
Appendix A The Pairwise-Matching Strategy of Chen (1999)

To illustrate Chen’s (1999) identification strategy, let us temporarily assume a linear lo-

cation function µd = α + βd and assume a conventional error term ed in the outcome

equation. The target parameter β is the ATE on the mean. Using the notation in (3.1), we

rewrite the outcome equation as a partially linear model, y = α+ βd+ λd(m(z)) + wd for

d = 0 or 1, where the non-linear part is selectivity bias λd(m(z)), defined by E[ed|m(z)] =

E[e1d+ e0(1− d)|m(z)], given d. By construction, the new error term wd ≡ ed− λd(m(z))

has zero mean for z, given d. The key to identification of α and β is to cancel out the

nuisance term within symmetric pairs (i, j), whose selection indexes are symmetric around

zero, m(zi) = −m(zj) = m. Without loss of generality, we suppose that m > 0:

λdi(m)− λdj (−m) = E[e1iI{ηi ≤ m}+ e0iI{ηi > m}|m]

− E[e1jI{ηj ≤ −m}+ e0jI{ηj > −m}|m]

= E[(e1i − e0i)I{−m < ηi ≤ m}|m] = 0.

Because I{−m < ηi ≤ m} + I{ηi ≤ −m} = I{ηi ≤ m}, the second equality is valid if

(edi, ηi) is independent and identically distributed across individuals. The final equality

holds if edi and ηi are symmetrically distributed. The bounded form for the latent index in

the final equality is similar to the identification-at-infinity argument (Chamberlain, 1986)

and the marginal-treatment-effect concept (Heckman and Vytlacil, 1999).

Appendix B Proof of the Equivalence Result

To proof the equivalence result in equation (4.13) , consider symmetric pairs (i, j):

p(xi, zi) = Fη(m(xi, zi)|xi, zi) = 1− p(xj , zj) = 1− Fη(m(xj , zj)|xj , zj)

= Fη(−m(xj , zj)|xj , zj).
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The first and third equalities are from the latent-index selection model, the second equality

is from p(xi, zi) + p(xj , zj) = 1, and the last equality is because of symmetry. Because z

and η are independent by Assumption 5(1), m(xi, zi) = −m(xj , zj) by holding xi = xj = x.

The proof for the converse is similar.

Appendix C Large Sample Behaviour

Here we explore the asymptotic properties of an averaged scale ratio and an averaged

variance ratio, both of which are obtained by averaging across covariates of the estimators

proposed in Section 4. We focus primarily on the IV estimator and the symmetric quantile

estimator (r̂IV and r̂q), simply noting that the properties of the other proposed estimator

(r̂v) follow from similar arguments and thus are omitted here.

Let r̂IV be the averaged variance ratio of the IV estimator based on model (3.1) and

(3.6) and Assumptions 1 and 2, our first theorem is as follows:

Theorem 1 Our variance-based IV estimator r̂IV of the average variance ratio rIV , de-

fined by EX [σ21(x)/σ20(x)], has the following linear representation:

r̂IV − rIV =
1

n

n∑
i=1

(ψai + ψbi) + op(n
−1/2)

where ψai ≡ V1(xi)/V0(xi)− EX [σ21(x)/σ20(x)] and

ψbi ≡ V −10i (ψ12i − 2λ1iψ11i)− V1iV −20i (ψ02i − 2λ0iψ01i) + op(n
−1/2), (Appendix C.15)

where λ1i ≡ E(y1i|d1i > d0i, xi) and V1i ≡ V (y1i|d1i > d0i, xi); λ0i and V0i are defined

analogously. For k = 1, 2, ψ1ki is of the form

[yki dizi − E(yki di|zi = 1, xi)]− [yki di(1− zi)− E(yki di|zi = 0, xi)]

E(di|zi = 1, xi)− E(di|zi = 0, xi)

−[E(yki di|zi = 1, xi)− E(yki di|zi = 0, xi)]

× [dizi − E(di|zi = 1, xi)]− [di(1− zi)− E(di|zi = 0, xi)]

[E(di|zi = 1, xi)− E(di|zi = 0, xi)]2
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and ψ0ki can be defined analogously by replacing di with (1 − di). The root-n consistency

and asymptotic normality of the estimator follow from this linear representation.

Remark 1 Thus we can see that the estimator is root-n consistent and asymptotically

normal:
√
n(r̂IV − rIV )⇒ N(0, E[(ψai + ψbi)

2]).

The asymptotic variance E[(ψai + ψbi)
2] can be estimated for inference purposes, though

an alternative approach, used in our application, is to bootstrap. We recommend boot-

strapped confidence intervals, rather than estimating the asymptotic variances, because the

calculations require additional nonparametric steps that make the estimation cumbersome.

Subbotin (2009) has proven that the confidence intervals and the standard errors of an

estimator like ours can be consistently estimated by bootstrapping. Thus, we recommend

bootstrapped confidence intervals particularly for practitioners.

Turning our attention to asymptotic theory for matching procedures, as mentioned, we

will focus on the quantile estimator, as identical arguments can be used for the variance-

based matching estimator. Furthermore, to focus on the asymptotic arguments pertaining

to our kernel-weighted matching, we will focus on a conditional (not averaged) scale ra-

tio. In order to circumvent the identification and dimensionality conditions as mentioned

previously, our proofs assume that the scale parameters depend on treatment but not on

covariates.

While the regularity conditions for the quantile-based estimator are standard when

compared to existing work (Ahn and Powell 1993; Chen and Khan 2003), they are still quite

detailed, particularly as multiple semiparametric steps are involved. To ease the notational

burdens, letting w = (x, z), we impose the parametric restriction m(w) = w′δ ≡ v. It is

noteworthy that a non-parametric m(·) would still allow our matching estimators of r to
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be root-n consistent and asymptotically normal, analogous to Ahn and Powell’s (1993)

results. To simplify the notation, we define

q(d)τ (w) ≡ qτ (yi|di = d,wi = w),

∆q(d)τ (w) ≡ IQτ (yi|di = d,wi = w),

for d = 0, 1. The asymptotic distribution of the quantile-based estimator of the scale ratio,

defined here as rq = σ1/σ0, is as follows:

Theorem 2 Under regularity conditions (I), (KH1), (S0), (RD2), (S2), and (H1) in the

Appendix, if the coefficient estimators in the selection equation has the following linear

representation:4

δ̂ − δ =
1

n

n∑
i=1

ψ+
i + op(n

−1/2),

then we have
√
n(r̂q − rq)⇒ N(0,Σ−20 E[(ψ−i +Mψ+

i )2]),

where Σ0 ≡ E[p(vi)
2f(p(vi))], p(vi) is the propensity score, and f(p(vi)) is its density.

Furthermore,

ψ−i ≡ (1− p(vi))2fV (vi)fW (wi)

[
di∆q

(0)
τ (wi)

−1φ1i − (1− di)
∆q

(1)
τ (wi)

∆q
(0)
τ (wi)2

φ0i

]
.

For d = 0 and 1 we define

φdi ≡ fU1d|W (0|wi)−1{I[yi ≤ q(d)1−τ (wi)]− (1− τ)} − fU0d|W (0|wi)−1{I[yi ≤ q(d)τ (wi)]− τ},

where τ ∈ (0, 1/2), fU1d|W and fU0d|W (0|wi) are conditional density functions of residuals

associated with the conditional quantile function for d = 1 and 0, given the upper and lower

4We are taking the linear representation for the selection equation estimator as given. This is because

any semi-parametric binary choice estimator for δ that is root-n consistent can be used, and most of these

have already established linear representations. The purpose of our theorem here is to establish how the

influence function for an estimator of δ affects the influence function of our quantile estimator of rq.
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quantiles (1− τ and τ) respectively. Finally, define M as

E{[1− p(vi)] (Appendix C.16)

×
[
G2(vi, vi)p(−vi)fV (−vi) + G(vi, vi)p

′(−vi)fV (−vi) + G(vi, vi)p(−vi)f ′V (−vi)
]
},

where G(vi, vj) ≡
∫ ∫ [

∆q
(1)
τ (wi)−∆q

(0)
τ (wj)

]
(wi +wj)

′dF (wi|vi)dF (wj |vj), and G2(·, ·) is

the partial derivative of G(·) with respect to its second argument.

Remark 2 While the form of the influence function in the above linear representation

is very complicated, we can see how its form relates to similar estimation procedures in

the literature. For example, term Σ0 corresponds to the propensity score matching weights

and is very similar to the form attained in Ahn and Powell (1993). The component ψ−i

corresponds to the variance introduced by replacing true quantile functions with their non-

parametric estimators; consequently, its form is similar to other estimators which use first-

stage nonparametric quantile regression estimators, such as those developed by Chaudhuri

et al. (1991) and Khan (2001). The component ψ+
i corresponds to the noise induced by the

selection equation estimator, and M corresponds to the weighting term induced from the

linear expansion of the kernel weighted matching function. As a result, this second piece

in its entirety (Mψ+
i ) is of a form similar to that found in Powell (2001).

Appendix D Regularity Conditions and Proofs

Here we state the regularity conditions and proofs for the theorems stated in Appendix B.

We note that under identification assumptions, the support issues for the IV estimator are

not as severe as those for our matching-based estimators, so part of the proof derives local

linear representations for variance ratios as a function of covariates (i.e., r̂IV (x)).

Define V̂d(x) as the kernel estimators of Vd(x) ≡ V [yd|d1 > d0, x], for d = 0 or 1, based

on equations in (4.12). Our proof for the IV estimator is to consider the case of an averaged
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scale ratio. Our variance-based IV estimator can be expressed as

r̂IV ≡
1

n

n∑
i=1

V̂1(xi)/V̂0(xi).

In Theorem 1, we linearise r̂IV around the true value rIV ≡ Ex[σ21(x)/σ20(x)]. To do so,

we decompose (r̂IV − rIV ) into two components: (r̂IV − rnIV ) and (rnIV − rIV ), where

rnIV ≡
1

n

n∑
i=1

V1(xi)/V0(xi).

We notice that rnIV converges to rIV in probability by the condition of invariant normal-

ization (Assumption 2) and the Law of Large Numbers. In what follows, we establish the

linearisation of (r̂IV − rnIV ) in Lemma 1 with the following regularity conditions. From

Lemma 1, the proof of Theorem 1 follows immediately.

Regularity Conditions for Theorem 1:

Assumption RS (Random sampling) The vector (yi, zi, di, x
′
i)
′ is i.i.d.

Assumption RD (Regressor distribution) The regressor vector xi has support which is a

compact subset of Rk. xi may have discrete and continuous components, and we let

kc denote the number of continuous components. We assume the conditional density

function of the continuous components given the discrete components is continuously

differentiable of order p, where p > 5kc/2.

Assumption K (Kernel function and bandwidth) The kernel function is of order p and

the bandwidth satisfies
√
nhpn → 0 and nhkcn →∞.

Assumption MF (Moment functions) The moment functions E[yli|xi, di, zi = 1] are p

times continuously differentiable for l = 1, 2.
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Lemma Appendix D.1 Under Assumptions (RS), (RD), (K), and (MF), our variance-

based IV estimator r̂IV has the following linear representation:

r̂IV − rnIV =
1

n

n∑
i=1

ψbi + op(n
−1/2), (Appendix D.17)

where ψbi is defined in equation (Appendix C.15).

Proof: By the definitions of r̂IV and rnIV , the linearisation of

r̂IV − rnIV =
1

n

n∑
i=1

[
V̂1(xi)/V̂0(xi)− V1(xi)/V0(xi)

]
, (Appendix D.18)

can be obtained by expanding the ratios inside the summation. As in Newey and McFadden

(1994, p.2204), the first-order expansion of ratio â/b̂ around a/b is b−1[â−a− (a/b)(̂b− b)],

so the linearisation of V̂1/V̂0 around V1/V0 is V −10 (V̂1 − V1) − V1V −20 (V̂0 − V0). Therefore,

from equation (Appendix D.18), r̂IV − rnIV can also be expressed as

r̂IV − rnIV =
1

n

n∑
i=1

V −10i (V̂1i − V1i)−
1

n

n∑
i=1

V1iV
−2
0i (V̂0i − V0i). (Appendix D.19)

Both terms on the right hand side can be further linearised separately using the following

properties: (i) Variance equals the second moment minus the square of the first moment.

(ii) The first and second moments of outcomes of compliers involve the ratio of differences;

that is, E[h(yd)|d1 > d0, x] = (a1 − a0)/(b1 − b0) for d = 0 or 1, as in equations (3.3) and

(3.4), where h(y) = y or y2, and a1, a0, b1, and b0 denote E[h(y)d|z = 1, x], E[h(y)d|z =

0, x], E[d|z = 1, x], and E[d|z = 0, x] respectively. (iii) The first-order expansion of the

kernel estimator (â1 − â0)/(̂b1 − b̂0) around (a1 − a0)/(b1 − b0) is

(b1 − b0)−1[(â1 − a1)− (â0 − a0)]− (a1 − a0)(b1 − b0)−2[(b̂1 − b1)− (b̂0 − b0)].

As suggested in Chen and Khan (2003), the kernel estimator has the fourth root con-

sistency followed by assumptions (RS), (RD), and (MF). By the the consistency of those
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kernel estimators, the linearisation of the kernel estimators for the ratios implies that we can

derive a linear representation for 1
n

∑n
i=1[Ê(h(y1i)|d1i > d0i, xi) − E(h(y0i)|d1i > d0i, xi)]

as follows:

1

n

∑n

i=1
(b1i−b0i)−1[(â1i−a1i)−(â0i−a0i)]−

1

n

∑n

i=1
(a1i−a0i)(b1i−b0i)−2[(b̂1i−b1i)−(b̂0i−b0i)]

(Appendix D.20)

since the remainder term is op(n
−1/2). We focus on the first summation for the case

of the second moment (e.g., h(y) = y2), as similar arguments can be used for the other

components. Applying the results from Newey and McFadden (1994), we can represent

the first summation in the linearisation of the first term in (Appendix D.19) as

1

n

n∑
i=1

V −10i [E(di|zi = 1, xi)− E(di|zi = 0, xi)]
−1 × (Appendix D.21)

{[y2i dizi − E(y2i di|zi = 1, xi)]− [y2i di(1− zi)− E(y2i di|zi = 0, xi)]}+ op(n
−1/2).

Similarly, the second summation is of the form:

1

n

n∑
i=1

V −10i [E(y2i di|zi = 1, xi)− E(y2i di|zi = 0, xi)]× [E(di|zi = 1, xi)− E(di|zi = 0, xi)]
−2

{[dizi − E(di|zi = 1, xi)]− [di(1− zi)− E(di|zi = 0, xi)]}+ op(n
−1/2).

(Appendix D.22)

Subtracting (Appendix D.22) from (Appendix D.21) establishes the linearisation of the

component for the second moment of the outcome variable, 1
n

∑n
i=1 V

−1
0i [Ê(y21i|d1i > d0i, xi)−

E(y21i|d1i > d0i, xi)] in equation (Appendix D.19). Denote the term in the resulting sum-

mation (excluding V −10i ) by ψ12i. Turning our attention to the square of the first moment,

the linear representation of the component for the first moment would be the same as above

simply replacing y2i with yi. Let ψ11i denote this term. Letting λ1 denote E[y1|d1 > d0, x],

the linear representation for the square of the first moment can be denoted by

1

n

n∑
i=1

2V −10i λ1iψ11i + op(n
−1/2), (Appendix D.23)
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which is a straight forward application of the delta method.

Collecting all of our results, we can conclude that we have the following linear repre-

sentation for the variance of the treated group:

1

n

n∑
i=1

V −10i (V̂1i − V1i) =
1

n

n∑
i=1

V −10i (ψ12i − 2λ1iψ11i) + op(n
−1/2). (Appendix D.24)

Note we can derive an analogous linear representation for (V̂0i − V0i) with analogous

terms in the summation, which we will replace (ψ12, λ1, ψ11) with (ψ02, λ0, ψ01).

Next, we conclude that the linearisation of r̂IV − rnIV in equation (Appendix D.18) or

(Appendix D.19) is

1

n

n∑
i=1

{V −10i (ψ12i − 2λ1iψ11i)− V1iV −20i (ψ02i − 2λ0iψ01i)} + op(n
−1/2) (Appendix D.25)

where λ0 above is E[y0|d1 > d0, x]. This completes the proof of Lemma 1 and thus concludes

the proof of Theorem 1.

Regularity Conditions for Theorem 2: Let h0n and h1n be the bandwidths for

the selection equation estimation and the pairwise matching kernel-weighting scheme in the

first stage, and let h2n denote the bandwidth for the local polynomial quantile regressions

in the second stage. The regularity conditions for Theorem 2 are summarized below.

Assumption I (Identification) Σ0 > 0.

We next impose conditions on the kernel function used to match propensity score values

and its bandwidth sequence:

Assumption KH1 The kernel function K1n(·) is assumed to have the following proper-

ties: (i) K1n(·) is twice continuously differentiable with a bounded second derivative

and has a compact support; (ii) symmetric about zero; and (iii) a fourth-order ker-

nel with
∫
ulK1n(u)du = 0 for l = 1, 2, 3 and

∫
u4K1n(u)du 6= 0. The bandwidth

sequence h1n is of the form: h1n = c1n
−γ1 , where c1 is a constant and γ1 ∈ (18 ,

1
6).
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The following assumption characterizes the smoothness of the density and the condi-

tional expectation functions of the selection index:

Assumption S0 The function fV (·) has an order of differentiability of four, with the

fourth-order derivative bounded.

We next impose three conditions associated with the estimation of interquartile spreads.

This involves smoothness assumptions on the conditional quantile functions and on the

distributions of wi = (xi, zi) and the residuals associated with the quantile functions. For

notational convenience, we describe the conditions in terms of w, whose support is denoted

by W.

Assumption RD2 (Distribution of regressors and instruments) The vector w can be de-

composed as w = (w(c)′, w(ds)′)′ where the kc-dimensional vector w(c) is continuously

distributed, and the kds-dimensional vector w(ds) is discretely distributed. Letting

fW (c)|W (ds)(·|w(ds)) denote the conditional density function of w
(c)
i , we assume it is

bounded away from zero and is Lipschitz continuous on W. Letting fW (ds)(·) denote

the mass function of w(ds), we assume that there is a finite number of mass points on

W. Finally, we let fW (·) denote fW (c)|W (ds)(·|·)fW (ds)(·).

Assumption S2 (Smoothness of conditional quantile functions)

S2.1 The polynomial used for the second-stage quantile function estimators is of order m.

S2.2 For all values of w(ds), the quantile functions q
(d)
τ1 (·) and q

(d)
τ2 (·) d = 0, 1 are bounded

and m times continuously differentiable with bounded mth derivatives with respect

to w(c) on W.

Assumption H1 (Second-stage bandwidth sequence for interquartile spread estimation).

The bandwidth sequence used to estimate the conditional interquantile spread is of
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the form: h2n = c2n
−γ2 , where c2 is a constant, and γ2 ∈ ((γ1 + 0.5)/m, (1− 4γ1)/3kc),

where γ1,m and kc are given in Assumptions KH1, S2 and RD2 respectively.

Proof of Theorem 2: The arguments used to derive the limiting distribution theory

are very similar to those used in Chen and Khan (2003), who impose similar regularity

conditions, hereafter referred to as CK. We thus only provide a sketch of the main argu-

ments, referring readers interested in technical details to CK. It is there were the technical

conditions, such as those imposed on the bandwidths, are used.

We note we can write r̂q = Σ̂1/Σ̂0, where

Σ̂1 =
1

n(n− 1)

∑
i 6=j

dj(1− di)ω̂ij∆q̂(1)τ (wi)/∆q̂
(0)
τ (wi),

Σ̂0 =
1

n(n− 1)

∑
i 6=j

dj(1− di)ω̂ij .

Recall that rq = σ1/σ0. We will establish a linear representation for r̂q − rq. Our proof

strategy is to establish the probability limit of the denominator and establish a linear

representation for the numerator. The probability limit of the denominator follows from

similar arguments used in proving Theorem 3.1(ii) in Ahn and Powell (1993) and Lemma

A.6 in CK:

Σ̂0
p→ Σ0 ≡ E[p(vi)

2f(p(vi))].

Turning attention to (Σ̂1 − rΣ̂0), we consider an expansion of ω̂ij around ωij defined

by h−12nK1n

((
w′iδ0 + w′jδ0

)
/h2n

)
. After using this expansion, (Σ̂1 − rΣ̂0) equals:

1

n(n− 1)

∑
i 6=j

dj(1− di)ωij
[
∆q̂(1)τ (wi)/q̂

(0)
τ (wi)− rq

]
. (Appendix D.26)

We note that if we replace ∆q̂
(1)
τ (wi) and ∆q̂

(0)
τ (wi) with ∆q

(1)
τ (wi) and ∆q

(0)
τ (wi) in the

above expression, the term is op(n
−1/2) by arguments similar to those the proof of Lemma
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A.4 in CK. Linearization of ∆q̂
(1)
τ (wi)/q̂

(0)
τ (wi) around the true value gives:

1

n(n− 1)

∑
i 6=j

dj(1− di)ωij∆q(0)τ (wi)
−1[∆q̂(1)τ (wi)−∆q(1)τ (wi)] (Appendix D.27)

− 1

n(n− 1)

∑
i 6=j

dj(1− di)ωij∆q(1)τ (wi)∆q
(0)
τ (wi)

−2[∆q̂(0)τ (wi)−∆q(0)τ (wi)].

We further establish a linear representation for the term involving [∆q̂
(1)
τ (wi)−∆q

(1)
τ (wi)].

Following the arguments used in Lemma A.4 in CK, we can rephrase the first line of

(Appendix D.27) as the following

1

n

n∑
i=1

(1 − p(vi))
2fV (vi)difW (wi)∆q

(0)
τ (wi)

−1{fU11|W (0|wi)−1(I[yi ≤ q(1)1−τ (wi)]− (1− τ))

− fU01|W (0|wi)−1(I[yi ≤ q(1)τ (wi)]− τ)}+ op(n
−1/2).

where τ ∈ (0, 1/2), fU11|W and fU01|W (0|wi) are conditional density functions of residuals

associated with the conditional quantile function, for upper quantile (1 − τ) and lower

quantile (τ), respectively.

An analogous linear representation can be derived for the term involving [∆q̂
(0)
τ (wi)−

∆q
(0)
τ (wi)], where we would replace di with (1−di) in the above expression, and superscripts

(1) with superscripts (0). Collecting both these terms, this can be written as

1

n

n∑
i=1

ψ−i + op(n
−1/2).

We next consider the linear term of ω̂ij around ωij . This is of the form

1

n(n− 1)

∑
i 6=j

dj(1− di)ω′ij(wi + wj)
′(δ̂ − δ0)

[
∆q̂(1)τ (wi)/∆q̂

(0)
τ (wi)− r

]
,

where ω′ij = h−22nK
′
1n

((
w′iδ0 + w′jδ0

)
/h2n

)
.

Note we can replace ∆q̂
(1)
τ (wi)/∆q̂

(0)
τ (wi) with ∆q

(1)
τ (wi)/∆q

(0)
τ (wi) in the above ex-

pression. The resulting remainder term is op(n
−1/2) by the root-n consistency of δ̂ and the
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uniform consistency of the quantile estimators. In what follows, we derive an expression

for the probability limit of

1

n(n− 1)

∑
i 6=j

dj(1− di)ω′ij
[
∆q(1)τ (wi)/∆q

(0)
τ (wi)− r

]
(wi + wj)

′.

Using standard U-statistic projection theorems and the change of variables, the above term

converges in probability to M, defined in (Appendix C.16). Thus, the linear term in the

expansion has the linear representation:

1

n

n∑
i=1

Mψδi + op(n
−1/2).

Finally we note higher-order terms in the expansion of ω̂ij around ωij are asymptotically

negligible by the uniform rates of convergence of the quantile estimators and the root-n

consistency of δ̂. This completes the linear representation for r̂q − rq.

Appendix E Monte Carlo Study

The Design and Specifications

In the previous sections we explored the conditions under which the proposed estimators

can be identified. In this section we assess their small-sample performance through Monte

Carlo simulations. We independently draw outcome errors (ε1i, ε0i) from the same distri-

bution to satisfy the condition of invariant normalization (Assumptions 2 and 3). The

dependence between outcome and selection errors (εdi, ηi) is constructed by setting their

correlation coefficient to 0.5 for d = 0 and 1. To satisfy the symmetry condition (As-

sumption 5(2)), we generate a sample (εdi, ηi) of size n from three distributions: bivariate

normal, bivariate Student-t with 10 degrees of freedom, and bivariate Cauchy distributions.

We then increase the sample size from n = 190 to n = 760, to n = 3, 040 (the last sample

size being about the same as that of one of the empirical studies in Section 5). Finally, we

iterate the estimation process 3, 041 times. We consider three cases:
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Case 1: Constant Scales First, we consider a case of constant scale ratios, (σ0, σ1) =

(1, e0.2), where the scale parameters are constant, given the treatment status. The outcome

and selection equations are given by

yi = x1i + di[2 + ε1i] + (1− di)[e0.2ε0i],

di = I{x1i + zi ≥ ηi},

where covariate x1i is uniformly distributed between −1 and 1, and instrument zi is a

binary variable with a 50-50 chance of equalling 0 or 1.

Case 2: Covariate-Dependent Scales In the second case, we allow the scale parameters to

vary with both treatment di and covariate x2i such that (σ0(x2i), σ1(x2i)) = (1, e0.2) if

x2i = 0, and (1.05, 1.05e0.3) if x2i = 1. We assume that x2i has a 50-50 chance of equalling

0 or 1. The outcome and selection equations are given by

yi = x1i + 0.3x2i + di[2 + σ1(x2i)ε1i] + (1− di)[σ0(x2i)ε0i],

di = I{x1i − 0.2x2i + zi ≥ ηi}.

Both cases satisfy Assumption 1. Letting xi ≡ (x1i, x2i), we use Abadie’s (2003) Lemma

2.1 to calculate the fraction of compliers, given xi = x:

Pr{d1i > d0i|x} = E[di|zi = 1, x]− E[di|zi = 0, x] (Appendix E.28)

= Fη(m(xi, 1))− Fη(m(xi, 0)),

where Fη is the cumulative distribution function of ηi. The fraction of compliers is strictly

positive in both cases, since the fraction of compliers, given that x, equals F (x1+1)−F (x1)

in case 1 and F (x1− 0.2x2 + 1)−F (x1− 0.2x2) in case 2. In addition, the symmetric first-

stage condition (Assumption 5(3)) is also satisfied in both cases because the conditional

47



probability of symmetric pairs, given that x2i = x2, is strictly positive:

Pr{(i, j) : m(x1i, x2, zi) = −m(x1j , x2, zj)} = Pr{(i, j) : x1i + x1j = 0.4x2 + zi − zj}.

(Appendix E.29)

For example, if (x2, zi, zj) are all equal to zero, then Pr{(i, j) : x1i = −x1j} = (
√

2/2) > 0.

Case 3: Covariate-Dependent Scales (No Compliers) Finally, consider the case where the

symmetric first-stage condition is satisfied but there is no first stage for some subgroup.

We maintain the same outcome equation as in (Appendix E.28) but change the selection

equation to

di = I{x1i − 0.2x2i + x2izi ≥ ηi}. (Appendix E.30)

When x2i = 0, there is no first stage, so there are no compliers for the subgroup of

individuals with x2i = 0. The symmetric first-stage condition is still satisfied because the

fraction of symmetric pairs is Pr{(i, j) : x1i = −x1j} =
√

2/2 > 0 for the same subgroup.

Simulation Results

To examine the properties of the proposed estimators, we use four assessment measures:

mean bias, median bias, root mean-squared errors, and mean absolute deviations. We ex-

amine the rate of convergence of mean absolute deviations for the quantile-based estimator

and the rate of convergence of root mean-squared errors for variance-based estimators,

including both the IV estimator and the variance-based matching method. Hence, the

following analysis focuses on these two convergences. An estimator is said to be consistent

or converging if the corresponding assessment measure undergoes root-n convergence. The

results of simulations suggest that the proposed quantile-based matching method performs

best in small samples, even when there is no first stage or when the underlying distribu-
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tions have heavy tails. The findings are summarized in online tables A1 and A2 and are

discussed below.5

In the presence of exogenous covariates, we note that the first-stage condition (Assump-

tion 1) is required for the IV estimator, but not for the pairwise-matching methods. The

comparison of these two approaches is presented in online table A2 for the results of Case

3, where there is no first stage even though symmetry conditions (Assumptions 5(2)(3))

are satisfied. As expected, the IV estimator cannot identify the scale ratios in this case,

because there are no compliers, but the pairwise-matching estimators still converge at the

rate of root-n.

The simulation results in online tables A1 and A2 suggest that the best performing

estimator is the quantile-based matching method: all of its assessment measures converge

rapidly, even in the presence of outliers or in the absence of compliers. In cases 1 and 2,

the variance-based methods perform well in bivariate normal and bivariate Student t(10)

models, but they fail to converge in the bivariate Cauchy model because moments are

undefined. In case 3, where there are no compliers, the IV methods do not apply, but the

variance-based matching method converges at the parametric rate for both bivariate nor-

mal and bivariate Student-t(10) models. The quantile-based matching method converges

rapidly at the rate of root n in all cases.

It is noteworthy that the symmetry conditions (Assumption 5) are neither stronger nor

weaker than the LATE conditions (Assumption 1). The IV methods and the pairwise-

matching methods use different subgroups to identify the treatment effect on dispersion

5In an earlier version of this paper, we attempted to establish a benchmark by estimating the models

using maximum-likelihood estimators, assuming the joint distribution of the error terms to be bivariate nor-

mal, although the true distribution can be Student-t or Cauchy. The results showed that under the correct

specification, maximum-likelihood estimators had much smaller assessment measures than the proposed es-

timators. But if the model is misspecified (as bivariate Student t(10)), then maximum-likelihood estimators

failed to converge or occasionally generated larger assessment measures than the proposed methods.
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in potential outcomes. The IV estimator uses compliers, while the pairwise-matching

methods use symmetric pairs. Since both methods use a subpopulation for identification,

the precision of estimation depends heavily on the size of the subpopulation. The pairwise-

matching methods are more efficient than the IV methods if the instrument is multi-valued

or continuously distributed, in the sense that the number of symmetric pairs exceeds the

number of compliers, as discussed earlier in Section 5.1. The empirical study described in

the next section illustrates this point.
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Bivariate Normal Bivariate Student-t(10) Bivariate Student-t(3) Bivariate Cauchy
Pairwise-Matching Pairwise-Matching Pairwise-Matching Pairwise-Matching

Sample IV Variance Quantile IV Variance Quantile IV Variance Quantile IV Variance Quantile
Size Estimator -Based -Based Estimator -Based -Based Estimator -Based -Based Estimator -Based -Based
Case 1.  Constant Scale Ratios:
Mean Bias

5000 .035 .009 -.019 .001 -.047 -.078 -.365 .032 -.036 1.650 70.349 .044
190 3.225 .176 .278 2.144 .189 .611 .952 .417 .318 - - .621
760 .537 .032 .049 .168 .040 .050 -.071 .188 .055 - - .104

3040 .148 .008 .013 -.043 .014 .013 -.203 .095 .016 - - .032
Median Bias

190 .914 .128 .200 5.354 .137 .185 .217 .294 .206 1.855 25 .382
760 .271 .029 .039 .066 .036 .039 -.126 .133 .045 1.747 28 .082

3040 .133 .007 .010 -.051 .013 .010 -.222 .071 .013 1.866 30 .031
RMSE

190 6.622 .356 .670 .523 .433 13.0 3.690 .776 1.460 - - 1.762
760 1.373 .094 .145 .753 .113 .150 .378 .431 .159 - - .236

3040 .187 .043 .067 .094 .054 .070 .261 .243 .075 - - .103
MAD

190 .914 .156 .235 .525 .172 .228 .375 .312 .249 1.855 25 .413
760 .271 .061 .092 .128 .072 .095 .200 .163 .105 1.747 28 .141

3040 .133 .030 .044 .068 .036 .046 .226 .099 .050 1.866 30 .069

Online Table A1. Simulation Results of Constant Scale Ratios



Bivariate Normal Bivariate Student-t(10) Bivariate Student-t(3) Bivariate Cauchy
Pairwise-Matching Pairwise-Matching Pairwise-Matching Pairwise-Matching

Sample IV Variance Quantile IV Variance Quantile IV Variance Quantile IV Variance Quantile
Size Estimator -Based -Based Estimator -Based -Based Estimator -Based -Based Estimator -Based -Based

Case 2.  r(x2=0), satisfying LATE assumptions:
Mean Bias

380 3.198 17.065 .298 1.991 3.197 .272 .953 18.605 .316 - - .655
760 1.415 .460 .108 .674 .890 .101 .178 1.505 .119 - - .229

3040 .255 .314 .026 .011 .335 .027 -.149 .693 .030 - - .058
Median Bias

380 .941 .615 .182 .531 .657 .176 .208 1.126 .185 1.670 25.6 .391
760 .514 .412 .085 .211 .440 .072 .004 .766 .097 1.710 23.6 .170

3040 .188 .309 .020 -.016 .322 .021 -.182 .523 .024 1.802 28.9 .053
RMSE

380 6.496 619.331 1.751 5.030 60.360 .701 3.369 837.411 1.806 - - 3.164
760 3.370 .620 .239 2.164 21.482 .252 1.290 16.936 .274 - - .606

3040 .457 .349 .098 .169 .381 .100 .355 2.084 .109 - - .159
MAD

380 .941 .615 .229 .532 .657 .233 .377 1.126 .243 1.670 25.590 .421
760 .514 .412 .139 .236 .441 .138 .241 .766 .150 1.710 23.575 .229

3040 .188 .309 .064 .082 .322 .064 .200 .523 .072 1.802 28.927 .102

Case 3.  r(x2=0), as there is no complier:
Mean Bias

380 - 4.453 .280 - 3.176 .290 - 3.724 .328 - - .738
760 - 1.601 .111 - .520 .109 - 1.593 .132 - - .250

3040 - .317 .027 - .340 .030 - .779 .034 - - .066
Median Bias

380 - .635 .202 - .709 .203 - 1.277 .234 - 31.4 .454
760 - .433 .098 - .465 .092 - .878 .115 - 28.6 .213

3040 - .311 .024 - .328 .026 - .549 .029 - 38.3 .061
RMSE

380 - 126.434 1.254 - 89.443 1.163 - 54.784 1.649 - - 3.376
760 - 62.341 .214 - .716 .224 - 13.190 .242 - - .396

3040 - .341 .085 - .374 .087 - 3.438 .094 - - .139
MAD

380 - .635 .225 - .709 .221 - 1.277 .251 - 31.4 .458
760 - .433 .128 - .465 .128 - .878 .144 - 28.6 .230

3040 - .311 .056 - .328 .057 - .549 .061 - 38.3 .091

Online Table A2. Simulation Results of Covariate-Dependent Scale Ratios 



All Schooling Levels High School or Less Some College
Mean Std Dev Mean Std Dev Mean Std Dev
(1) (2) (3) (4) (5) (6)

Years of schooling 13.26 2.68 11.11 1.61 15.37 1.64
(a) Outcome
   Log hourly earnings 1976 1.66 .44 1.56 .44 1.75 .43
(b) Instrument
   4-yr college in county .68 .47 .63 .48 .73 .44
(c ) Covariates
   Age in 1976 28.12 3.14 28.21 3.24 28.03 3.04
   Work experience in 1976 8.86 4.14 11.09 3.79 6.67 3.20
   Proportion black .23 .42 .32 .47 .15 .35
   Residence south in 1976 .40 .49 .46 .50 .35 .48
   Live in metropolitan 1976 .71 .45 0.64 0.48 .78 .41
   Both parents attended college .06 .24 .01 .09 .11 .32
   Live in metropolitan 1966 .65 .48 .60 .49 .70 .46
(d) Size 3010 3010 1489 1489 1521 1521

Online Table A3: Mean and Standard Deviation



Estimation method OLS 2SLS 2SLS 2SLS OLS
(1) (2) (3) (4) (5)

(a) Coefficient on years of schooling .073 .132 .133 .122 .075

Quadratic experience yes yes no no no
Full set of demographics yes yes yes no no
Card (1995): Table-Column T2-C2 T3-C5a - - -

- - T1-C4 - -

(b) Coefficient on college attendance .216 .688 .693 .673 .213

Quadratic experience yes yes no no no
Full set of demographics yes yes yes no no

 

Online Table A4.  IV Estimates of Return to Schooling

(.004) (.049) (.049) (.053) (.004)

Kling (2001): Table-Column

(.018) (.279) (.280) (.329) (.017)

Note: The number of observations in all regressions=3010. Standard errors in parentheses. In columns (2)-(5), schooling 
and experience are treated as endogenous variables, with college proximity and age as excluded instruments. All the columns 
include a racial black indicator, residence in Southern states in 1976, residence in a metropolitan area in 1966 and 1976, and 
college attendance of both parents. Following Kling's (2001) suggestion, we exclude the quadratic term for work experience, 
take work experience as an endogenous variable in the model, and use age as an excluded instrument for work experience. 
Card (1995) and Kling (2001) additionally control for the following variables that are excluded in columns (4)-(5): eight 
regional dummies, indicators for living with both parents and for living only with mother, and eleven interaction terms of 
parental education variables. We apply the models in columns (4)-(5) to estimate the degree of dispersion in wages.


