution of housing living area, and marks a clear 
distinction between the smaller available space in inner urban areas and the increasing 
availability of space as we move towards the periphery. The beach areas, secondary 
urban centres and main roads distort somewhat this regular concentric pattern. Inside 
the inner city there is a distinction between areas with old traditional buildings and 
social houses (with the lowest living space) and more modern and affluent residential 
areas; a similar contrast between Barra and Costa Nova beaches is also clear. The 
smooth spatial variation in average living area indicates that functional principal 
components may be useful in this application. We construct X** and conduct spectral 
decomposition. 

Next, we construct our dependent variable controlling for additional regressors and 
spatial fixed effects. We conduct fixed effects regression for the logarithm of price per 
square meter (y) on the 5 factors, plus time-on-the-market, allowing for zone-level 
fixed effects. The regressor slopes are assumed fixed, not spatially varying. The 
residuals constitute our modified dependent variable, y*, for functional regression.  

Using exogenous distance-based spatial weights using a bivariate Gaussian kernel, and 
the spectral decomposition of the covariance function of X**, we obtain our functional 

regression estimates, first of )(ˆ kIb , and then 76,,1),(ˆ kIk . From these estimates, 

we infer the estimated spatially varying living area elasticity of price. Note that, the 
response variable here is logarithm of price per unit living area, and not the logarithm 

of price in itself. Hence the estimated elasticity for zone k is given by )(ˆ1 kI . 

Finally, we conduct cluster analysis on these shadow prices, and report the spatial 
pattern in Figure 5. 

In Figures 4-7, the zone-boundaries are demarcated by Voronoi tessellations (Okabe   
et al., 2000), as convex polygons from the intersection of half-spaces between centres 
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of neighbouring zones; likewise for Figures 6 and 7. From Figure 5, a concentric 
pattern of the shadow prices is evident. The elasticities (shadow prices of living space) 
are highest at the city centre and decrease as we move towards the periphery, meaning 
that the premium for a larger house is higher in the more urban areas.  

The above regular concentric pattern is punctuated by four exceptions: i) areas  
corresponding to urban expansion along the main axial roads; ii) the urban centre of 
Ílhavo; iii) the urban centre of Gafanha; and iv) the Barra seaside resort, where the 
predominant new flats have a relatively strong premium for a larger apartment. 
Conversely, Costa Nova, a resort to the south of Barra, has mainly traditional small 
houses with rigid dimensions, attracting a very low premium for extra size (people are 
interested in a nice location and style of houses, and not so much in a larger living 
space).  

 
 

Legend: 

 

 Number of zones Mean Std. Deviation 
Submarket 1  4 -2.346 0.228 
Submarket 2  9 -0.957 0.220 
Submarket 3  32 -0.231 0.209 
Submarket 4  23 0.544 0.183 
Submarket 5  6 1.256 0.089 
Submarket 6  2 2.683 0.000 

Figure 6 - Submarkets based on Ward’s linkage clusters:  
Housing characteristics compared with marginal returns to living space  

Figures 4 and 5 confirm substantial spatial heterogeneity, both in terms of living area 
and corresponding implicit (shadow) prices. The pattern of overlap between the two 
mappings is also interesting. To investigate this issue, we compare the two figures by 
standardizing )(sx  and )(ˆ s  and mapping their difference (Figure 6).  

The dominant pattern is one of inverse relationship between )(sx  and )(ˆ s ; the lower 
the average living space, the higher the shadow price. The signs of the standardized 
results were selected in line with the above idea. Therefore, negative values in Figure 6 
imply that the returns to living space are lower than what would be expected based on 
the available space, while positive values represent the opposite. There is a pervasive 
dominance of low positive or negative differences, with few exceptions such as Costa 
Nova and other small areas. As a consequence, and following the Theorem 1 in section 
3.3, we can argue that the submarkets presented in Figure 6 are robust to the two 
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delineation principles – similarity in hedonic characteristics and similarity in hedonic 
prices.14   

Thus, there is a clear case of partial overlap between submarkets delineated either by 
marginal utility of living area or by living space; the visual comparison of Figures 4 
and 5 gives a similar impression. Therefore, we conclude that in line with Theorem 1, 
the combination of both criteria gives the best delineation of submarkets, in terms of 
two similar houses inside each submarket being good substitutes.  

 
 

Legend: 
 

 

 
Number 
of zones 

FDA elasticity 
(standardized values)

Ln Area m2  
(standardized values) 

Submarket 1 2 -0.156 2.839 
Submarket 2 17 -1.050 1.124 
Submarket 3 18 -0.268 0.402 
Submarket 4 20 0.782 -0.524 
Submarket 5 5 -1.137 -0.948 
Submarket 6 14 0.931 -1.201

Figure 7 - Submarkets based on Ward’s linkage clusters:  
Housing characteristics combined with marginal returns to living space  

Finally, we report results of cluster analysis (Everitt, 1993) jointly on the two 
dimensions: )(sx  and )(ˆ s . The corresponding delineation into submarkets is shown 
in Figure 7. As before, a strong spatial context persists. The submarkets, ordered by 
decreasing value of average living space, still show a concentric pattern, with some 
interesting features. The urban core of Aveiro corresponds to the submarket 6, with the 
smallest living area and the highest premium for additional space; submarket 4 
corresponds to the outer ring of Aveiro, with extensions along the main roads, but also 
to some inner city areas (Gulbenkian and Bairro do Liceu) with relatively large high 
quality houses; submarket 5 corresponds to the previously discussed case of Costa 
Nova and three other areas with limited residential use, where the reduced living space 
is coupled with very low marginal returns to space; the remaining submarkets reflect 
the expected pattern of peripheral areas. 
                                                 
14 This is also confirmed by simple regressions used only as a descriptive tool. Removing locations with 
less than 10 properties each, the R2 between hedonic prices and characteristics is 0.31; retaining these 
low density zones, R2 is 0.75. 

Nariz

Eirol

Eixo

Sao Jacinto

Cilhas

Moitinhos

Requeixo
Vista Alegre

Taboeira

Mamodeiro

Quintas

Cacia

Oliveirinha

Gafanha do Carmo

Gafanha d'Aquem

Gafanha da Nazare Azurva

Cale da Vila

Granja de Baixo

Paco

Vilar

Aradas

Cancela

Ribas

Quinta do Loureiro

Mataducos

Santiago

Forca

Povoa do Valado

Costa Nova

Gafanha da Encarnacao

Barra

Costa do Valado

Sao Bernardo

Azenha de Baixo

Quinta do Picado

Sarrazola

Povoa do Paco

Bonsucesso

Patela

Quinta do Gato

Alagoas

Verdemilho

Coutada/Medela

Centro (Ilhavo)

Nossa Senhora de Fatima

Viso/Caiao

Quinta da Bela Vista

Cidadela/Quinta de Santo Antonio

Escolas

Sol Posto/Presa

Eucalipto

Gulbenkian

Glicinias

Agras
Barrocas

Cabo Luis/Quinta das Acacias

Oita
EstacaoAlboi

Rossio

Bairro do Liceu

Beira Mar

Submarket 5

Submarket 2

Submarket 6

Submarket 3
Submarket 4

Submarket 1



Online supplementary material 

 34

In summary, the submarkets obtained from the above analysis, based on clustering 
jointly along two dimensions (Everitt, 1993), )(sx  and )(ˆ s , produces submarkets that 
have a clear spatial context and approximately concentric pattern around the CBD of 
Aveiro. However, this concentric pattern is punctuated by processes of urban 
development – beach areas, secondary urban centres and main axial roads – that in turn 
reflect historical processes of development of the urban area.  

The above delineation is based on a new functional regression framework and 
methodology accounting both for spatial dependence and spatial heterogeneity. In our 
empirical analysis, the spatial weights matrix is defined exogenously by a 
geographical-distance based independent bivariate Gaussian kernel. However, one can 
equally use estimated spatial weights, where a natural choice may be the estimator 
proposed in Bhattacharjee et al. (2012). However, in this case, the spatial weights and 
functional regressor will be endogenous. The IV estimator proposed here provides very 
similar submarket delineation, and the results are not reported separately. 

7. Conclusion 

The main topic of this paper was the definition of housing submarkets, both in terms of 
its conceptualization and empirical delineation. A new framework and methods based 
on functional data analysis were developed, integrating ideas and approaches from 
functional data analysis, spatial econometrics and locally weighted regressions. This 
allows for spatial dependence and spatial heterogeneity, and can also accommodate 
applications where the spatial structure is potentially endogenous. In allowing for 
endogenously determined submarkets and endogenous spatial regression, our work 
addresses two important limitations of existing methods. Both these aspects are key 
features of spatial dynamics in housing markets, as highlighted by Lefebvre (1974 
[1991]), and an important point of our departure from the literature. 

In the literature, analysis of housing segmentation has been conducted in several ways: 
i) by the similarity of hedonic housing characteristics, ii) by the similarity of hedonic 
prices, or iii) by the degree of substitutability of housing units. We apply our 
methodology to delineate submarkets in the Aveiro-Ílhavo urban housing market in 
Portugal. The results show that housing characteristic and prices produce submarkets 
that partially overlap, suggesting that spatial clustering based on a combination of the 
former two criteria provides a more reasonable approach towards defining submarkets, 
and one that also satisfies the condition that houses within the same submarket are 
highly substitutable. 

The proposed synthesis and corresponding methods extend the literature along several 
directions. First, and most importantly, the framework can allow spatial structure and 
submarkets to evolve endogenously. This is in line with economic intuition, as well as 
empirical evidence. Second, our framework extends FDA tools and methods to the 
spatial domain in a way that is consistent with structural spatial econometric models of 
the housing market, and specifically the spatial lag model with spatial heterogeneity in 
slopes and spatial fixed effects. Third, once such submarkets have been delineated, 
spatial dependence can be examined by estimating cross- and within-submarket spatial 
weights (Bhattacharjee et al., 2012).  

Several further research problems and areas of development emerge from our work. 
First, while the framework enables analyses of endogenously produced submarkets, 
finding the asymptotic convergence rates for instrumental variables estimator within 
the functional regression model is retained for future work. Inference robust to weak 
instruments in this setting may also be useful. Further, relaxing the fixed design 
assumption would enhance applicability of the proposed methods. Combining the 
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proposed approach with estimated spatial weights is a topic for further research. 
Second, in the above setting one can conduct inference on spatial structure, that is on an 
unknown spatial weights matrix W, exploiting the fact that the error term of the reduced 
form model has the structure (I – W) –1 ε, so that the spatial autocovariance matrix of 
these errors is a 1–1 function of W under the assumption of symmetric spatial weights 
(Bhattacharjee and Jensen-Butler, 2013). In particular, the submarkets identified in the 
previous step can also be used to estimate within and between submarket spatial 
weights (Bhattacharjee et al., 2012; Bhattacharjee and Holly, 2013; Bhattacharjee and 
Jensen-Butler, 2013). These potential methodological developments are exciting. 
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