
EMBARRASSINGLY EASY EMBARRASSINGLY PARALLEL

PROCESSING IN R: SUPPLEMENTAL APPENDIX

MICHAEL S. DELGADO AND CHRISTOPHER F. PARMETER

This appendix reports the computation time for a standard wild bootstrap used to compute

standard errors in a linear model with heteroskedastic errors, nonlinear optimization to solve a

nonlinear least squares regression problem, and a Monte Carlo simulation to assess the size of a

Hausman (1978) test using multicore, snow, and snowfall. Simulations consider variable number

of processors - {1, 2, 4, 8, 16, 32, 64}. All computations were conducted using a 660 node Red Hat

Enterprise Linux 6 (RHEL6) research cluster with dual 8-core Intel Xeon-E5 nodes. Detailed code

to reproduce each computation are available in the JAE Data Archive.

The tables below report the computation time for each procedure for variable number of pro-

cessors, for each package. It is clear that there are sizable gains from parallel implementation, but

that the marginal time increases diminish as the size of the cluster grows. In each of our examples

below, it is clear that implementing a parallel environment above 16 processors leads to virtually

no improvement in computation time, and in several cases, leads to slower computation time. This

results for two reasons.

First, it is well-documented in computer science that increasing the number of processors does

not always lead to increased computational efficiency, as the processors must communicate with

each other. This phenomenon is known as ‘overhead’ - eventually the overhead becomes so great

that any additional computational advantages from employing additional processors is dominated

by overhead communication so computation time either does not decrease, or may increase.

Second, in our case, the Linux cluster on which these simulations were computed is a system

of dual 8-processor nodes. Parallel environments up to and including 16 processors can all be

run on one node; environments calling 32 or 64 processors must involve multiple nodes. Hence,

overhead greatly increases when connecting multiple nodes, so computational efficiency significantly

decreases in these examples as overhead costs substantially increase.

It is also apparent that in a few cases for the bootstrap example, increasing the size of the

parallel environment improves computation time by more than 50 percent. Specifically, using

multicore increasing from 2 to 4 processors decreases computation time by about 51 percent,

Purdue University and University of Miami
Date: July 27, 2013.
Michael S. Delgado, Department of Agricultural Economics, Purdue University, West Lafayette, IN 47907-2056.
Phone: 765-494-4211, Fax: 765-494-9176, E-mail: delgado2@purdue.edu.
Christopher F. Parmeter, Department of Economics, University of Miami, Coral Gables, FL 33124-6520. Phone:
305-284-4397, Fax: 305-284-2985, E-mail: cparmeter@bus.miami.edu.
∗ This research was supported in part by computational resources provided by Information Technology at Purdue -
Rosen Center for Advanced Computing, Purdue University, West Lafayette, Indiana.

1



2 EMBARRASSINGLY PARALLEL

and going from 1 to 2 and 2 to 4 processors using snow decreases computation time by about

62 and 55 percent. This phenomenon is known as superlinear speedup (Janßen 1987), and may

arise in memory intensive computational problems as a parallel environment can sometimes more

efficiently use memory relative to the sequential (or smaller parallel) environment. In our bootstrap

example, we consider n = 30, 000 observations with B = 100, 000 bootstrap replications, which is

relatively more memory intensive than our nonlinear optimization and Monte Carlo. Further, the

cluster computing environment used for these exercises is a multi-user research cluster. Jobs are

automatically allocated to available resources, however allocation does not guarantee that the node

deployed for computation is otherwise idle. This potentially adds some slight variability in timing

across each exercise as the available amounts of memory across different nodes may not be the

same.

References

Hausman, J. A. (1978), ‘Specification tests in econometrics’, Econometrica 46, 1251–1271.
Janßen, R. (1987), ‘A note on superlinear speedup’, Parallel Computing 4, 211–213.

Table 1. Computation time using multicore.

Number of Processors

Model 1 2 4 8 16 32 64
Bootstrap 9578.983 5794.143 2819.724 1601.787 944.875 942.551 1033.977
Optimization 51.731 27.489 13.971 8.328 4.420 4.240 3.685
Monte Carlo 530.164 266.700 152.062 79.875 40.271 40.556 43.349

Table 2. Computation time using snow.

Number of Processors

Model 1 2 4 8 16 32 64
Bootstrap 9417.737 3576.098 1610.047 1194.447 684.464 750.852 742.129
Optimization 51.410 26.364 15.049 8.735 4.424 3.976 3.976
Monte Carlo 456.730 265.031 140.191 75.794 41.951 42.133 43.472

Table 3. Computation time using snowfall.

Number of Processors

Model 1 2 4 8 16 32 64
Bootstrap 8169.750 4029.330 2018.471 1207.365 713.637 712.574 709.432
Optimization 53.408 27.505 15.321 8.443 4.458 4.043 4.101
Monte Carlo 486.301 257.592 144.018 76.734 40.451 41.239 45.072


	References

