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Appendix

The appendix has three sections. The first section constructs the rational expectations (RE) and sticky

information (SI) state space models (SSMs) the paper estimates. The second section describes the data

and Bayesian sequential Monte Carlo (SMC) methods used to estimate the SSMs. The SMC methods

consist of a Metropolis-Hastings (MH) Markov chain Monte Carlo (MCMC) sampler wrapped around a

Rao-Blackwellized auxillary particle filter (APF). Rao-Blackwellization addresses the nonlinearities in

the SSMs. The nonlinearities are created by stochastic volatility (SV) in our version of the Stock and

Watson (2007) unobserved components (UC) model of inflation. As mentioned in the paper, we call this

UC model the BNSW model. Several additional estimation issues are discussed in the third section.

A.1 Summaries of the BNSW model and the RE- and SI-SSMs

We build and estimate RE- and SI-SSMs under different assumptions about inflation expectations. The

RE-SSM sets the h-quarter ahead inflation prediction of the average member of the Survey of Profes-

sional Forecasters (SPF), πSPFt,h , to the h-quarter ahead RE forecast of inflation, Etπt+h, plus classical

measurement error, σψ,hψh,t , where ψh,t ∼ N
(
0, 1

)
and h = 1, . . . ,H . The SI-SSM equates πSPFt,h to a

h-quarter ahead SI inflation forecast, Ftπt+h, and σψ,hψh,t .

The RE- and SI-SSMs engage our BNSW model to generate realized inflation, πt . Our BNSW model

is standard with one exception. The standard elements are (i) πt equals trend inflation, τt , plus gap

inflation, εt , (ii) the evolution of the former latent variable is a random walk in which the innovation,

ηt , is hit by a lag of trend inflation SV, ξη,t−1, and (iii) this SV and the SV of gap inflation, ξυ,t , are

governed by geometric random walks
(
in lnξ2

η,t and lnξ2
υ,t
)
. We depart from the standard specification

by making εt a first-order autoregression, AR(1), that has its innovation υt interacting with ξυ,t−1.

Trend inflation and ξη,t are integrated out of the RE-SSM. The reason is πSPFt,h and πt share τt by

combining πSPFt,h = Etπt+h + σψ,hψh,t with the BNSW model. Thus, making the dependent variables of

the h = 1 toH observation equations, πSPFt,h − πt , leaves εt and ξυ,t as the only states of the RE-SSM.

The SI-SSM is also restricted by the common inflation trend. Although the dependent variables

are the same as in the RE case, the SI law of motion of inflation forecasts adds to each SI observation

equation a lag of its dependent variable, πSPFt−1,h − πt−1, as a predetermined regressor, the negative of

the first difference of inflation, −∆πt = −ξη,t−1ηt − εt + εt−1, and a lag of ψh,t in addition to εt and

ψh,t . Hence, εt , ξυ,t , ξη,t , and ψh,t , h = 1, . . . ,H , are states of the SI-SSM.
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A.1.a Our BNSW Model

We reproduce our version of the BNSW model of inflation, πt ,

πt = τt + εt , (A.1.1)

τt = τt−1 + ξη,t−1ηt , ηt ∼ N
(
0, 1

)
, (A.1.2)

εt = ρεt−1 + ξυ,t−1υt , υt ∼ N
(
0, 1

)
, (A.1.3)

lnξ2
η,t = lnξ2

η,t−1 + σηφη,t , φη,t ∼ N
(
0, 1

)
, (A.1.4)

lnξ2
υ,t = lnξ2

υ,t−1 + συφυ,t , φυ,t ∼ N
(
0, 1

)
. (A.1.5)

Equation (A.1.1) decomposes πt into τt and εt . As mentioned previously, τt follows a random walk

with SV, which is equation (A.1.2). Equation (A.1.3) is the AR(1) with SV that generates εt , where the

AR1 parameter ρ ∈
(
−1, 1

)
. The geometric random walks (A.1.4) and (A.1.5) produce the SVs. We

assume the standard normal innovations ηt , υt , φη,t , and φυ,t form a vector of martingale difference

sequences on the filtration Ft−1 for t = 0, 1, 2, . . . , ∞, given initial conditions τ0, ε0, ξη,0, and ξυ,0 .

A.1.b The RE-SSM

Our BNSW model predicts Etπt+h = τt + ρhεt and implies τt = πt − εt , where it is implicit the states

are conditional on date t information. Substitute for τt to find Etπt+h = πt +
(
ρh − 1

)
εt . Since our RE

assumption is πSPFt,h = Etπt+h + σψ,hψh,t , for h = 1, . . . ,H , the result is

ΠSPFt,h ≡ πSPFt,h − πt =
(
ρh − 1

)
εt + σψ,hψh,t , ψh,t ∼ N

(
0, 1

)
. (A.1.6)

Equation (A.1.6) is the hth observation equation of the RE-SSM. The dependent variable ΠSPFt,h is the

anticipated h-quarter ahead accumulation of inflation anticipated by the average member of the SPF.

We build the system of observation equations for the RE-SSM

ΠSPFt ≡


πSPFt,1 − πt

πSPFt,2 − πt

πSPFt,3 − πt

 = CCCRE SRE,t + DDDRE ΨRE,t , ΨRE,t ∼ N (
03×1, I3

)
, (A.1.7)

by stacking the observation equation (A.1.6) forH = 3, where CCCRE =
[
ρ− 1 ρ2 − 1 ρ3 − 1

]′
, SRE,t = εt ,

DDDRE has the diagonal
[
σψ,1 σψ,2 σψ,3

]′
and zeros elsewhere, and ΨRE,t = [ψ1,t ψ2,t ψ3,t

]′
. The state

equations for RE-SSM are the AR(1) of equation (A.1.3) and geometric random walk (A.1.5).
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A.1.c The SI-SSM

Sticky information places a wedge between πSPFt,h and Etπt+h besides measurement error. The

wedge is tied to the assumption the average member of the SPF does not completely update to Etπt+h

date by date. The decision not to update inflation forecasts fully reflect costs faced by a SI forecaster.

The costs are summarized by the probability λ the current SI inflation forecast, Ftπt+h, is held at the SI

inflation forecast of the previous period, Ft−1πt+h, instead of updating as RE predicts. The SI inflation

forecast is updated to Etπt+h at probability 1 − λ. Thus, the SI law of motion of inflation forecasts is

Ftπt+h = λFt−1πt+h +
(
1− λ

)
Etπt+h, (A.1.8)

where 1
/(

1−λ
)

is the frequency at which the SI forecaster updates Ftπt+h on average, given λ ∈
(
0, 1

)
.

The observation equations of the SI-SPF SSM relies on Etπt+h computed by our BNSW model and its

restriction on the first difference ofπt . We substitute for Etπt+h in the SI law of motion (A.1.8) to obtain(
1− λL

)
Ftπt+h =

(
1− λ

)[
τt + ρhεt

]
. Equation (A.1.1) of our BNSW model is used to replace τt in the

previous expression giving us
(
1−λL

)
Ftπt+h =

(
1−λ

)[
πt +

(
ρh − 1

)
εt
]
. Next, moveπt and λFt−1πt+h

to opposite sides of the equality to obtain Ftπt+h −πt = λ
(
Ft−1πt+h −πt

)
+
(
1−λ

) (
ρh − 1

)
εt . Finally,

add and subtract πt−1 on the right side of the previous equation and recognize that ∆πt = ξη,t−1ηt −(
εt − εt−1

)
using the BNSW model to produce the SI observation equation

ΠSPFt = λΠSPFt−1 +
[(

1− λ
)
ρh − 1

]
εt + λεt−1 − λξη,t−1ηt + σψ,hψh,t − λσψ,hψh,t−1. (A.1.9)

Use πSPFt,h = Ftπt+h + σψ,hψh,t to eliminate Ftπt+h and Ft−1πt+h from the observation equation (A.1.9).

By piling up the SI observation equation (A.1.9) for h = 1, 2, and 3, we have the system of obser-

vation equations

ΠSPFt = CCCSI,t SSI,t − λξη,t−1 ηt I3, (A.1.10)

where SSI,t =
[
εt δ1,t δ2,t δ3,t −λζ1,t −λζ2,t −λζ3,t λ

]′
, δt,h = εt−1 + ζh,t − λζh,t−1, ζh,t = σψ,hψh,t ,

CCCSI,t =


(
1− λ

)
ρ − 1 1 0 0 0 0 0 ΠSPFt−1,1(

1− λ
)
ρ2 − 1 0 1 0 0 0 0 ΠSPFt−1,2(

1− λ
)
ρ3 − 1 0 0 1 0 0 0 ΠSPFt−1,3

 ,
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and ΠSPFt−1,h = πSPFt−1,h − πt−1. Creating δh,t and ζh,t and including these variables in the SI-state vector

avoids having to estimateψt,4 and its scale volatility, σψ,4. However, this comes at the cost of losing the

4-quarter ahead average SPF inflation prediction in the observation equations of the RE- and SI-SSMs.

The system of state equations of the SI-SSM is

SSI,t = AAASI SSI,t−1 + BBBSI,t ESI,t , (A.1.11)

and the random walks of the SVs of trend and gap inflation, in lnξ2
η,t and lnξ2

υ,t , which are equations

(A.1.4) and (A.1.5) of our BNSW model, where

AAASI =



ρ
... 01×3

... 01×3
... 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ13×1
... 03×3

... I3
... 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... 03×3

... 03×3
... 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... 01×3

... 01×3
... 1



, BBBSI,t =



ξυ,t−1
... 01×3

. . . . . . . . . . . . . . . .

03×1
... I3

. . . . . . . . . . . . . . . .

03×1
... −λI3

. . . . . . . . . . . . . . . .

0
... 01×3



,

ESI,t =
[
υt ζ1,t ζ2,t ζ3,t

]′
, and the state system covariance matrix BBBSI,tEt

{
ESI,tE′SI,t

}
BBB′SI,t is

QQQSI,t =



ξ2
υ,t−1 0 0 0 0 0 0 0

0 σ 2
ψ,1 0 0 −λσ 2

ψ,1 0 0 0

0 0 σ 2
ψ,2 0 0 −λσ 2

ψ,2 0 0

0 0 0 σ 2
ψ,3 0 0 −λσ 2

ψ,3 0

0 −λσ 2
ψ,1 0 0 λ2σ 2

ψ,1 0 0 0

0 0 −λσ 2
ψ,2 0 0 λ2σ 2

ψ,2 0 0

0 0 0 −λσ 2
ψ,3 0 0 λ2σ 2

ψ,3 0

0 0 0 0 0 0 0 0



. (A.1.12)

Since the last element of SSI,t is the fixed SI parameter λ, the (7,7) element of ΣΣΣSI,t is zero.
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A.2. Estimating the RE- and SI-SSMs

This section describes the data and Bayesian SMC methods used to estimate the RE- and SI-SSMs. As in

the paper, we refer to the RE- and SI-SSMs asMRE andMSI . Estimation ofMRE andMSI is performed

on the software platform Julia, v1.1.0.

A.2.a The Data

The states and parameters of MRE and MSI are estimated on two samples. A sample consists of re-

alized CPI or realized GNP/GDP deflator (PGNP/PGDP) inflation and associated average SPF inflation

predictions. The CPI (PGNP/PGDP) sample is 1981Q 4–2018Q 4 (1969Q 1–2018Q 4), T = 149 (T = 200).

The RE- and SI-term structures of anticipated h-quarter accumulated SPF inflation predictions are lim-

ited to h = 1, 2, 3. The dependent variables ΠSPFt cannot have πSPFt,4 because it requires πSPFt−1,4 as part

of the predetermined variable in the SI observation equation (A.1.9). The SPF does not record 5-quarter

ahead inflation predictions. Our measure of πt is the fifth definition of realized CPI and PGNP/PGDP

inflation in the SPF forecast error statistics spreadsheets compiled by the Real-Time Data Re-

search Center of the Federal Reserve Bank of Philadelphia in the CPI-SPF data and PDNP/PDGP-SPF data.

These webpages also have average CPI-SPF and PGNP/PGDP-SPF inflation predictions.

A.2.b Rao-Blackwellization of the RE- and SI-SSMs

Nonlinearities inMRE andMSI are created by the SVs of trend and gap inflation. Inflation gap SV creates

a nonlinearity in the state equation (A.1.3) of MRE . However, this state equation yields conditionally

linear and Gaussian estimates of SRE,t+1 given knowledge of ξυ,t . The same holds true for SSI,t+1 in

the state equation (A.1.11). Also, the SI observation equation (A.1.10) is linear and Gaussian, given ξη,t .

The suggests breaking the state vectors ofMRE andMSI into linear and nonlinear elements.

The process of creating a conditionally linear and Gaussian SSM out of a nonlinear SSM is referred

to as Rao-Blackwellization (RB). Conditional on realizations of the SV(s), the RB step lets us apply the

Kalman filter to integrate Sm,t out of Mm, m = RE, SI. Suppose j = 1, . . . , J draws or particles of

S(j)m,t−1 are available. The RB step “mixes together” as many Kalman filters to compute the conditional

distribution Sm,t|t ∼ N
(
S(j)m,t|t , ΣΣΣ(j)m,t|t), where ΣΣΣ(j)m,t|t is the mean square error (MSE) of S(j)m,t . This

explains Chen and Liu (2000) calling a RB-particle filter that marginalizes Sm,t a mixture Kalman filter;

also see Creal (2012; section 2.5.7). Since the distribution of Sm,t is computed analytically, the sampling

error of the simulator is reduced; see Chen and Liu (2000), Creal (2012), and Särkkä (2013).
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Only two steps have to be added to RB a bootstrap particle filter (BPF). First, given ΠSPFt , ΘRE ,

ξ(j)υ,t−1, S(j)RE,t−1|t−1, and ΣΣΣ(j)RE,t−1|t−1, run the Kalman filter onMRE to generate S(j)RE,t|t and ΣΣΣ(j)RE,t|t for each

j = 1, . . . , J . InMRE , the RB-BPF updates the nonlinear state of gap inflation SV by treating the random

walk law of motion (A.1.5) as a prior distribution from which to create
{
ξ(j)υ,t

}J
j=1

by simulation. InMSI ,

the prior at date t−1 depends on ξ(j)η,t−1, ξ(j)υ,t−1, S(j)SI,t−1|t−1, and ΣΣΣ(j)SI,t−1|t−1. Updating of S(j)SI,t|t and ΣΣΣ(j)SI,t|t
relies on the Kalman filter while simulating the random walk law of motion (A.1.4) yields

{
ξ(j)η,t

}J
j=1

.

The Kalman filter also yields an ensemble of log likelihoods,
{
˜l(j)m,t

}J
j=1

, that imply particle weights{
ω(j)m,t

}J
j=1

. These weights, which represent the contribution of a particle to the likelihood of Mm

at date t, are ω(j)m,t = exp
{
˜l(j)m,t

}/∑J
j=1 exp

{
˜l(j)m,t

}
for j = 1, . . . , J and m = RE, SI. Next, resam-

ple
{
ω(j)m,t

}J
j=1

(with replacement) and record the indexes of the resampled weights to reorganize{
S(j)m,t|t , ΣΣΣ(j)m,t|t , ξ(j)υ,t}Jj=1

. Thus, the BPF propagates without conditioning on information in ΠSPFt to

create ensembles of the date t linear and nonlinear states,
{
S(j)m,t|t , ΣΣΣ(j)m,t|t , ξ(j)υ,t}Jj=1

. Nonetheless, as

the RB-BPF moves sequentially from date 1 to s, using the weights to resample reduces the chance of

degeneracy in the particle stream
{
S(j)m,t|t , ΣΣΣ(j)m,t|t , ξ(j)υ,t}Jj=1

for s < t, as J −→ ∞.

A.2.c The RB-Auxiliary Particle Filter

Pitt and Shephard (1999, 2001) develop the APF to improve the efficiency of the simulator compared

with the BPF; also see Creal (2012), and Särkkä (2013). The APF is an algorithm that first propagates and

then resamples the states. The reason for reversing the order of these tasks compared with the BPF is

to use information from the sample at date t to construct weights for resampling the date t−1 states.

However, Johansen and Doucet (2008) and Creal (2012) discuss that the APF does not necessarily yield

more efficient estimates of the states. Whether the APF yields more efficient estimates of the states

depends on the distribution of the predictive likelihoods grounded in prior draws of the states having

thinner tails compared with the distribution of the resampled predictive likelihoods.

Our RB-APF is a variation of algorithm 3 of Creal (2012, p. 267) and the procedures outlined in

the appendix to Pitt, dos Santos Silva, Giordani, and Kohn (2012). The next algorithm implements our

version of the RB-APF forMSI conditional on ΘSI .
1. Set $(j)

SI,0 = 1
/
J .

2. Draw J particles
{
S(j)SI,0|0, ΣΣΣ(j)SI,0|0, ξ(j)η,0|0, ξ(j)υ,0|0}Jj=1

from the priors S(j)SI,0|0 ∼ N
(
SSI,0, ΣΣΣSI,0|0),
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ΣΣΣ(j)SI,0|0 = ΣΣΣSI,0|0, ln
[
ξ(j)η,0

]2
, and ln

[
ξ(j)υ,0

]2
, for j = 1, . . . , J .

3. At date t = 1 for j = 1, 2, . . . , J , run the Kalman filter prediction step on the conditionally linear

and Gaussian system of observation and state equations (A.1.10) and (A.1.11) ofMSI

S(j)SI,1|0 = AAASI S
(j)
SI,0|0,

ΣΣΣ(j)SI,1|0 = AAASI ΣΣΣ(j)SI,0|0AAA′SI + QQQ(j)SI,0,
ΩΩΩ(j)SI,1|0 = CCCSI,1ΣΣΣ(j)SI,1|0CCC′SI,1 + DDD(j)SI,0DDD(j) ′SI,0,

ΠSPF (j)SI,1 = ΠSPF1 − CCCSI,1 S
(j)
SI,1|0

˜l(j)SI,1 = −1
2

[
ln
∣∣∣ΩΩΩ(j)SI,1|0∣∣∣ + ΠSPF (j) ′SI,1 inv

(ΩΩΩ(j)SI,1|0) ΠSPF (j)SI,1

]
,

whereQQQ(j)SI,0 is defined by equation (A.1.12) and DDD(j)SI,0 = λξ
(j)
η,0.

4. Reform the cloud of states into
{
S̃(j)SI,0|0, Σ̃ΣΣ(j)SI,0|0, ξ̃(j)η,0, ξ̃(j)υ,0}Jj=1

using indexes found by stratified

resampling with replacement of the first stage particle weights $SI,0|1 =
ω(j)SI,0|1∑J
j=1ω

(j)
SI,0|1

, where

ω(j)SI,0|1 =
$(j)
SI,0 exp

{
˜l(j)SI,1

}
∑J
j=1
$(j)
SI,0

; see Hol, Schön, and Gustafsson (2006) and Li, Bolic, and Djuric (2015).

5. Draw from
{
S̃(j)SI,0|0, Σ̃ΣΣ(j)SI,0|0, ξ̃(j)η,0, ξ̃(j)υ,0}Jj=1

to run the entire Kalman filter algorithm

S(j)SI,1|0 = AAASI S̃
(j)
SI,0|0,

ΣΣΣ(j)SI,1|0 = AAASI Σ̃ΣΣ(j)SI,0|0AAA′SI + Q̃QQ(j)SI,0,
ΩΩΩ(j)SI,1|0 = CCCSI,1ΣΣΣ(j)SI,1|0CCC′SI,1 + D̃DD(j)SI,0 D̃DD(j) ′SI,0,

ΠSPF (j)SI,1 = ΠSPF1 − CCCSI,1 S
(j)
SI,1|0

l (j)SI,1 = −1
2

[
ln
∣∣∣ΩΩΩ(j)SI,1|0∣∣∣ + ΠSPF (j) ′SI,1 inv

(ΩΩΩ(j)SI,1|0) ΠSPF (j)SI,1

]
,

KKK(j)
SI,1 = AAASI ΣΣΣ(j)SI,1|0CCC′SI,1 inv

(ΩΩΩ(j)SI,1|0) ,
S(j)SI,1|1 = S(j)1|0 + KKK

(j)
SI,1 Π̃SPFSI,1,

ΣΣΣ(j)SI,1|1 = ΣΣΣ(j)SI,1|0 − ΣΣΣ(j)SI,1|0CCC′SI,1 inv
(ΩΩΩ(j)SI,1|0) CCCSI,1ΣΣΣ(j)SI,1|0.

A .7



6. Compute second stage weights,$(j)
SI,1 =

ω(j)SI,1∑J
j=1ω

(j)
SI,1

, for j = 1, . . . , J , whereω(j)SI,1 = exp

{
l (j)SI,1 − ˜̃l(j)SI,1

}

and resampling of the first stage predictive log likelihoods,

{˜̃l(j)SI,1
}J
j=1

, is done the same way as

for the states in step 4.

7. Generate J realizations of the trend and inflation gap SVs, ln
[
ξ(j)η,1

]2
and ln

[
ξ(j)υ,1

]2
, using the

independent random walks (A.1.4) and (A.1.5) conditional on
{

ln
[
ξ̃(j)η,0

]2
, ln

[
ξ̃(j)υ,0

]2
}J
j=1

, and J

draws from two independent standard normal distributions.

8. Pass
{
S(j)SI,1|1, ΣΣΣ(j)SI,1|1, ξ̃(j)η,1, ξ̃(j)υ,1}Jj=1

to repeat the algorithm for steps 2 to 7 at t = 2, 3, . . . , T ,

(a) Use the observation and state equations (A.1.10) and (A.1.11) ofMSI to operate the Kalman

filter prediction step

S(j)SI,t|t−1 = AAASI S
(j)
SI,t−1|t−1,

ΣΣΣ(j)SI,t|t−1 = AAASI ΣΣΣ(j)SI,t−1|t−1AAA′SI + QQQ
(j)
SI,t−1,

ΩΩΩ(j)SI,t|t−1 = CCCSI,t ΣΣΣ(j)SI,t|t−1CCC′SI,t + DDD
(j)
SI,t−1DDD

(j) ′
SI,t−1,

ΠSPF (j)SI,t = ΠSPFt−1 − CCCSI,t S
(j)
SI,t|t−1,

˜l(j)SI,t = −1
2

[
ln
∣∣∣ΩΩΩ(j)SI,t|t−1

∣∣∣ + ΠSPF (j) ′SI,t inv
(ΩΩΩ(j)SI,t|t−1

) ΠSPF (j)SI,t

]
.

whereQQQ(j)SI,t−1 is defined by equation (A.1.12) and DDD(j)SI,t−1 = λξ
(j)
η,t−1.

(b) Resample (with replacement) the states using the ensemble of first stage weights
{
$(j)
t−1|t

}J
j=1

to produce
{
S̃(j)SI,t|t , Σ̃ΣΣ(j)SI,t|t , ξ̃(j)η,t , ξ̃(j)υ,t}Jj=1

, where $(j)
t−1|t =

ω(j)SI,t−1|t∑J
j=1ω

(j)
SI,t−1|t

and ω(j)SI,t−1|t =

$(j)
SI,t−1∑J

j=1
$(j)
SI,t−1

exp
{
˜l(j)SI,t

}
.
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(c) Employ the resampled states in the Kalman filter filter operations

S(j)SI,t|t−1 = AAASI S̃
(j)
SI,t−1|t−1,

ΣΣΣ(j)SI,t|t−1 = AAASI Σ̃ΣΣ(j)SI,t−1|t−1AAA′SI + Q̃QQ
(j)
t−1,

ΩΩΩ(j)SI,t|t−1 = CCCSI,t ΣΣΣ(j)SI,t|t−1CCC′SI,t + D̃DD
(j)
SI,t−1 D̃DD

(j) ′
SI,t−1,

ΠSPF (j)SI,t = ΠSPFt − CCCSI,t S
(j)
SI,t|t−1,

l (j)SI,t = −1
2

[
ln
∣∣∣ΩΩΩ(j)SI,t|t−1

∣∣∣ + ΠSPF (j) ′t inv
(ΩΩΩ(j)SI,t|t−1

) ΠSPF (j)t

]
,

KKK(j)
SI,t = AAASI ΣΣΣ(j)SI,t|t−1CCC′SI,t inv

(ΩΩΩ(j)SI,t|t−1

)
,

S(j)SI,t|t = S(j)SI,t|t−1 + KKK
(j)
SI,t Π̃(j)SI,t ,

ΣΣΣ(j)SI,t|t = ΣΣΣ(j)SI,t|t−1 − ΣΣΣ(j)SI,t|t−1CCC′SI,t inv
(ΩΩΩ(j)SI,t|t−1

)
CCCSI,t ΣΣΣ(j)SI,t|t−1,

(d) For j = 1, . . . , J , use ω(j)SI,t = exp

{
l (j)SI,t − ˜̃l(j)SI,t

}
to form the second stage weights, $(j)

SI,t =

ω(j)SI,t
/∑J

j=1ω
(j)
SI,t .

(e) Employ the independent random walks (A.1.4) and (A.1.5) to draw J particles of the non-

linear states ξ(j)η,t and ξ(j)υ,t , given the resampled particles
{
ξ̃(j)η,t−1, ξ̃

(j)
υ,t−1

}J
j=1

, and two new

independent samples of J standard normal random numbers.

9. The filtered distribution of ξk,t conditional on
{
ξ̃(j)k,t−1

}J
j=1

, ΠSPF1:t ,MSI and ΘSI ,
P
(
ξk,t

∣∣∣ξ̃k,t−1, ΠSPF1:t , MSI ; ΘSI) ,
is approximated by the discrete distribution of particles

{
ξ(j)k,t

}J
j=1

using the pdf of
{
ω(j)SI,t−1|t

}J
j=1

for k = η, υ. The associated filtered distribution of SSI,t is approximated by a mixture of normal

distributionsN
(
S(j)SI,t|t , ΣΣΣ(j)SI,t|t) with the same pdf. Thus, the filtered means of SSI,t|t , ΣΣΣSI,t|t , ξη,t

and ξυ,t are calculated as SSI,t|t =
∑J
j=1$

(j)
SI,tS

(j)
SI,t|t , ΣΣΣSI,t|t =∑Jj=1$

(j)
SI,tΣΣΣ(j)SI,t|t , ξη,t =∑Jj=1$

(j)
SI,tξ

(j)
η,t ,

and ξυ,t =
∑J
j=1$

(j)
SI,tξ

(j)
υ,t .
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10. The likelihood ofMm is estimated at date t using

P
(ΠSPFt

∣∣∣ΠSPF1:t−1; Mm, Θm) =
1
J

J∑
j=1

ω(j)m,t

 J∑
j=1

ω(j)m,t−1|t , (A.2.1)

for m = RE, SI, which replicates equation (17) of Pitt, et al (2012).

A.2.d A Random Walk PMH-MCMC

Our SMC simulator relies on unbiased estimates of the likelihood of a SSM to construct posterior dis-

tributions of its parameters. Andrieu, Doucet, and Holenstein (2010) show the posterior distributions

produced by a MH-MCMC are unaffected by the estimation error that results from computing a likeli-

hood, L
(ΠSPF1:T

∣∣∣Θm, Mm

)
= exp

{∑T
t=1 lnP

(ΠSPFt

∣∣∣ΠSPF1:t−1; Mm, Θm)}, using equation (A.2.1), as long

as it is unbiased. Conditions for a particle filter to produce unbiased estimates of the likelihood are

discussed by Andrieu, Doucet, and Holenstein (2010). They call the combination of a MH-MCMC and a

particle filer a particle (P)MH-MCMC algorithm.

These results motivate us to create a PMH-MCMC by wrapping a random walk MH-MCMC simu-

lator around our Rao-Blackwellized-APF. We implement a PMH-MCMC algorithm to generate posterior

distributions of Sm,t , ΣΣΣm,t , ξη,t , ξυ,t , and Θm for m = RE, SI following the advice of Pitt, dos Santos

Silva, Giordani, and Kohn (2012), Doucet, Pitt, Deligiannidis, and Kohn (2015), and Martino, Elvira, and

Camps-Valls (2018).

A problem is PMH-MCMC samplers can be computationally complex and costly. Pitt, dos Santos

Silva, Giordani, and Kohn (2012) propose a solution. The solution calculates the optimal trade-off be-

tween the computational costs of increasing the number particles, J , against the benefit of a higher

acceptance rate in the PMH-MCMC. The stopping rule for determining the optimal J relies on the vari-

ance in the error of the log likelihood of a SSM. The practical issue is that Pitt dos Santos Silva, Giordani,

and Kohn ground their analysis in the assumption the proposal of the MH-MCMC is ideal. Since access

to an ideal proposal is rare, Doucet, Pitt, Deligiannidis, and Kohn (2015) suggest a reasonable value of

J is one that produces an error variance of the log likelihood equal to 1.22.

We follow their advice and a procedure outlined by Pitt, dos Santos Silva, Giordani, and Kohn

(2012) to calibrate J . First, we run the PMH-MCMC onMRE andMSI with a large J and a small number

of steps to obtain an estimates close to the posterior means of ΘRE and ΘSI . Next, MRE and MSI are
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simulated on a grid of particles that ranges from only a few, say, 26, to several hundred conditional

on the posterior mean, Θm. At each point on the grid, compute the simulated log likelihood of Mm.

Choose J to set the standard deviation of the error of the log likelihood to be about 1.2.

The PMH-MCMC algorithm consists of the following steps.

1. Draw the initial parameter estimates, Θ̂m,0, to generate L̂
(ΠSPF1:T

∣∣∣Θ̂m,0,Mm

)
using the RB-APF

algorithm and likelihood (A.2.1) for m = RE, SI.

2. Create the proposed update of Θ̂m,0, Θm,1, using the multivariate MH random walk law of motion,

Θm,1 = Θ̂m,0 + Γ 1/2Θ,m,0ϑm,1,

where Γ 1/2Θm,0 is the Cholesky decomposition of an initial draw of the covariance matrix of Θm, ΓΘm,0
∼
(
2.4

/√
dm

)2
IW

(
100.0, 0.01Idm

)
, ϑm,1 ∼ N

(
0dm×1, Idm

)
, and dm = dim

(Θm).

3. Calculate the MH criterion α1 = min

L̂
(ΠSPF1:T

∣∣∣Θm,1,Mm

)
q
(Θm,0, Θm,1) P(Θm,1)

L̂
(ΠSPF1:T

∣∣∣Θ̂m,0,Mm

)
q
(Θm,1, Θm,0) P(Θ̂m,0) , 1

, where

running the RB-APF produces L̂
(ΠSPF1:T

∣∣∣Θm,1,Mm

)
, q (·, ·) is the kernel of the proposal distribu-

tion, and P
(Θm,1) and P

(Θ̂m,0) are priors located at Θm,1 and Θ̂m,1, respectively.

4. Draw a uniform random variable ν1 ∼ U
(
0, 1

)
. If ν1 ≤ α1, set Θ̂m,1 = Θm,1 and the counter ˚rffl to

one. Otherwise, Θ̂m,1 = Θ̂m,0 and ˚rffl = 0.

5. For i = 2, 3, . . . ,K, repeat steps 2, 3, and 4 using the MH random walk law of motion

Θm,k = Θ̂m,k−1 + Γ 1/2Θ,m,k−1 ϑm,k, ϑm,k ∼ N
(
0dm×1, Idm

)
,

to test αi =min

 L̂
(ΠSPF1:T

∣∣∣Θm,k,Mm

)
q
(Θm,k−1, Θm,k) P(Θm,k)

L̂
(ΠSPF1:T

∣∣∣Θ̂m,k−1,Mm

)
q
(Θm,k, Θm,k−1

)
P
(Θ̂m,k−1

) , 1

 against a uniform ran-

dom variable νi ∼U
(
0, 1

)
. If νi ≤ αi, we have Θ̂m,k = Θm,k. Otherwise, Θ̂m,k = Θ̂m,k−1. The latter

decision holds the counter at ˚rffl while the former outcome updates ˚rffl to ˚rffl + 1.

Part of the output of the PMH-MCMC is
{Θ̂m,k, L̂(ΠSPF1:T

∣∣∣Θ̂m,k,Mm

)}K
k=1

. These parameter draws and

likelihoods characterize the posterior distribution ofMm, given the prior P
(Θm).
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The kernel of the proposal distribution, q (·, ·), appears in the MH ratio in steps 3 and 5. The

reason is the support of the targets and proposals of Θm differ. The latter have support on the (whole)

real line because ϑm ∼ N
(
0dm×1, Idm

)
. The targets of ρ ∈

(
−1, 1

)
, συ, σψ,h ∈

(
0, ∞

)
, and λ ∈

(
0, 1

)
have bounded support. Lindström (2017) shows q (·, ·) is the gradient of the target restricted by its

support, where the proposal is a function of the target using the natural logarithm.

A.3 Additional Computing Issues

The PMH-MCMC inserts a simulator, the RB-APF, into another simulator, a MCMC sampler. This leaves

us with choices to make for the number of steps in the MCMC sampler, K, and for every step k the

number of particles, J , to implement the RB-APF. Our choice of K is driven by the oft cited goal of

producing posterior distributions of ΘRE and ΘSI that are approximately serially uncorrelated.

We set J guided by theory developed and methods proposed by Pitt, et al (2012) and Doucet, Pitt,

Deligiannidis, and Kohn (2015). As previously mentioned, Pitt et al provide theory to choose the optimal

number of particles by setting the error variance of the estimated log likelihood to the theoretical

optimum. However, the theory is grounded on the assumption that the proposal of the PMH-MCMC is

an exact match for the target (i.e., the posterior) distribution. By relaxing this requirement, Doucet et al

are able to construct a theoretical upper bound on computing time that trades it for the error variance

of the estimated log likelihood of a particle filter to set J = J«. The upper bound gives a stopping rule

that ties J« to the error variance of the estimated log likelihood, σ̂ 2

L,m, that approximates 1.22.

1. Following the advice of Doucet et al, we implement the stopping rule in two steps.

(a) Pitt et al suggest the Θm needed to calculate J« can be obtained by using a large number

of particles and a small number of MCMC steps. We follow this advice by inputting 100,000

particles for the RB-APF at each of the 30,000 steps on which the PMH-MCMC is run. A third

of the MCMC steps are discarded as a burn-in sample to produce an estimate of the posterior

mean, Θm forMm, m = RE, SI, on the SPF-CPI and SPF-PGNP/PGDP inflation samples.

(b) When J = 100,000, the PMH-MCMC is run in parallel. In this case, we engage the distributed

parallel PMH-MCMC algorithm of Martino, Elvira, and Camps-Valls (2018) to estimate Θm.

This task is given to a workstation running Ubuntu 18.04.2 that has an Intel® Xeon® W–2155

CPU with 10 cores and 20 threads. The PMH-MCMC is run by splitting the J particles evenly
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across the 20 threads using the Julia
(
v1.1.0

)
command pmap. Martino, et al discuss the way

in which the 20 unbiased likelihood estimates can be combined to provide the needed input

to calculate the MH criterion for updating the posterior ofMm.

(c) Given an estimate of Θm, we run the RB-APF to estimate L̂
(ΠSPF1:T

∣∣∣Θm, Mm

)
on a sequence

of particles starting at J = 26, adding a particle at a time, and stopping when σ̂ 2

L,m is less

than or equal to 1.2. This number of particles is labeled J«.

(d) On the CPI-SPF sample, J«m equals 50 and 112 for m = RE and SI. These rise to J«RE = 63

and J«SI = 171 on the PGNP/PGDP-SPF sample. The PMH-MCMC is run on a single thread for

MRE andMSI on the two samples across the calibrated values of J«m.

2. The prior of lnξ2
υ,0 affects initial conditions of the linear states, Sm,0|0, and MSE, ΣΣΣm,0, wherem =

RE, SI. We draw S(j)RE,0|0 ∼N
(
SRE,0, ΣΣΣRE,0), where SRE,0 = 0 because the unconditional mean of gap

inflation is zero and j = 1, . . . , J . Its MSE isΣΣΣRE,0 = E
{[
ξ(j)υ,0|0

]2
}/(

1− ρ2
0

)
, where E

{[
ξ(j)υ,0|0

]2
}

is

the mean of J draws from the prior of lnξ2
υ,0 and ρ0 is the initial proposal for the AR1 parameter of

gap inflation. Similarly, the unconditional means of the measurement errors,ψh,t , are zero leading

to SSI,0 = 02H+1,1. Solving var
(ΣΣΣSI,0) = ASI var

(ΣΣΣSI,0)A′SI + BSI,0 var
(
ESI,0

)
B′SI,0 yields ΣΣΣSI,0 in

which the (1,1) element of BSI,0 is

√
E
{[
ξ(j)υ,0|0

]2
}

. Otherwise, BSI,0 matches BSI,t in equation

(A.1.12) element by element. These results make it possible to draw S(j)SI,0|0 ∼ N
(
SSI,0, ΣΣΣSI,0).

3. The PGNP/PGDP-SPF inflation sample is missing several observations forh= 4. SinceπSPFt−1,3 is part

of a dependent variable in the system of observation equations (A.1.10) ofMSI , the Kalman filter

is employed to forecast these missing observations. We adopt a forecasting procedure discussed

in Durbin and Koopman (2012). Within the RB-APF, the Kalman filter updating equations are

used to produce a forecast of ΠSPFt,3 . Carrying this forecast over to date t+1 fills in the missing

observation when needed.

4. We adopt robust adaptive Metropolis (RAM) algorithm of Vihola (2012) to estimate the covariance

matrix of the target distribution, Θm,k, m = RE, SI and k = 1, . . . ,K.

(a) The RAM algorithm does not produce an empirical covariance matrix of the target. Instead, it

aims to achieve the desired acceptance rate of the proposal, α«, in a random walk MCMC by
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adding a matrix with positive diagonal elements to the Cholesky decomposition of a previous

estimate of the covariance matrix. The result is an estimate of the covariance matrix that is

guaranteed to be positive definite and unique; see Särkkä (2013). Vihola (2012) also argues

the RAM algorithm is robust to thick tailed targets.

(b) The inputs into the RAM algorithm are innovations of the proposed updates, ϑk, at step

k, α«, and the Cholesky decomposition of the covariance matrix of Θm,k computed in the

previous step, Γ 1/2Θ,m,k−1. The RAM estimate of the covariance matrix is

ΓΘ,m,k = Γ 1/2Θ,m,k−1Γ 1/2 ′Θ,m,k−1 + Γ 1/2Θ,m,k−1

min
(
1, dmkι

)
×
(
αk − α«

) ϑkϑ
′
k∣∣∣∣ϑk∣∣∣∣2

Γ 1/2 ′Θ,m,k−1,

where ι is the step size to adapt new proposals. Vihola suggests ι ≈ −0.65. We set α« to the

optimal acceptance rate (0.234) of a MH-MCMC with a multivariate target.

(c) We compute ΓΘ,m,k at every step of the burn-in. When making draws from the posterior, if

αk < 0.23 or αk > 0.238 at k = 1, . . . ,K, ΓΘ,m,k is updated.

5. The PMH-MCMC is operated for a burn-in phase of KBRN = 750,000 steps, where Θ̂m,0 = Θm.

Subsequently, we let the PMH-MCMC sampler run forK = 1,500,000 steps to construct posterior

estimates ofMRE andMSI on the the SPF-CPI inflation and SPF-PGDP/GNP inflation samples.

6. The posterior draws are highly correlated. We thin the posterior distributions using the statis-

tically efficient algorithm of Owen (2017). The algorithm selects an efficient thinning factor by

trading the costs of updating the MCMC sampler and computing the likelihood of Mm for less

serial correlation in the posterior distribution of Θm.

(a) The statistically efficient thinning factor is 12, given a maximal first-order auto-correlation

coefficient of 0.963 across the posteriors of Θ̂RE and Θ̂SI on the two samples and a cost of

computing the likelihood that is a third of the cost of updating the PMH-MCMC sampler.

(b) This yields 125,000 posterior draws. The thinned posterior distributions of Θ̂RE and Θ̂SI
have first-order auto-correlation coefficients less than 0.640.

7. We evaluate the SI hypothesis by comparing marginal data densities (MDD) of MRE and MSI on

the CPI-SPF and PGNP/PGDP-SPF samples.
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(a) The posterior densities of Θ̂RE or Θ̂SI , which are conditional on the data and our priors,

are building blocks for the MDDs. The PMH-MCMC is the tool used to construct posterior

distributions of MRE and MSI . Using Bayes rule, model priors, P
(Θm), and likelihoods are

linked to the posterior of Θ̂m according to

P
(
St , Θm∣∣∣ΠSPF1:T , Mm

)
∝ L

(ΠSPF1:T

∣∣∣Θm, Mm

)
P
(Θm),

where m = RE, SI. Integrating Θm out of the likelihood

L
(ΠSPF1:T

∣∣∣Mm

)
=
∫
L
(ΠSPF1:T

∣∣∣Θm, Mm

)
P
(Θm)dΘm,

produces the MDD, which is conditional onMm,m = RE, SI. We calculate log MDDs with the

harmonic mean method, which is discussed in Geweke (2005, pp. 248–261); also see Gelfand

and Dey (1994), Geweke (1998), and Fernández-Villaverde and Rubio-Ramírez (2004). Geweke

(2005) summarizes results in Gelfand and Dey (1994) that include

1

L
(ΠSPF1:T

∣∣∣Mm

) = 1
K

K∑
i=1

G
(Θm,i)

L
(ΠSPF1:T

∣∣∣Mm

)
P
(Θm,i) , (A.2.2)

asK −→ ∞, where G
(Θm,i) is a probability density evaluated at Θm,i.

(b) A useful approach to computing the probability density G
(
·
)

is proposed by Geweke (1998).

His approach instructs us to compute

G
(Θm,i) = (

2π
)−0.5d

%

∣∣∣ΩΩΩΘm∣∣∣0.5
exp

{
−0.5

(Θm,i − Θ̂m)ΩΩΩ−1Θm
(Θm,i − Θ̂m)′}IΘ†m⋂Θm,i(Θm,i),

using the output of the PMH-PMCMC, where ΩΘm = 1
K

K∑
i=1

(Θm,i − Θ̂m)(Θm,i − Θ̂m)′, % is

the significance level chosen to restrict the compact set

Θ†m =
{Θm,i :

(Θm,i − Θ̂m)ΩΩΩ−1Θm
(Θm,i − Θ̂m)′ ≤ χ2

1−%
(
d
)}
,

and IΘ†m⋂Θm,i
(Θm,i) is an indicator function that equals one when Θ†m ⋂ Θm,i is true. Thus,

G
(Θm,i) is well described by a truncated multivariate normal distribution with mean Θ̂m,i

and covariance matrixΩΩΩΘm because of the restrictions created by IΘ†m⋂Θm,i
(Θm,i) and Θ†m,j .
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Moreover, the compact set Θ†m bounds P
(
St , Θm∣∣∣ΠSPF1:T , Mm

)
from above. When the pos-

terior is also bounded away from zero on Θ†m, the reciprocal of the arithmetic mean of

exp
{
L
(ΠSPF1:T

∣∣∣Mm

)}
is efficiently approximated by employing G

(Θm,i) to normalize the ap-

propriate posterior at each of the i = 1, 2, . . . ,K steps and average the result.

(c) The PMH-MCMC produces the output necessary to conduct model evaluation using the pos-

terior odds ratio. We compute
{
G
(Θm,i)}Ki=1

, grab the associated
{
L
(ΠSPF1:T

∣∣∣Mm

)}K
i=1

and{
P
(Θm,i)}Ki=1

, and use (A.2.2) to compute the harmonic mean of L
(ΠSPF1:T

∣∣∣Mm

)
form = RE,

SI. The posterior odds ratio, which produces evidence about the views the data have about

MRE andMSI , is calculated using L
(ΠSPF1:T

∣∣∣MRE

)
, P
(ΘRE,i), L

(ΠSPF1:T

∣∣∣MSI

)
, and P

(ΘSI,i) on

each of the two samples.

8. We report filtered estimates of trend inflation, τi,t|t = πt − εi,t|t for i = 1, . . . , K. These esti-

mates are constructed conditional on the posterior draws from Θ̂RE or Θ̂SI across the CPI-SPF and

GNP/GDP-SPF samples. Using RB-APF estimates of gap inflation does not alter these estimates.

9. Along with this trend-gap inflation decomposition, our BNSW model (A.1.1)–(A.1.5) assumes the

innovations to trend and gap inflation, ηt and υt , are uncorrelated at all leads and lags. This lets

us construct a posterior distribution for trend inflation SV, ξη,t , inMRE using
{{
τi,t|t

}K
i=1

}T
t=1

, the

prior of lnξ2
η,0, and a prior on τ0.

(a) Treat
{{
τi,t|t

}K
i=1

}T
t=1

as known. This creates a SSM consisting of the observation equation

ln
(
τt − τt−1

)2 = lnξ2
η,t−1 + lnη2

t and the random walk (A.1.4) is the state equation. This SSM

is linear and non-Gaussian. Harvey, Ruiz, and Shephard (1994) point out that, although lnη2
t

is non-Gaussian, its first and second moments are E lnη2
t = −1.27 and E

{
lnη2

t

}2
= 0.5×π

2.

(b) We use these facts and that the Kalman gain of ln
[
ξη,t

]2
is fixed at γπ = 2.0

/(
2.0 + π

2
)

to

write its Kalman filter updating equation as

lnξ2
η,i,t = 1.27 +

(
1.0− γπ

)
lnξ2

η,i,t−1 + γπ ln
[(
τi,t − τi,t−1

)(
τi,t − τi,t−1

)]
,

for i = 1, . . . , K, where lnξ2
η,0 is drawn from its prior described in table 2, we choose the

prior τ0 ∼ N
(
µπ , 30.02

)
, and µπ is the average inflation rate on the ten years before the

start of the CPI-SPF or the PGNP/PGDP-SPF sample. The posterior distribution of
{
ξη,i,t

}K
i=1

A .16



is created for t = 1, . . . , T by makingK draws from these initial conditions and the posterior

distribution of τt .

10. The posterior distribution of ση is built in a similar fashion for MRE . Since the random walk

(A.1.4) can be written as σηφη,t =
(
lnξ2

η,t − lnξ2
η,t−1

)
, σ̂η,i =

√
T−1

∑T
t=1

(
lnξ2

η,i,t − lnξ2
η,i,t−1

)2
for

i = 1, . . . ,K, where lnξ2
η,i,0 is drawn from its prior.

11. Quantiles and uncertainty bands of the fixed model parameters, trend inflation, gap inflation, the

SVs, and measurement errors are grounded in the posterior distribution ofMRE andMSI on the

CPI-SPF and PGNP/PGDP-SPF samples.

(a) The figures in the paper and appendix are created in Julia v1.1.0 using its PyPlot and PyCall

packages along with Python v3.6 and Matplotlib v3.1.1.

(b) Medians of the posterior distributions and uncertainty bands are reported in figures 2 and 4

of the paper and figures A.1 and A.2 shown at the end of this appendix. Uncertainty bands

are computed using the plug-in sup-t statistic developed by Olea and Plagborg-Møller (2018).

(c) We add a T×T matrix with means of the relevant MSEs down the diagonal and zeros elsewhere

to the empirical covariance matrix (i.e., outer product) of the posterior distributions of trend

and gap inflation forMRE andMSI and ψh,t inMSI .

(d) The MSEs of trend inflation is obtained by running the Kalman filter onMRE andMSI altered

for this purpose conditional on the posterior distributions of Θ̂RE or Θ̂SI . The PMH-MCMC

The MSEs are computed using the Kalman filter as described in section A.2.d.

(e) For the SVs in both SSMs and the measurements errors ofMRE , the uncertainty bands depend

on a T × T empirical covariance matrix of the relevant posterior distribution.

12. Posterior moments of the measurement errors are reported in tables A.1, A.2, and A.3 and figures

A.1 and A.2 of this appendix.

(a) We back out posterior distributions of the measurement errors ofMRE using its observation

equation (A.1.6), ψi,t,h = σ−1
i,ψ,h

[
πSPFt,h − πt −

(
ρhi − 1

)
εi,t

]
, for h = 1, 2, 3 and i = 1, . . . ,K.
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(b) Measurement errors are implicit state variables in MSI . For this reason, ψi,t,h is found by

adjusting posterior distributions of the state variable −λiζi,t,h in MSI using its posterior

distributions of λi and σi,ψ,h.

(c) We examine the time series behavior of the posterior distributions ofψh,t , h = 1, 2, 3, across

MRE and MSI on the CPI-SPF and PGNP/PGDP-SPF samples in tables A.1 to A.3 and figures

A.1 and A.2 that appear at the end of this appendix.

(d) Tables A.1, A.2, and A.3 contain posterior moments of ψ1,t , ψ2,t , and ψ3,t , respectively. The

moments are the median standard deviation, s
(
ψh,t

)
, median autocorrelations, ACF

(
`
)
, at

lags `= 1, 2, 3, 4, and 8, mean Ljung-Box statistics with four and eight lags, and the associated

Bayesian (i.e., mean) p-values; see Gelman (2005). The ACFs are calculated in Julia (v1.1.0)

using PyCall to call the Python (v3.6) module StatsModels v0.10.2 and its toolkit stattools.tsa.

This toolkit has the function acf that computes ACFs using a fast Fourier transform. The

tables also present five and 95 percent quantiles of s
(
ψh,t

)
and ACF

(
`
)

in brackets.

(e) The median s
(
ψh,t

)
s are not near one as shown in tables A.1, A.2, and A.3. The 90 percent

Bayesian credible intervals of s
(
ψh,t

)
never contain one for h = 1, 2, 3. Just below these

statistics in the tables are the median ACF
(
`
)
s, which are often far from zero. Only 20

percent of the 90 percent Bayesian credible intervals include zero. Thus, it is not a surprise

that in only two of 24 cases, do the mean Ljung-Box statistics have Bayesian p-values greater

than 0.05. The two exceptions occur for ψ2,t in MSI on the PGNP/PGDP-SPF sample at four

and eight lags.

(f) Plots of the medians and 68 percent uncertainty bands of the posterior distributions ofψ1,t ,

ψ2,t , and ψ3,t appear in figures A.1 and A.2. The former figure contains median measure-

ment errors and uncertainty bands produced by estimatingMRE on the CPI-SPF sample. The

PGNP/PGDP-SPF sample and MSI are responsible for the median estimates and uncertainty

bands appearing in figure A.2. The figures consist of three panels that run from h = 1 at the

top, h = 2 in the middle, and h = 3 at the bottom.

(g) Figure A.1 is consistent with the story told by tables A.1, A.2, and A.3. The probability is

strong there is serial correlation present in the posterior distributions ψ1,t , ψ2,t , and ψ3,t

associated withMRE and the CPI-SPF sample.
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(h) This is not the case for figure A.2. Its 68 percent uncertainty bands are wide for the ψ1,t ,

ψ2,t , and ψ3,t quarter by quarter from 1969Q 1 to 2018Q 4 in the PGNP/PGDP-SPF sample as

produced by MSI . The uncertainty bands are broad enough to cover zero at every quarter.

Hence, the plots in figure A.2 provide evidence of substantial uncertainty in the posterior

estimates of these measurement errors. Remember the MSEs of these (implicit) state variables

are used to construct the uncertainty bands. Hence, the MSEs capture substantial uncertainty

in the posterior distribution of these measurement errors.

References

Andrieu, A., Doucet, A., & Holenstein, R. 2010. Particle Markov chain Monte Carlo methods. Journal of
the Royal Statistical Society, Series B 72(3), 269–342.

Chen, R., & Liu, J.S. 2000. Mixture Kalman filters. Journal of the Royal Statistical Society, Series B 62(3),
493–508.

Coibion, O., & Gorodnichenko, Y. 2015. Information rigidity and the expectations formation process:
A simple framework and new facts. American Economic Review 105(8), 2644–2678.

Creal D. 2012. A survey of sequential Monte Carlo methods for economics and finance. Econometric
Reviews 31(3) 245–296.

Doucet, A., Pitt, M., Deligiannidis, G., & Kohn, R. 2015. Efficient implementation of Markov chain Monte
Carlo when using an unbiased likelihood estimator. Biometrika 102(2), 295–313.

Durbin, J., & Koopman, S.J. 2012. Time Series Analysis by State Space Methods, Second Edition,
Oxford, UK: Oxford University Press.

Fernández-Villaverde, J., & Rubio-Ramírez, J.F. 2004. Comparing dynamic equilibrium models to data:
a Bayesian approach. Journal of Econometrics 123(1), 153–187.

Gelfand, A.E., & Dey, D.K. 1994. Bayesian model choice: Asymptotics and exact calculations. Journal of
the Royal Statistical Society B 56(3) 501–514.

Gelman, A. 2005. Comment: Fuzzy and Bayesian p−values and u−values. Statistical Science, 20(4)
380–381.

Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, DB. 2004. Bayesian Data Analysis, Second Edition,
New York, NY: Chapman and Hall, CRC Press.

Geweke, J. 1998. Using simulation methods for Bayesian econometric models: inference, development,
and communication. Staff Report 249, Federal Reserve Bank of Minneapolis.

Geweke, J. 2005. Contemporary Bayesian Econometrics and Statistics, Hoboken, NJ: J. Wiley and
Sons, Inc.

Harvey, A., Ruiz, E., & Shephard, N. 1994. Multivariate stochastic variance models. The Review of Eco-
nomic Studies 61(2), 247–264.

A .19



Hol, J.D., Schön, T.B., & Gustafsson, F. (2006). On resampling algorithms for particle filters. In IEEE Non-
linear Statistical Signal Processing Workshop, Ng, W. (ed.), 79–82. Red Hook, NY: Curran
Associates, Inc.

Johansen, A.M., & Doucet, A. 2008. A note on auxiliary particle filters. Statistics and Probability Letters
78(12), 1498–1504.

Lindström, J. 2017. Transformed proposal distributions. Manuscript, Centre for Mathematical Sci-
ences, Lund University (available at https://umbertopicchini.files.wordpress.com/2017/
12/transformed-proposals2.pdf).

Li, T., Bolic, M., & Djuric, P. 2015. Resampling methods for particle filtering: Classification, implemen-
tation, and strategies. IEEE Signal Processing Magazine 32(3), 70–86.

Martino, L., Elvira, V., & Camps-Valls, G. 2018. Group importance sampling for particle filtering and
MCMC. Digital Signal Processing 82(1), 133–151.

Olea, J.L.M., & Plagborg-Møller, M. 2018. Simultaneous confidence bands: Theory, implementation, and
an application to SVARs. Journal of Applied Econometrics 34, 1–17.

Owen, A.B. 2017. Statistically efficient thinning of a Markov chain sampler. Journal of Computational
and Graphical Statistics 26(3), 738–744.

Pitt, M.K., dos Santos Silva, R., Giordani, P., & Kohn, R. 2012. On some properties of Markov chain Monte
Carlo simulation methods based on the particle filter. Journal of Econometrics 171(2) 134–151.

Pitt, M.K., & Shephard, N. 2001. Auxiliary Variable Based Particle Filters. In Doucet, A., de Freitas, N.,
Gordon, N. (eds.) Sequential Monte Carlo Methods in Practice, New York, NY: Springer-
Verlag.

Pitt, M.K., & Shephard, N. 1999. Filtering via Simulation: Auxiliary Particle Filters. Journal of the Amer-
ican Statistical Association 94(446), 590–599.

Särkkä, S. 2013. Bayesian Filtering and Smoothing, Cambridge, UK: Cambridge University Press.

Stock J.H., & Watson, M.W. 2007. Why has US inflation become harder to forecast? Journal of Money,
Credit and Banking 39(S1), 3–33.

Vihola, M. 2012. Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics and
Computing 22(5), 997–1008.

A .20

https://umbertopicchini.files.wordpress.com/2017/12/transformed-proposals2.pdf
https://umbertopicchini.files.wordpress.com/2017/12/transformed-proposals2.pdf


Table A.1 Posterior Moments of Measurement Error at h = 1

CPI Inflation GNP/GDP Deflator Inflation

Sample: 1981Q 4–2018Q 4 Sample: 1969Q 1–2018Q 4

MRE MSI MRE MSI

s
(
ψ1,t

)
0.790 0.652 0.890 0.629[

0.727, 0.854
] [

0.595, 0.706
] [

0.829, 0.951
] [

0.585, 0.676
]

ACF
(
1
)

−0.051 0.225 0.071 0.389[
−0.097, −0.002

] [
0.165, 0.281

] [
0.025, 0.123

] [
0.328, 0.444

]
ACF

(
2
)

−0.021 −0.128 −0.057 0.132[
−0.054, 0.011

] [
−0.045, −0.074

] [
−0.069, −0.035

] [
0.092, 0.176

]
ACF

(
3
)

−0.164 −0.145 −0.024 0.132[
−0.202, −0.119

] [
−0.180, −0.099

] [
−0.045, 0.013

] [
0.093, 0.169

]
ACF

(
4
)

0.251 0.115 0.233 0.241[
0.225, 0.269

] [
0.092, 0.142

] [
0.230, 0.237

] [
0.200, 0.263

]
ACF

(
8
)

0.187 0.156 0.035 0.026[
0.161, 0.209

] [
0.056, 0.132

] [
0.022, 0.048

] [
0.001, 0.054

]
Q
(
4
)

14.453 15.859 13.162 50.116(
0.008

) (
0.004

) (
0.011

) (
0.000

)
Q
(
8
)

20.502 18.482 15.752 55.553(
0.013

) (
0.019

) (
0.049

) (
0.000

)

The table presents posterior moments of the measurement error at h = 1. Since measurement error is a part of the state

vector of the SI model, MSI , under this column the moments are created from the posterior of filtered measurement error,

ψt|t,1. For the RE model,MSI , estimates of ψ1,t are backed out from the actual data, filtered gap inflation, and the posterior

of the model parameters. The first row is the median of the posterior of the standard deviation of ψ1,t , s
(
ψ1,t

)
. The median

autocorrelation function at lag j is denoted ACF(j). Five and 95 percent quantiles appear in brackets. The mean posterior

Ljung-Box statistic with q lags is in the row denoted Q
(
q
)
. The rows below Q

(
4
)

and Q
(
8
)

display Bayesian p−values in

parentheses.
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Table A.2 Posterior Moments of Measurement Error at h = 2

CPI Inflation GNP/GDP Deflator Inflation

Sample: 1981Q 4–2018Q 4 Sample: 1969Q 1–2018Q 4

MRE MSI MRE MSI

s
(
ψ2,t

)
0.464 0.342 0.599 0.390[

0.420, 0.511
] [

0.311, 0.378
] [

0.545, 0.656
] [

0.361, 0.419
]

ACF
(
1
)

−0.586 0.058 −0.237 0.106[
−0.616, −0.516

] [
−0.148, 0.264

] [
−0.288, −0.176

] [
−0.013, 0.221

]
ACF

(
2
)

0.487 0.322 −0.079 0.077[
0.460, 0.503

] [
0.286, 0.349

] [
−0.097, −0.066

] [
0.046, 0.103

]
ACF

(
3
)

−0.456 −0.138 −0.129 −0.026[
−0.498, −0.389

] [
−0.258, 0.001

] [
−0.137, −0.119

] [
−0.076, 0.027

]
ACF

(
4
)

0.482 0.350 0.206 0.087[
0.471, 0.490

] [
0.295, 0.401

] [
0.200, 0.211

] [
0.051, 0.133

]
ACF

(
8
)

0.350 0.248 0.096 0.090[
0.312, 0.377

] [
0.175, 0.321

] [
0.080, 0.108

] [
0.049, 0.137

]
Q
(
4
)

154.740 41.378 24.959 6.622(
0.000

) (
0.000

) (
0.000

) (
0.219

)
Q
(
8
)

216.355 61.693 28.583 12.372(
0.000

) (
0.000

) (
0.001

) (
0.170

)

The table presents posterior moments of the measurement error at h = 2. See the notes to table A.1.
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Table A.3 Posterior Moments of Measurement Error at h = 3

CPI Inflation GNP/GDP Deflator Inflation

Sample: 1981Q 4–2018Q 4 Sample: 1969Q 1–2018Q 4

MRE MSI MRE MSI

s
(
ψ3,t

)
0.664 0.560 0.785 0.534[

0.615, 0.717
] [

0.509, 0.603
] [

0.729, 0.841
] [

0.494, 0.566
]

ACF
(
1
)

0.051 0.233 0.257 0.426[
−0.002, 0.107

] [
0.173, 0.298

] [
0.198, 0.318

] [
0.365, 0.478

]
ACF

(
2
)

0.099 −0.031 0.018 0.165[
0.044, 0.147

] [
−0.079, 0.016

] [
−0.050, 0.085

] [
0.108, 0.218

]
ACF

(
3
)

0.025 −0.060 0.013 0.164[
−0.011, 0.062

] [
−0.086, −0.017

] [
−0.038, 0.068

] [
0.124, 0.201

]
ACF

(
4
)

0.315 0.169 0.230 0.144[
0.294, 0.333

] [
0.140, 0.206

] [
0.209, 0.253

] [
0.116, 0.173

]
ACF

(
8
)

0.109 −0.040 0.015 −0.050[
0.093, 0.124

] [
−0.066, 0.007

] [
−0.004, 0.034

] [
−0.083, −0.014

]
Q
(
4
)

17.585 13.980 25.373 52.661(
0.002

) (
0.010

) (
0.000

) (
0.000

)
Q
(
8
)

24.303 16.669 30.511 54.239(
0.003

) (
0.040

) (
0.001

) (
0.000

)

The table presents posterior moments of the measurement error at h = 3. See the notes to table A.1.
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Figure A.1: MRE Estimates of Measurement Errors, ψh,t, for h = 1, 2, and 3,
on the CPI-SPF Sample, 1981Q4 to 2018Q4

Note: Sixty-eight percent uncertainty bands cover the measurement errors ψ1,t , ψ2,t , and ψ3,t . The plots also contain vertical gray bands that
denote NBER dated recessions.
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Figure A.2: MSI Estimates of Measurement Errors, ψh,t, for h = 1, 2, and 3,
on the PGNP/PGDP-SPF Sample, 1969Q1 to 2018Q4

Note: Sixty-eight percent uncertainty bands cover the measurement errors ψ1,t , ψ2,t , and ψ3,t . The plots also contain vertical gray bands that
denote NBER dated recessions.
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