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Abstract

This introduction to the R package strucchange is a (slightly) modified version of the
paper of Zeileis, Leisch, Hornik, and Kleiber (2002), which reviews tests for structural change
in linear regression models from the generalized fluctuation test framework as well as from the
F test (Chow test) framework. It introduces a unified approach for implementing these tests
and presents how these ideas have been realized in strucchange. Enhancing the standard sig-
nificance test approach the package contains methods to fit, plot and test empirical fluctuation
processes (like CUSUM, MOSUM and estimates-based processes) and to compute, plot and
test sequences of F statistics with the supF , aveF and expF test. Thus, it makes powerful
tools available to display information about structural changes in regression relationships and
to assess their significance. Furthermore, it is described how incoming data can be monitored.

Keywords: structural change, CUSUM, MOSUM, recursive estimates, moving estimates, moni-
toring, R, S.

1 Introduction

The problem of detecting structural changes in linear regression relationships has been an im-
portant topic in statistical and econometric research. The most important classes of tests on
structural change are the tests from the generalized fluctuation test framework (Kuan and Hornik
1995) on the one hand and tests based on F statistics (Hansen 1992b; Andrews 1993; Andrews
and Ploberger 1994) on the other. The first class includes in particular the CUSUM and MOSUM
tests and the fluctuation test, while the Chow and the supF test belong to the latter. A topic
that gained more interest rather recently is to monitor structural change, i.e., to start after a
history phase (without structural changes) to analyze new observations and to be able to detect a
structural change as soon after its occurrence as possible.

This paper concerns ideas and methods for implementing generalized fluctuation tests as well as
F tests in a comprehensive and flexible way, that reflects the common features of the testing pro-
cedures. It also offers facilities to display the results in various ways.

This paper is organized as follows: In Section 2 the standard linear regression model upon which all
tests are based will be described and the testing problem will be specified. Section 3 introduces a
data set which is also available in the package and which is used for the examples in this paper. The
following sections 4, 5 and 6 will then explain the tests, how they are implemented in strucchange
and give examples for each. Section 4 is concerned with computing empirical fluctuation processes,
with plotting them and the corresponding boundaries and finally with testing for structural change
based on these processes. Analogously, Section 5 introduces the F statistics and their plotting
and testing methods before Section 6 extends the tools from Section 4 for the monitoring case.
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2 The model

Consider the standard linear regression model

yi = x>i βi + ui (i = 1, . . . , n), (1)

where at time i, yi is the observation of the dependent variable, xi = (1, xi2, . . . , xik)> is a k × 1
vector of observations of the independent variables, with the first component equal to unity, ui

are iid(0, σ2), and βi is the k × 1 vector of regression coefficients. Tests on structural change are
concerned with testing the null hypothesis of “no structural change”

H0 : βi = β0 (i = 1, . . . , n) (2)

against the alternative that the coefficient vector varies over time, with certain tests being more
or less suitable (i.e., having good or poor power) for certain patterns of deviation from the null
hypothesis.

It is assumed that the regressors are nonstochastic with ||xi|| = O(1) and that

1
n

n∑
i=1

xix
>
i −→ Q (3)

for some finite regular matrix Q. These are strict regularity conditions excluding trends in the data
which are assumed for simplicity. For some tests these assumptions can be extended to dynamic
models without changing the main properties of the tests; but as these details are not part of the
focus of this work they are omitted here.

In what follows β̂(i,j) is the ordinary least squares (OLS) estimate of the regression coefficients
based on the observations i + 1, . . . , i + j, and β̂(i) = β̂(0,i) is the OLS estimate based on all
observations up to i. Hence β̂(n) is the common OLS estimate in the linear regression model.
Similarly X(i) is the regressor matrix based on all observations up to i. The OLS residuals are
denoted as ûi = yi − x>i β̂(n) with the variance estimate σ̂2 = 1

n−k

∑n
i=1 û2

i . Another type of
residuals that are often used in tests on structural change are the recursive residuals

ũi =
yi − x>i β̂(i−1)√

1 + x>i
(
X(i−1)>X(i−1)

)−1
xi

(i = k + 1, . . . , n), (4)

which have zero mean and variance σ2 under the null hypothesis. The corresponding variance
estimate is σ̃2 = 1

n−k

∑n
i=k+1(ũi − ¯̃u)2.

3 The data

The data used for examples throughout this paper are macroeconomic time series from the USA.
The data set contains the aggregated monthly personal income and personal consumption expen-
ditures (in billion US dollars) between January 1959 and February 2001, which are seasonally
adjusted at annual rates. It was originally taken from http://www.economagic.com/, a web site
for economic times series. Both time series are depicted in Figure 1.
The data is available in the strucchange package: it can be loaded and a suitable subset chosen
by

> library(strucchange)

> data(USIncExp)

> library(ts)

> USIncExp2 <- window(USIncExp, start = c(1985, 12))
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Figure 1: Personal income and personal consumption expenditures in the US

We use a simple error correction model (ECM) for the consumption function similar to Hansen
(1992a):

∆ct = β1 + β2 et−1 + β3 ∆it + ut, (5)
et = ct − α1 − α2 it, (6)

where ct is the consumption expenditure and it the income. We estimate the cointegration equa-
tion (6) by OLS and use the residuals êt as regressors in equation (5), in which we will test for
structural change. Thus, the dependent variable is the increase in expenditure and the regressors
are the cointegration residuals and the increments of income (and a constant). To compute the
cointegration residuals and set up the model equation we need the following steps in R:

> coint.res <- residuals(lm(expenditure ~ income, data = USIncExp2))

> coint.res <- lag(ts(coint.res, start = c(1985, 12), freq = 12),

+ k = -1)

> USIncExp2 <- cbind(USIncExp2, diff(USIncExp2), coint.res)

> USIncExp2 <- window(USIncExp2, start = c(1986, 1), end = c(2001,

+ 2))

> colnames(USIncExp2) <- c("income", "expenditure", "diff.income",

+ "diff.expenditure", "coint.res")

> ecm.model <- diff.expenditure ~ coint.res + diff.income

Figure 2 shows the transformed time series necessary for estimation of equation (5).
In the following sections we will apply the methods introduced to test for structural change in this
model.

4 Generalized fluctuation tests

The generalized fluctuation tests fit a model to the given data and derive an empirical process,
that captures the fluctuation either in residuals or in estimates. For these empirical processes the
limiting processes are known, so that boundaries can be computed, whose crossing probability un-
der the null hypothesis is α. If the empirical process path crosses these boundaries, the fluctuation
is improbably large and hence the null hypothesis should be rejected (at significance level α).
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Figure 2: Time series used – first differences and cointegration residuals

4.1 Empirical fluctuation processes: function efp

Given a formula that describes a linear regression model to be tested the function efp creates an
object of class "efp" which contains a fitted empirical fluctuation process of a specified type. The
types available will be described in detail in this section.

CUSUM processes: The first type of processes that can be computed are CUSUM processes,
which contain cumulative sums of standardized residuals. Brown, Durbin, and Evans (1975)
suggested to consider cumulative sums of recursive residuals:

Wn(t) =
1

σ̃
√

η

k+btηc∑
i=k+1

ũi (0 ≤ t ≤ 1), (7)

where η = n− k is the number of recursive residuals and btηc is the integer part of tη.

Under the null hypothesis the limiting process for the empirical fluctuation process Wn(t) is the
Standard Brownian Motion (or Wiener Process) W (t). More precisely the following functional
central limit theorem (FCLT) holds:

Wn =⇒ W, (8)

as n →∞, where ⇒ denotes weak convergence of the associated probability measures.

Under the alternative, if there is just a single structural change point t0, the recursive residuals
will only have zero mean up to t0. Hence the path of the process should be close to 0 up to t0 and
leave its mean afterwards. Krämer, Ploberger, and Alt (1988) show that the main properties of
the CUSUM quantity remain the same even under weaker assumptions, in particular in dynamic
models. Therefore efp has the logical argument dynamic; if set to TRUE the lagged observations
yt−1 will be included as regressors.
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Ploberger and Krämer (1992) suggested to base a structural change test on cumulative sums of
the common OLS residuals. Thus, the OLS-CUSUM type empirical fluctuation process is defined
by:

W 0
n(t) =

1
σ̂
√

n

bntc∑
i=1

ûi (0 ≤ t ≤ 1). (9)

The limiting process for W 0
n(t) is the standard Brownian bridge W 0(t) = W (t)− tW (1). It starts

in 0 at t = 0 and it also returns to 0 for t = 1. Under a single structural shift alternative the path
should have a peak around t0.

These processes are available in the function efp by specifying the argument type to be either
"Rec-CUSUM" or "OLS-CUSUM", respectively.

MOSUM processes: Another possibility to detect a structural change is to analyze moving
sums of residuals (instead of using cumulative sums of the same residuals). The resulting empirical
fluctuation process does then not contain the sum of all residuals up to a certain time t but the
sum of a fixed number of residuals in a data window whose size is determined by the bandwidth
parameter h ∈ (0, 1) and which is moved over the whole sample period. Hence the Recursive
MOSUM process is defined by

Mn(t|h) =
1

σ̃
√

η

k+bNηtc+bηhc∑
i=k+bNηtc+1

ũi (0 ≤ t ≤ 1− h) (10)

= Wn

(
bNηtc+ bηhc

η

)
−Wn

(
bNηtc

η

)
, (11)

where Nη = (η − bηhc)/(1− h). Similarly the OLS-based MOSUM process is defined by

M0
n(t|h) =

1
σ̂
√

n

bNntc+bnhc∑
i=bNntc+1

ûi

 (0 ≤ t ≤ 1− h) (12)

= W 0
n

(
bNntc+ bnhc

n

)
−W 0

n

(
bNntc

n

)
, (13)

where Nn = (n − bnhc)/(1 − h). As the representations (11) and (13) suggest, the limiting pro-
cess for the empirical MOSUM processes are the increments of a Brownian motion or a Brownian
bridge respectively. This is shown in detail in Chu, Hornik, and Kuan (1995a).

If again a single structural shift is assumed at t0, then both MOSUM paths should also have a
strong shift around t0.

The MOSUM processes will be computed if type is set to "Rec-MOSUM" or "OLS-MOSUM", respec-
tively.

Estimates-based processes: Instead of defining fluctuation processes on the basis of residuals
they can be equally well based on estimates of the unknown regression coefficients. With the same
ideas as for the residual-based CUSUM- and MOSUM-type processes the k × 1-vector β is either
estimated recursively with a growing number of observations or with a moving data window of
constant bandwidth h and then compared to the estimates based on the whole sample. The former
idea leads to the fluctuation process in the spirit of Ploberger, Krämer, and Kontrus (1989) which
is defined by

Yn (t) =
√

i

σ̂
√

n

(
X(i)>X(i)

) 1
2

(
β̂(i) − β̂(n)

)
, (14)
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where i = bk + t(n− k)c with t ∈ [0, 1]. And the latter gives the moving estimates (ME) process
introduced by Chu, Hornik, and Kuan (1995b):

Zn ( t|h) =

√
bnhc

σ̂
√

n

(
X(bntc,bnhc)>X(bntc,bnhc)

) 1
2

(
β̂(bntc,bnhc) − β̂(n)

)
, (15)

where 0 ≤ t ≤ 1−h. Both are k-dimensional empirical processes. Thus, the limiting processes are
a k-dimensional Brownian Bridge or the increments thereof respectively. Instead of rescaling the

processes for each i they can also be standardized by
(
X(n)>X(n)

) 1
2
. This has the advantage that

it has to be calculated only once, but Kuan and Chen (1994) showed that if there are dependencies
between the regressors the rescaling improves the empirical size of the resulting test. Heuristically
the rescaled empirical fluctuation process “looks” more like its theoretic counterpart.

Under a single shift alternative the recursive estimates processes should have a peak and the mov-
ing estimates process should again have a shift close to the shift point t0.

For type="fluctuation" the function efp returns the recursive estimates process, whereas for
"ME" the moving estimates process is returned.

All six processes may be fitted using the function efp. For our example we want to fit an OLS-
based CUSUM process, and a moving estimates (ME) process with bandwidth h = 0.2. The
commands are simply

> ocus <- efp(ecm.model, type = "OLS-CUSUM", data = USIncExp2)

> me <- efp(ecm.model, type = "ME", data = USIncExp2, h = 0.2)

These return objects of class "efp" which contain mainly the empirical fluctuation processes and a
few further attributes like the process type. The process itself is of class "ts" (the basic time series
class in R), which either preserves the time properties of the dependent variable if this is a time
series (like in our example), or which is standardized to the interval [0, 1] (or a subinterval). For
the MOSUM and ME processes the centered interval [h/2, 1−h/2] is chosen rather than [0, 1−h]
as in (10) and (12).

Any other process type introduced in this section can be fitted by setting the type argument.
The fitted process can then be printed, plotted or tested with the corresponding test on structural
change. For the latter appropriate boundaries are needed; the concept of boundaries for fluctuation
processes is explained in the next section.

4.2 Boundaries and plotting

The idea that is common to all generalized fluctuation tests is that the null hypothesis of “no
structural change” should be rejected when the fluctuation of the empirical process efp(t) gets
improbably large compared to the fluctuation of the limiting process. For the one-dimensional
residual-based processes this comparison is performed by some appropriate boundary b(t), that
the limiting process just crosses with a given probability α. Thus, if efp(t) crosses either b(t) or
−b(t) for any t then it has to be concluded that the fluctuation is improbably large and the null
hypothesis can be rejected at confidence level α. The procedure for the k-dimensional estimates-
based processes is similar, but instead of a boundary for the process itself a boundary for ||efpi(t)||
is used, where || · || is an appropriate functional which is applied component-wise. We have imple-
mented the functionals ‘max’ and ‘range’. The null hypothesis is rejected if ||efpi(t)|| gets larger
than a constant λ, which depends on the confidence level α, for any i = 1, . . . , k.
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The boundaries for the MOSUM processes are also constants, i.e., of form b(t) = λ, which seems
natural as the limiting processes are stationary. The situation for the CUSUM processes is different
though. Both limiting processes, the Brownian motion and the Brownian bridge, respectively, are
not stationary. It would seem natural to use boundaries that are proportional to the standard
deviation function of the corresponding theoretic process, i.e.,

b(t) = λ ·
√

t (16)

b(t) = λ ·
√

t(1− t) (17)

for the Recursive CUSUM and the OLS-based CUSUM path respectively, where λ determines the
confidence level. But the boundaries that are commonly used are linear, because a closed form
solution for the crossing probability is known. So the standard boundaries for the two proccess
are of type

b(t) = λ · (1 + 2t) (18)
b(t) = λ. (19)

They were chosen because they are tangential to the boundaries (16) and (17) respectively in
t = 0.5. However, Zeileis (2000a) examined the properties of the alternative boundaries (16)
and (17) and showed that the resulting OLS-based CUSUM test has better power for structural
changes early and late in the sample period.

Given a fitted empirical fluctuation process the boundaries can be computed very easily using the
function boundary, which returns a time series object with the same time properties as the given
fluctuation process:

> bound.ocus <- boundary(ocus, alpha = 0.05)

It is also rather convenient to plot the process with its boundaries for some confidence level α
(by default 0.05) to see whether the path exceeds the boundaries or not: This is demonstrated in
Figure 3.

> plot(ocus)
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Figure 3: OLS-based CUSUM process

It can be seen that the OLS-based CUSUM process exceeds its boundary; hence there is evidence
for a structural change. Furthermore the process seems to indicate two changes: one in the first
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half of the 1990s and another one at the end of 1998.

It is also possible to suppress the boundaries and add them afterwards, e.g. in another color

> plot(ocus, boundary = FALSE)

> lines(bound.ocus, col = 4)

> lines(-bound.ocus, col = 4)

For estimates-based processes it is only sensible to use time series plots if the functional ‘max’
is used because it is equivalent to rejecting the null hypothesis when maxi=1,...,k ||efp(t)|| gets
large or when maxt maxi=1,...,k efpi(t) gets large. This again is equivalent to any one of the (one-
dimensinal) processes efpi(t) for i = 1, . . . , k exceeding the boundary. The k-dimensional process
can also be plotted by specifying the parameter functional (which defaults to "max") as NULL:

> plot(me, functional = NULL)
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Figure 4: 3-dimensional moving estimates process

The output from R can be seen in Figure 4, where the three parts of the plot show the processes
that correspond to the estimate of the regression coefficients of the intercept, the cointegration
residuals and the increments of income, respectively. All three paths show two shifts: the first
shift starts at the beginning of the sample period and ends in about 1991 and the second shift
occurs at the very end of the sample period. The shift that causes the significance seems to be
the strong first shift in the process for the intercept and the cointegration residuals, because these
cross their boundaries. Thus, the ME test leads to similar results as the OLS-based CUSUM test,
but provides a little more information about the nature of the structural change.

4.3 Significance testing with empirical fluctuation processes

Although calculating and plotting the empiricial fluctuation process with its boundaries provides
and visualizes most of the information, it might still be necessary or desirable to carry out a
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traditional significance test. This can be done easily with the function sctest (structural change
test) which returns an object of class "htest" (R’s standard class for statistical test results)
containing in particular the test statistic and the corresponding p value. The test statistics reflect
what was described by the crossing of boundaries in the previous section. Hence the test statistic
is Sr from (20) for the residual-based processes and Se from (21) for the estimates-based processes:

Sr = max
t

efp(t)
f(t)

, (20)

Se = max ||efp(t)||, (21)

where f(t) depends on the shape of the boundary, i.e., b(t) = λ · f(t). For most boundaries
is f(t) ≡ 1, but the linear boundary for the Recursive CUSUM test for example has shape
f(t) = 1 + 2t.

It is either possible to supply sctest with a fitted empirical fluctuation process or with a formula
describing the model that should be tested. Thus, the commands

> sctest(ocus)

and

> sctest(ecm.model, type = "OLS-CUSUM", data = USIncExp2)

OLS-based CUSUM test

data: ecm.model
S0 = 1.5511, p-value = 0.01626

lead to equivalent results. sctest is a generic function which has methods not only for fluctuation
tests, but all structural change tests (on historic data) introduced in this paper including the F
tests described in the next section.

5 F tests

A rather different approach to investigate whether the null hypothesis of “no structural change”
holds, is to use F test statistics. An important difference is that the alternative is specified:
whereas the generalized fluctuation tests are suitable for various patterns of structural changes,
the F tests are designed to test against a single shift alternative. Thus, the alternative can be
formulated on the basis of the model (1)

βi =
{

βA (1 ≤ i ≤ i0)
βB (i0 < i ≤ n) , (22)

where i0 is some change point in the interval (k, n−k). Chow (1960) was the first to suggest such a
test on structural change for the case where the (potential) change point i0 is known. He proposed
to fit two separate regressions for the two subsamples defined by i0 and to reject whenever

Fi0 =
û>û− ê>ê

ê>ê/(n− 2k)
. (23)

is too large, where ê = (ûA, ûB)> are the residuals from the full model, where the coefficients in
the subsamples are estimated separately, and û are the residuals from the restricted model, where
the parameters are just fitted once for all observations. The test statistic Fi0 has an asymptotic χ2

distribution with k degrees of freedom and (under the assumption of normality) Fi0/k has an exact
F distribution with k and n − 2k degrees of freedom. The major drawback of this “Chow test”
is that the change point has to be known in advance, but there are tests based upon F statistics
(Chow statistics), that do not require a specification of a particular change point and which will
be introduced in the following sections.
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5.1 F statistics: function Fstats

A natural idea to extend the ideas from the Chow test is to calculate the F statistics for all
potential change points or for all potential change points in an interval [i, ı] and to reject if any
of those statistics get too large. Therefore the first step is to compute the F statistics Fi for
k < i ≤ i ≤ ı < n − k, which can be easily done using the function Fstats. Again the model to
be tested is specified by a formula interface and the parameters i and ı are respresented by from
and to, respectively. Alternatively to indices of observations these two parameters can also be
specified by fractions of the sample; the default is to take from = 0.15 and implicitly to = 0.85.
To compute the F test statistics for all potential change points between January 1990 and June
1999 the appropriate command would be:

> fs <- Fstats(ecm.model, from = c(1990, 1), to = c(1999, 6), data = USIncExp2)

This returns an object of class "Fstats" which mainly contains a time series of F statistics.
Analogously to the empiricial fluctuation processes these objects can be printed, plotted and
tested.

5.2 Boundaries and plotting

The computation of boundaries and plotting of F statistics is rather similar to that of empirical
fluctuation processes introduced in the previous section. Under the null hypthesis of no structural
change boundaries can be computed such that the asymptotic probability that the supremum
(or the mean) of the statistics Fi (for i ≤ i ≤ ı) exceeds this boundary is α. So the following
command plots the process of F statistics with its boundary; the output can be seen in Figure 5.

> plot(fs)
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Figure 5: F statistics

As the F statistics cross their boundary, there is evidence for a structural change (at the level
α = 0.05). The process has a clear peak in 1998, which mirrors the results from the analysis by
empirical fluctuation processes and tests, respectively, that also indicated a break in the late 1990s.

It is also possible to plot the p values instead of the F statistics themselves by

> plot(fs, pval = TRUE)

which leads to equivalent results. Furthermore it is also possible to set up the boundaries for the
average instead of the supremum by:
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> plot(fs, aveF = TRUE)

In this case another dashed line for the observed mean of the F statistics will be drawn.

5.3 Significance testing with F statistics

As already indicated in the previous section, there is more than one possibility to aggregate the
series of F statistics into a test statistic. Andrews (1993) and Andrews and Ploberger (1994)
respectively suggested three different test statistics and examined their asymptotic distribution:

supF = sup
i≤i≤ı

Fi, (24)

aveF =
1

ı− i + 1

ı∑
i=i

Fi, (25)

expF = log

 1
ı− i + 1

ı∑
i=i

exp(0.5 · Fi)

 . (26)

The supF statistic in (24) and the aveF statistic from (25) respectively reflect the testing proce-
dures that have been described above. Either the null hypothesis is rejected when the maximal or
the mean F statistic gets too large. A third possibility is to reject when the expF statistic from
(26) gets too large. The aveF and expF test have certain optimality properties (Andrews and
Ploberger 1994). The tests can be carried out in the same way as the fluctuation tests: either by
supplying the fitted Fstats object or by a formula that describes the model to be tested. Hence
the commands

> sctest(fs, type = "expF")

and

> sctest(ecm.model, type = "expF", from = 49, to = 162, data = USIncExp2)

expF test

data: ecm.model
exp.F = 8.9955, p-value = 0.001311

lead to equivalent output.
The p values are computed based on Hansen (1997).1

6 Monitoring with the generalized fluctuation test

In the previous sections we were concerned with the retrospective detection of structural changes
in given data sets. Over the last years several structural change tests have been extended to
monitoring of linear regression models where new data arrive over time (Chu, Stinchcombe, and
White 1996; Leisch, Hornik, and Kuan 2000). Such forward looking tests are closely related to
sequential tests. When new observations arrive, estimates are computed sequentially from all
available data (historical sample plus newly arrived data) and compared to the estimate based
only on the historical sample. As in the retrospective case, the hypothesis of no structural change
is rejected if the difference between these two estimates gets too large.

1The authors thank Bruce Hansen, who wrote the original code for computing p values for F statistics in GAUSS,
for putting his code at disposal for porting to R.
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The standard linear regression model (1) is generalized to

yi = x>i βi + ui (i = 1, . . . , n, n + 1, . . .), (27)

i.e., we expect new observations to arrive after time n (when the monitoring begins). The sample
{(x1, y1), . . . , (xn, yn)} will be called the historic sample, the corresponding time period 1, . . . , n
the history period.
Currently monitoring has only been developed for recursive (Chu et al. 1996) and moving (Leisch
et al. 2000) estimates tests. The respective limiting processes are—as in the retrospective case—the
Brownian Bridge and increments of the Brownian Bridge. The empirical processes are rescaled to
map the history period to the interval [0,1] of the Brownian Bridge. For recursive estimates there
exists a closed form solution for boundary functions, such that the limiting Brownian Bridge stays
within the boundaries on the interval (1,∞) with probability 1−α. Note that the monitoring period
consisting of all data arriving after the history period corresponds to the Brownian Bridge after
time 1. For moving estimates, only the growth rate of the boundaries can be derived analytically
and critical values have to be simulated.
Consider that we want to monitor our ECM during the 1990s for structural change, using years
1986–1989 as the history period. First we cut the historic sample from the complete data set and
create an object of class "mefp":

> USIncExp3 <- window(USIncExp2, start = c(1986, 1), end = c(1989,

+ 12))

> me.mefp <- mefp(ecm.model, type = "ME", data = USIncExp3, alpha = 0.05)

Because monitoring is a sequential test procedure, the significance level has to be specified in
advance, i.e., when the object of class "mefp" is created. The "mefp" object can now be monitored
repeatedly for structural changes.
Let us assume we get new observations for the year 1990. Calling function monitor on me.mefp
automatically updates our monitoring object for the new observations and runs a sequential test
for structural change on each new observation (no structural break is detected in 1990):

> USIncExp3 <- window(USIncExp2, start = c(1986, 1), end = c(1990,

+ 12))

> me.mefp <- monitor(me.mefp)

Then new data for the years 1991–2001 arrive and we repeat the monitoring:

> USIncExp3 <- window(USIncExp2, start = c(1986, 1))

> me.mefp <- monitor(me.mefp)

Break detected at observation # 72

> me.mefp

Monitoring with ME test (moving estimates test)

Initial call:
mefp.formula(formula = ecm.model, type = "ME", data = USIncExp3, alpha = 0.05)

Last call:
monitor(obj = me.mefp)

Significance level : 0.05
Critical value : 3.109524
History size : 48
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Last point evaluated : 182
Structural break at : 72

Parameter estimate on history :
(Intercept) coint.res diff.income
18.9299679 -0.3893141 0.3156597
Last parameter estimate :
(Intercept) coint.res diff.income
27.94869106 0.00983451 0.13314662

The software informs us that a structural break has been detected at observation #72, which
corresponds to December 1991. Boundary and plotting methods for "mefp" objects work (almost)
exactly as their "efp" counterparts, only the significance level alpha cannot be specified, because
it is specified when the "mefp" object is created. The output of plot(me.mefp) can be seen in
Figure 6.

Monitoring with ME test (moving estimates test)
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Figure 6: Monitoring structural change with bandwidth h = 1

Instead of creating an "mefp" object using the formula interface like above, it could also be done
re-using an existing "efp" object, e.g.:

> USIncExp3 <- window(USIncExp2, start = c(1986, 1), end = c(1989,

+ 12))

> me.efp <- efp(ecm.model, type = "ME", data = USIncExp3, h = 0.5)

> me.mefp <- mefp(me.efp, alpha = 0.05)

If now again the new observations up to February 2001 arrive, we can monitor the data

> USIncExp3 <- window(USIncExp2, start = c(1986, 1))

> me.mefp <- monitor(me.mefp)

Break detected at observation # 70

and discover the structural change even two observations earlier as we used the bandwidth h=0.5
instead of h=1. Due to this we have not one history estimate that is being compared with the new
moving estimates, but we have a history process, which can be seen on the left in Figure 7. This
plot can simply be generated by plot(me.mefp).
The results of the monitoring emphasize the results of the historic tests: the moving estimates
process has two strong shifts, the first around 1992 and the second around 1998.
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Monitoring with ME test (moving estimates test)
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Figure 7: Monitoring structural change with bandwidth h = 0.5

7 Conclusions

In this paper, we have described the strucchange package that implements methods for testing
for structural change in linear regression relationships. It provides a unified framework for dis-
playing information about structural changes flexibly and for assessing their significance according
to various tests.

Containing tests from the generalized fluctuation test framework as well as tests based on F
statistics (Chow test ststistics) the package extends standard significance testing procedures: There
are methods for fitting empirical fluctuation processes (CUSUM, MOSUM and estimates-based
processes), computing an appropriate boundary, plotting these results and finally carrying out a
formal significance test. Analogously a sequence of F statistics with the corresponding boundary
can be computed, plotted and tested. Finally the methods for estimates-based fluctuation processes
have extensions to monitor incoming data.
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A Implementation details for p values

An important and useful tool concerning significance tests are p values, especially for application
in a software package. Their implementation is therefore crucial and in this section we will give
more detail about the implementation in the strucchange package.

For the CUSUM tests with linear boundaries there are rather good approximations to the asymp-
totic p value functions given in Zeileis (2000a). For the recursive estimates fluctuation test there
is a series expansion, which is evaluated for the first hundred terms. For all other tests from the
generalized fluctuation test framework the p values are computed by linear interpolation from tab-
ulated critical values. For the Recursive CUSUM test with alternative boundaries p values from
the interval [0.001, 1] and [0.001, 0.999] for the OLS-based version respectively are approximated
from tables given in Zeileis (2000b). The critical values for the Recursive MOSUM test for levels
in [0.01, 0.2] are taken from Chu et al. (1995a), while the critical values for the levels in [0.01, 0.1]
for the OLS-based MOSUM and the ME test are given in Chu et al. (1995b); the parameter h is
in both cases interpolated for values in [0.05, 0.5].

The p values for the supF , aveF and expF test are approximated based on Hansen (1997), who also
wrote the original code in GAUSS, which we merely ported to R. The computation uses tabulated
simulated regression coefficients.
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