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Appendix A: Alternative Price Indexes

An alternative to the Clark index is the Bank of England CPI series assembled by

Thomas and Dimsdale (2016). Prior to 1661 it uses a slightly different version of the Clark

index that applies to the poorest workers and excludes services. Thomas and Dimsdale

adopt the Schumpeter-Gilboy index from Mitchell (1988) for 1661–1750, the series from

Crafts and Mills (1991) for 1750–1770, the series from Feinstein (1998) for 1770–1882,

the series from Feinstein (1991) for 1882–1914, the series from the ONS (O’Donoghue,

Goulding, and Allen, 2004) for 1914–1949, and the CPI (ONS) for 1949–2016. There are

807 observations in this series up to 2016.

Allen (2001) constructed a city-level CPI for London and for a number of other Euro-

pean cities. These are Laspeyres indexes using what he describes as a ‘pre-modern basket’

(given in his table 3). The basket differs across cities depending on the local food and fuel

sources. As is usual with early price indexes, the data sources tend to be institutions such

as hospitals or schools but one of Allen’s many contributions is to use retail bread prices

rather than grain prices. For London the Allen series spans 1264–1913 or 649 observations.

Allen notes his London index closely tracks that of Feinstein (1998) when they overlap.

There does not appear to be a London-level CPI after 1913 to which to splice this series.

The Allen and Clark series differ in several respects: (i) Clark uses data from through-

out England and later the UK while Allen applies to London; (ii) Allen omits lodging

(though for the early period this was a relatively small share of expenditure), manufac-

tures such as tools, and services; (iii) Clark’s weights change over time; (iv) both series

use bread rather than grain but they estimate the retail bread price in different ways.

Figure A1 shows the logs of the Clark series (in blue), the Bank of England series (in

red, dashed), and the Allen series (in green, dotted) for four periods each of roughly two

centuries: 1209–1399; 1400–1599; 1600–1799; and 1800–2019. The Bank of England series

is rescaled so that 2010 = 100 as for the Clark series. The Allen series is rescaled so that

it is equal to the Clark series when it ends in 1913. The Bank of England series and the

Allen series are more volatile than the Clark series, perhaps because of the categories of

consumption spending that they omit.

Cogley, Sargent, and Surico (2015) use a price index found in Mitchell (1988). He
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spliced together indexes from Lindert and Williamson for 1781–1846 and from Bowley for

1846–1914. We rescale the Mitchell series so that it is equal to the Clark series in 1913.

Figure A2 then graphs the log price level from Clark (in blue, as above) and Mitchell (in

red, dashed) for 1781–1947. Two obvious differences are in the 1946–1947 inflation rates

and particularly in the greater volatility of the Lindert-Williamson and Bowley inflation

rate series compared to the Clark series. We claim no expertise in deciding which is the

best index, but simply note that the greater volatility of the early Mitchell series seems due

to the Lindert-Williamson data. This volatility is not evident in more recently constructed

series such as those of Clark or the Bank of England.

There is one further source of price data that informs our design. The Statist, a

competitor of The Economist, published a commodity price index from 1848 to 1950. This

series is known as the Sauerbeck-Statist Index, named for its founder Augustus Sauerbeck.

It was annually reported in the Journal of the Royal Statistical Society (A) and we collected

the annual averages from that periodical (1950) 114(3) 408–422.

The Sauerbeck-Statist index is very similar to the Warren-Pearson data (extended

by Hanes) for the US studied by Cogley and Sargent (2015). That too is an arithmetic

commodity price index. But of course a difference is that they did not have a broader retail

price index for early periods, and so used the relationship when the two series overlapped

to inform a prior over measurement error in the earlier commodity price index and so draw

inference about the unobserved retail price index. In contrast, for the UK there is a direct

source—though no doubt error-laden—for each period.

Figure A3 shows the log price index and inflation rate for the Clark data used in

the paper (in black) and for Sauerbeck-Statist data (in blue). Notice that the commodity

price inflation rate is more volatile than the retail price inflation rate. However, Figure

A3 shows that this ratio of variances does not change much over time. At least from this

comparison, then, there is not great measurement error in the Feinstein data (1870–1914)

data relative to that in the next span (1915–1946) when the official cost-of-living index

was collected. This fact motivates our prior that β2 and β3 are fractions that scale down

measurement error relative to that in the early centuries of the puk,t series.
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Figure A1: The Clark-, Bank of England-, and Allen-UK Price Levels on Several Subsamples

Notes: The panels depict the natural logs of the Clark-, Bank of England-, and Allen-UK price levels, pt = ln
(
Pt
/
100

)
. The top right,

top left, bottom left, and bottom right panels plots these price levels from 1209 to 1399, 1400 to 1599, 1600 to 1799, and 1800 to
2019. The samples of the Clark-, Bank of England-, and Allen-UK price data run from 1208 to 2019, 1208 to 2016, and 1263 to 1913,
respectively. The Bank of England price level is rescaled for it to equal 100 in 2010 as is the Clark series. The Allen series is rescaled
to force its last observation in 1913 to equal the Clark series at that date.
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Figure A2: The Clark- and Mitchell UK Price Level and Inflation Rates, 1781–2019

Notes: The top panel contains the natural log of the price level of the Clark- and Mitchell-UK price series while the bottom panel plots
the inflation rates. The Mitchell-UK price sample runs from 1781 to 1947. The Clark UK-price sample ends in 2019.
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Figure A3: UK and Statist Price Level and Inflation, 1847–1950

Notes: The top panel displays the log level of the UK long annual price index as the solid (indigo) line and dot-dashed (coral) line, which is the
Sauerbeck-Statist commodity price index, from 1847 to 1950. The associated inflation rates appear in the bottom panel from 1848 to 1950.
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Appendix B: Alternative Models of Measurement Error

We considered other models of measurement error that start with equation (1), as

noted in section 4. This section summarizes these models of measurement error.

Appendix B.1. Measurement Error with AR
(
1
)

Persistence

First, attempts were made to tie measurement error to the log price level, puk,t, instead

of inflation, πuk,t. In these cases, the additive measurement error process was assumed to

be a AR
(
1
)

across the spans τ = 1, 2, and 3, but ρ4 = 0. Draws from the posterior of

these models often gave estimates of the AR1 coefficient that were greater than one. Since

these models of measurement error are non-stationary, we decided not to pursue them.

Second, we tried to parametrize the additive measurement error on πuk,t as a AR
(
1
)

process, where the AR1 parameter ρτ is constant within the spans. Priors on ρτ are drawn

from a mean zero normal distribution with a variance of 0.5 that is truncated to guarantee

ρτ ∈
(
−1, 1

)
for τ = 1, 2, and 3 and ρ4 = 0. The result is prior 90% coverage intervals

of ±0.83. Posterior densities of ρ1, ρ2, and ρ3 were found to have medians (with 5%–95%

IQRs) equal to 0.09 (-0.06, 0.23), 0.24 (-0.13, 0.58), and 0.19 (-0.23, 0.61). Thus there

is considerable uncertainty in the posterior about these parameters, which increases with

τ , yielding 90% Bayesian credible sets for ρ1, ρ2, and ρ3 that cover zero. Furthermore,

posteriors of β2, β3, and σ2
u, were close to those reported in the paper and in Figure 3.

Third, a measurement error model with AR
(
1
)

persistence was estimated inspired

by Cogley and Sargent (2015), Cogley, Sargent, and Surico (2015) and Amir-Ahmadi,

Matthes, and Wang (2016). Along with constant persistence within each span, the vari-

ance, σ2
τ,u, of the AR

(
1
)

is fixed on an inverse-gamma (IG) prior for τ = 1, 2, and 3 while

σ2
4,u = 0. Table B2 lists these priors, which are also used for the alternative model of iid

measurement error discussed in the next section. For the AR
(
1
)

model of measurement

error at hand, we obtain no evidence that ρ1, ρ2, and ρ3 differ from zero.

Appendix B.2. An Alternative Model of iid Measurement Error

We also estimated an alternative measurement error model in which mt = στ,uut

replaces equation (2). This model of iid measurement error assumes, as do Cogley and

Sargent (2015), Cogley, Sargent, and Surico (2015), and Amir-Ahmadi, Matthes, and Wang
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(2016), that the variances, σ2
τ,u, are unrestricted, other than being strictly positive, for τ

= 1, 2, and 3. However, our much longer first span, from 1251 to 1869, and the availability

of improved 19th century data since Mitchell (1988) that are associated with the work of

Feinstein, Clark, Crafts and Mills, and others, motivate our choice of priors that have the

variance of measurement error decreasing over the spans.

Table B2 describes IG priors for σ2
1,u, σ2

2,u, and σ2
3,u that reflect our belief about the

declining volatility of measurement error across the 1251-1869, 1870-1914, and 1915-1946

spans. The IG priors are constructed to produce these restrictions, according to our choices

of the scale and shape parameters, θ1 and θ2. We set θ1 = ψ1,τTτ , where ψ1,τ increases

with τ , but ψ1,4 is zero, and Tτ is the length of the span τ . Since the shape parameter of

an IG distribution is a function of the variance, we equate θ2 to a fraction, ψ2,τ , of the

prior variance of σ2
τ,u, σ2

PR. Our prior reduces ψ2,τ as τ increases to lower the variance of

σ2
τ,u at the same time. As the notes to Table B2 discuss, this parametrization shifts the

median and 5%–95% IQRs of σ2
2,u to the left of σ2

1,u and σ2
3,u to the left of σ2

2,u.

The same MH in Gibbs MCMC sampler is applied to the alternative iid measurement

error model of equation (1), mt = στ,uut, and equations (3)-(5) as to the baseline mea-

surement error model of equations (1)-(5) in the paper; see Appendix C below for details.

Table B3 presents ln MDDs and WAICs for the alternative iid model of measurement er-

ror. For comparison, we also include the same statistics found in Table 4 for the baseline

measurement error model. The ln MDDs indicate (at least) substantial support for a lag

length of n = 3 as shown in the bottom half of Table B3. The WAICs lead to the same

conclusion. Hence both models of measurement error yield the same inference for the lag

length of the TVP-SV-AR
(
n
)

of πt. Nevertheless, the evidence is decisive, according to

the ln MDDs at n = 3, that the data prefer the baseline model of iid measurement error

as described by equations (1)-(5) in the paper.

Information about the posteriors of σ2
1,u, σ2

2,u, and σ2
3,u are presented in Table B3 for

n = 1, . . . , 6. Three features stand out in the table. First, the medians of the posteriors

of these variances increase from the first (1251–1869) span to the second (1870–1914) span

and then again to the third (1915-1946) span across all lag lengths. Second, at all lag

lengths the 90% Bayesian credible sets of σ2
1,u are to the left of the 90% Bayesian credible
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sets of σ2
2,u. Third, as n increases, the medians of the posteriors of σ2

1,u, σ2
2,u, and σ2

3,u also

increase along with the corresponding 90% Bayesian credible sets shifting to the right.

Table B4 summarize the posteriors of β2, β3, and σ2
u. The medians of the posteriors

of these measurement error parameters also increase as the lag length of TVP-SV-AR
(
n
)

moves from one to six lags. At the same time, the 90% Bayesian credible sets shift to the

right. However, at the medians of the posteriors β2 > β3 across all lag lengths. Finally,

notice that estimates of σ2
u are always close to the estimates of σ2

1,u in Table B3.

Figures B1–B6, which correspond to Figures 3–8 in the text, show the posterior results

for the alternative iid measurement error model. As noted in the text, economic conclusions

drawn from the alternative model of measurement error are strikingly similar to the results

reported in the paper. Nonetheless, there is one important finding for the alternative

model of measurement error that is reminiscent of the volatility puzzle reported by Cogley,

Sargent, and Surico (2015). The puzzle is more recent UK inflation data seemingly is more

ridden with measurement error than are earlier data.

There is increasing volatility in the median of the posterior of the alternative iid

model’s smoothed measurement error moving from span 1 to span 2 and again from span

2 to span 3, as seen in the lower right panel of Figure B1. The increasing volatility is also

apparent in the 68% uncertainty bands surrounding the median of smoothed measurement

error. This is the puzzle that Cogley, Sargent, and Surico (2015) find in estimates of

their unobserved components (UC) model, which treats inflation as non-stationary. This

shows the puzzle can arise when inflation is modeled as a non-stationary UC model or as

a stationary AR
(
n
)

with TVP and SV. Mechanically, the puzzle is driven by observations,

as in 1920–1922, which were preceded by high inflation at the end of World War I and

followed by ten years of deflation, yielding the sawtooth pattern in inflation observed in

Figure 1. By the time our MCMC sampler finds that persistence in inflation is substantial

and its SV falling, it attributes at least part of this behavior to measurement error.

There are two reasons the measurement error that we find is not comparable to that in

Cogley, Sargent, and Surico (2015). First, we rely on the Clark data whereas they engage

the more volatile Mitchell data for the 19th century, as discussed in Appendix A. Second,

our longer sample starts in 1251, but their first span begins in the late 18th century.
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Table B1: Alternative Model of Measurement Error

πuk,t = πt +mt,

mt = στ,uut, ut ∼ N
(
0, 1

)
.

Measurement Error Prior Parameters

Scale Volatility Distribution θ1 θ2

σ2
τ,u IG ψ1,τTτ ψ2,τσ

2
PR

Notes: The IG prior on the variance, σ2
τ,u, of measurement error, mt, relies on τ . The shape parameter

θ1 = ψ1,τTτ and scale parameter θ2 = ψ2,τσ
2
TR. For τ = 1 (1251−1869), 2 (1870−1914), 3 (1915−1946), and

4 (1947−2019), ψ1,τ =
[
0.004 0.060 0.075 0.000

]′
, Tτ =

[
619 45 32 74

]′
, and ψ2,τ =

[
0.85 0.65 0.50 0.00

]′
. The

scale parameter is a sufficient statistic for the variance of a random variable drawn from an IG distribution.

This explains equating the prior variance σ2
PR to 0.211142, which is the variance of UK inflation on the

Bank of England data from 1209 to 1244; see Thomas and Dimsdale (2016). These parametrizations

give σ2
1,u, σ2

2,u, and σ2
3,u prior 5th, 50th, and 95th quantiles of

[
0.007, 0.017, 0.067

]
,
[
0.005, 0.012, 0.043

]
,

and
[
0.004, 0.011, 0.042

]
. Otherwise, see Table 3 of the paper for the priors on the covariance matrix of

innovations to the TVPs, Ωη, and initial conditions of α0 and ln ξ20 .
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Table B2: Evaluation of Fit of the TVP-SV-AR(n)s

with Baseline and Alternative Models of Measurement Error

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)

Baseline:
ln MDD 638.21 643.18 673.62 667.59 652.72 650.82

WAIC -1431.95 -1457.55 -1487.87 -1483.30 -1487.75 -1465.82

Alternative:
ln MDD 558.29 608.73 616.77 615.49 607.72 592.70

WAIC -1336.86 -1370.68 -1398.40 -1389.88 -1383.41 -1371.86

Notes: See the notes to Table 4 of the paper.
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Table B3: Summary of the Posterior Distributions

of the Parameters of the Alternative Model of iid Measurement Error

n σ2
1,u σ2

2,u σ2
3,u

1 0.00167 0.00381 0.00438
[0.00129, 0.00215] [0.00239, 0.00650] [0.00242, 0.00838]

2 0.00163 0.00379 0.00436
[0.00128, 0.00212] [0.00235, 0.00667] [0.00243, 0.00882]

3 0.00165 0.00390 0.00438
[0.00130, 0.00215] [0.00237, 0.00662] [0.00238, 0.00904]

4 0.00167 0.00404 0.00459
[0.00129, 0.00217] [0.00247, 0.00718] [0.00252, 0.00923]

5 0.00170 0.00421 0.00467
[0.00131, 0.00223] [0.00252, 0.00755] [0.00255, 0.00934]

6 0.00175 0.00428 0.00486
[0.00133, 0.00229] [0.00263, 0.00757] [0.00260, 0.00971]

Notes: The table displays medians of posteriors of the scale volatilities, σ2
τ,u of the alternative model of

measurement error for the TVP-SV-AR(n), where τ = 1 (1251–1869), 2 (1870–1914), and 3 (1915–1946)

and n = 1, ..., 6. Below these estimates, the brackets contain five and 95% quantiles extracted from the

posterior distributions.
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Table B4: Summary of the Posterior Distributions

of the Parameters of the Baseline Model of Measurement Error

n β2 β3 σ2
u

1 0.44397 0.28199 0.00164
[0.18966, 0.75997] [0.09809, 0.56736] [0.00130, 0.00210]

2 0.44707 0.28315 0.00161
[0.20009, 0.75827] [0.09548, 0.57860] [0.00126, 0.00208]

3 0.44188 0.29022 0.00163
[0.19638, 0.74622] [0.09389, 0.58692] [0.00128, 0.00208]

4 0.45117 0.29683 0.00165
[0.19936, 0.76018] [0.09696, 0.58665] [0.00131, 0.00213]

5 0.46425 0.29407 0.00168
[0.20242, 0.77210] [0.10279, 0.56927] [0.00132, 0.00217]

6 0.46626 0.30778 0.00172
[0.20216, 0.76205] [0.10459, 0.59067] [0.00135, 0.00224]

Notes: The table reports medians of the posteriors of the baseline model measurement error parameters,

β2 (1879–1914) and β3 (1915–1946), and scale volatility, σ2
u, for the TVP-SV-AR(n), n = 1, ..., 6. Below

these estimates, the brackets contain five and 95% quantiles extracted from the posterior distributions.
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Figure B1: Measurement Error Parameter Densities and Smoothed States

Notes: The top row of panels display the prior and posterior densities of the scale volatilities σ 2
τ,u, τ = 1251–1869, 1870-1914, and 1915-1946.

The densities are constructed using a normal kernel and methods described by Silverman (1986). Posterior densities are the solid (olive) lines. The
(turquoise) dot-dash lines are densities of the prior distributions. The latter distributions are simulated using the priors for the σ 2

τ,us listed in table
B1. The median of the posterior of smoothed measurement error, mt , is the solid (red) line in the bottom left panel. Surrounding mt are (pink)
shadings, which are 68% uncertainty bands. The bottom right panel plots πuk,t , as the solid green line, the median of the posterior of true inflation,
πt , is the dotted (magenta) line, and (orchid) shadings represent 64% confidence bands.
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Figure B2: Posterior Moments of the TVP-SV-AR(3) on UK Inflation, 1251–2019

Notes: The top left panel contains the posterior median of the time-varying intercept, α0,t . The posterior median of the sum of the lag
TVPs,

∑3
ℓ=1αℓ,t , is found in the top right panel. A plot of the time-varying conditional mean of UK inflation is depicted in the bottom

left panel as the posterior median of µπ,t = α0,t
/(

1 −
∑3
ℓ=1αℓ,t

)
. The SV of UK inflation is displayed in the bottom right panel. The

four panels also display shadings that are 68% Bayesian credible sets (i.e., 16% and 84% quantiles) of the TVPs and SV.
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Figure B3: 1-Year Ahead Expected UK Inflation and Its Ex Post Forecast Error, 1251–2019

Notes: The top panel plots median 1-year ahead expected UK Inflation, Etπuk,t+1. Expected inflation is estimated using the Kalman
filter, πuk,t , and the posterior distribution of the TVP-SV-AR

(
3
)

with measurement error. The bottom panel contains the ex post
forecast error, πuk,t+1 − Etπuk,t+1. The panels also contain shadings that are 90% Bayesian credible sets (i.e., 5% and 95% quantiles).
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Figure B4: Predictability of UK Inflation 1-, 2-, 3-, and 5-Years Ahead, 1251–2019

Notes: The top left panel plots the median 1-year ahead R-square statistic, R2
1t , which is computed as described in appendix D, from

1251 to 2019. The shadings around R2
1t are 68% Bayesian credible sets. Similarly, median R2

2t , R
2
3t , and R2

5t appear in the top right,
bottom left, and bottom right panels along with 68% Bayesian credible sets as the shadings. The R2

ht statistics are computed using the
posterior distribution of the TVP-SV-AR

(
3
)

with measurement error.
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Figure B5: UK Price-Level Instability, 1251–2019

Notes: The top left panel plots the median of the 1-year ahead square root of the sum of the conditional variance and the squared,

conditional mean,
√

vart
(
puk,t+1 − Etpuk,t+1

)
+
(
Etpuk,t+1 − puk,t

)2
, from 1251 to 2019; see section 5.4 and appendix E for details. The

shadings around this statistic are 90% Bayesian credible sets. The median 2-, 3-, and 5-year ahead price-level stability statistics are
displayed in the top right, bottom left, and bottom right panels along with shadings that are 68% Bayesian credible sets. The price-level
stability statistics are computed using the posterior distribution of the TVP-SV-AR

(
3
)

with measurement error.
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Figure B6: UK Nominal and Real Short- and Long-Term Interest Rates

Notes: The top row plots UK nominal short- and long-term interest rates; see section 6 for details. The bottom row depicts ex ante
short- and long-term real rates, rNS,i,t = RBofE,i,t − Etπuk,t+1, in the left and right panels, where i = S(short) and L(long). The rNS,S,t(
rNS,L,t

)
begins in 1695 (1703) and ends in 2019. One-year ahead expected inflation is computed using the posterior distribution of

the TVP-SV-AR
(
3
)

with measurement error. In the bottom row of panels, the shadings are 90% Bayesian credible sets.
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Appendix B.3. The TVP-SV-AR
(
n
)

minus Measurement Error

This section reports on a model that omits measurement error. Hence πuk,t = πt,

which reduces the model for estimation to equations (3)–(5) of the paper. The last two

rows of Table B5 presents the ln MDDs and WAICs for this model. These ln MDDs and

WAIC point to different lag lengths for the TVP-SV-AR
(
n
)
. The data give very strong

support to n = 4, according to the row of lnMDDs in the bottom half of Table B5. In its

last row, the WAICs indicate the 1-year ahead forecast error is minimized at n = 5.

We also report ln MDDs and WAICs for the baseline model of iid measurement error

in the top half of Table B5. These rows reproduce Table 4 of the paper. Including these

statistics are useful for comparing the baseline model of iid measurement error with the

pure TVP-SV-AR
(
4
)

of equations (3)–(5). Table B5 gives decisive evidence the data favor

the ARs that lack measurement error to the baseline model of iid measurement error in

which n = 3, or for any lag length. The former TVP-SV-ARs also offers substantially lower

1-year ahead forecast error as signaled by its WAIC. The explanation is the measures of

fit penalize the additional parameters in Ψ of the baseline model of iid measurement error.

The information about the breaks in the construction of the data in 1870, 1915, and 1947

fail to improve the fit of the baseline model of iid measurement error compared with the

TVP-SV-AR
(
n
)
s under the restriction πuk,t = πt. As a result, measured SV, which is

declining during the sample, reflects some of the measurement error in πuk,t.

Figures B7 to B11 contain results of estimating the TVP-SV-AR
(
4
)
, given πuk,t = πt.

These results lead to economic conclusions that are quite similar compared with Figures

4–8 generated by the posterior of the baseline model of iid measurement error in the paper.

Hence a complete discussion of the results for the TVP-SV-AR
(
5
)

in which πuk,t = πt is

left to our earlier working paper, Nason and Smith (2021).

There are, however, several, numerical similarities and differences across Figures 4

to 8 and Figures B7 to B11 that are worth describing. There is substantial uncertainty

surrounding the median of the posterior of α0,t from 1289 to 1921 in the upper left panel

of Figure B7. The upper right panel of this figure displays wider Bayesian credible sets

of the posterior
∑4
i=1 αi,t during the sample compared with the same panel in Figure 3.

These Bayesian credible sets do not include zero year by year from the 1251 to 1649. This
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sum reaches its trough at 0.61 in 1398 and hits its peak at 0.67 in 1975. In the lower

left panel of Figure B7, the posterior median estimate of µπ,t peaks at 4.50% in 1974.

The associated Bayesian credible sets cover zero year by year from 1289 to 1921. Hence,

evidence of a single great wave of inflation in the 20th century is reinforced by estimates of

the TVP-SV-AR
(
4
)

that lack measurement error, πuk,t = πt. The lower right panel of this

figure shows that SV declines throughout the sample with local peaks in 1251, 1319, 1371,

1550, 1597, and 1921. Figure B8 contains 1-year ahead inflation forecasts and forecast

errors that mirror the inflation forecasts that appear in figure 5. The same is true for

Figures 6 and Figure B9 with two exceptions. The latter figure shows larger maximum

median estimates of the posteriors of R2
ht at all horizons. These peaks are 0.43, 0.20, 0.14,

and 0.09 at h = 1, 2, 3, and 5 and occur at 1975 for all horizons but 2-years ahead, which

is in 1974. The other difference is that at 3- and 5-years ahead the 16th quantiles are well

above zero for the entire sample. Figure B9 shows the lower bound of these 68% Bayesian

credible sets are no smaller than 0.01 and 0.004 from the early 1300s to the early 1900s.

Comparing Figures 7 and B10 reveals similar local peaks in the price stability statistics.

The local peaks are 1319, 1371, 1438, 1528, 1550, 1558, 1800, 1921, and 1975 with the

largest centered on the early 1300s, 1370s, mid 1550s, 1917-1922, and mid 1970s. Plots of

the posteriors of short-term and long-term real interest rates in the bottom row of Figures

8 and B11 are also qualitatively similar. However, the 90% Bayesian credible sets are

narrower in Figure B11. Moreover, not modeling measurement error raises the maximum

median short-term real interest rate by 60 basis points to 12.3% in 1922, but the maximum

median long-term real interest rate is lowered by about 40 basis points to 10.7% in 1974.
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Table B5: Comparison of Fit of the TVP-SV-AR(n)s
without Measurement Error

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)

Baseline:
ln MDD 638.21 643.18 673.62 667.59 652.72 650.82

WAIC -1431.95 -1457.55 -1487.87 -1483.30 -1487.75 -1465.82

No Measurement Error:

ln MDD 764.56 780.20 801.46 817.51 813.47 806.85

WAIC -1634.70 -1661.84 -1704.80 -1714.75 -1719.75 -1715.24

Notes: The first two lines reproduce Table 4 in the paper for our baseline model of measurement error.

The final two rows contain the ln MDDs and WAICs for the posteriors of TVP-SV-AR(n)s of equations

(3)-(5) alone, which exclude measurement error implying πuk,t = πt. See Table 3 of the paper for the

priors on the initial conditions of α0, Ωη, and ln ξ20 .
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Figure B7: Posterior Moments of the TVP-SV-AR(4) on UK Inflation, 1251–2019

Notes: The top left panel contains the posterior median of the time-varying intercept, α0,t . The posterior median of the sum of the lag
TVPs,

∑4
ℓ=1αℓ,t , is found in the top right panel. A plot of the time-varying conditional mean of UK inflation is depicted in the bottom

left panel as the posterior median of µπ,t = α0,t
/(

1 −
∑4
ℓ=1αℓ,t

)
. The SV of UK inflation is displayed in the bottom right panel. The

four panels also display shadings that are 68% Bayesian credible sets (i.e., 16% and 84% quantiles) of the TVPs and SV.
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Figure B8: 1-Year Ahead Expected UK Inflation and Its Ex Post Forecast Error, 1251–2019

Notes: The top panel plots median 1-year ahead expected UK Inflation, Etπuk,t+1. Expected inflation is estimated using the Kalman
filter, sample UK inflation, and the posterior distribution of the TVP-SV-AR

(
4
)
. The bottom panel contains the ex post forecast error,

πuk,t+1 − Etπuk,t+1. The panels also contain shadings that are 90% Bayesian credible sets (i.e., 5% and 95% quantiles).

23



Figure B9: Predictability of UK Inflation 1-, 2-, 3-, and 5-Years Ahead, 1251–2019

Notes: The top left panel plots the median 1-year ahead R-square statistic, R2
1t , which is computed as described in appendix D, from

1251 to 2019. The shadings around R2
1t are 68% Bayesian credible sets. Similarly, median R2

2t , R
2
3t , and R2

5t appear in the top right,
bottom left, and bottom right panels along with 68% Bayesian credible sets as the shadings. The R2

ht statistics are computed using the
posterior distribution of the TVP-SV-AR

(
4
)
.
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Figure B10: UK Price-Level Instability, 1251–2019

Notes: The top left panel plots the median of the 1-year ahead square root of the sum of the conditional variance and the squared,

conditional mean,
√

vart
(
puk,t+1 − Etpuk,t+1

)
+
(
Etpuk,t+1 − puk,t

)2
, from 1251 to 2019; see section 5.4 and appendix E for details. The

shadings around this statistic are 90% Bayesian credible sets. The median 2-, 3-, and 5-year ahead price-level stability statistics are
displayed in the top right, bottom left, and bottom right panels along with shadings that are 68% Bayesian credible sets. The price-level
stability statistics are computed using the posterior distribution of the TVP-SV-AR

(
4
)
.
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Figure B11: UK Nominal and Real Short- and Long-Term Interest Rates

Notes: The top row plots UK nominal short- and long-term interest rates; see section 6 for details. The bottom row depicts ex ante
short- and long-term real rates, rNS,i,t = RBofE,i,t − Etπuk,t+1, in the left and right panels, where i = S(short) and L(long). The rNS,S,t(
rNS,L,t

)
begins in 1695 (1703) and ends in 2019. One-year ahead expected inflation is computed using the posterior distribution of

the TVP-SV-AR
(
4
)
. In the bottom row of panels, the shadings are 90% Bayesian credible sets.
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Appendix B.4. The Horseshoe Prior

This section discusses a TVP-SV-AR
(
n
)

without measurement error that replaces

the fixed variance, σ2
φ, of the innovation to SV, φt with an alternative prior that allows

for the variance to be time-varying. A motivation is the critique that the random walk

specification of the states of a TVP-SV-VAR generate drift that might obscure sudden

breaks in these variables by imposing smooth and slow adjustment. Results in the paper

and Appendices B.1, B.2 and B.3 assume random walk drift in αt (ln ξ2
t ) that have (has)

homoscedastic innovations with a covariance matrix drawn from an IW (variance from an

IG) prior. Hence, we use this section as robustness check on results presented in the paper

and elsewhere in the Appendix, but only with respect to the SV.

One approach to introducing time-variation in σ2
φ is the horseshoe prior. It has been

suggested as an alternative to an IG prior on a scale parameter. We work with the horse-

shoe prior of Carvalho, Polson, and Scott (2010) and Polson and Scott (2012). They tie

the horseshoe prior to the half-Cauchy distribution, which truncates a Cauchy distribution

with location and scale parameters set to zero and one to the non-negative part of the

real line, HC
(
0, 1

∣∣ 0, ∞). In the VAR literature, an example is Prüser (2021). He advo-

cates replacing the IG prior on the fixed variances of the innovations of the TVPs and

SVs of a structural VAR with the horseshoe prior. The comparison is with an IG prior

because Prüser assumes, along with Bitto and Frühwirth-Schnatter (2019), Follett and Yu

(2019), and Cadonna, Frühwirth-Schnatter, and Knaus (2020), that the covariance matrix

of innovations to the TVPs is diagonal.

We adapt the horseshoe prior of Prüser (2021) to our TVP-SV-AR(n)s, but only for

SV, ln ξ2
t . One reason is that plots of the medians of the posterior of α0,t and

∑n
i=1 αi,t

in Figure 5 indicate that the standard IW prior is more than capable of capturing rapid

changes in these TVPs conditional on the UK inflation data and our priors. Moreover, the

posterior of the baseline model of measurement error produce draws of Ωη with off-diagonal

elements that show innovations to the elements of αt have non-zero correlation. We argue

this posterior correlation is economically more important than the benefits of time-varying

heteroscedasticity in the independent random walks of the TVPs.

Table B6 presents our horseshoe prior for time-varying heteroscedasticity in the in-
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novation of ln ξ2
t . The horseshoe prior, as implemented by Prüser (2021), allows for het-

eroscedasticity in φt by assuming its variance is decomposed into static or global and local

or time-varying components, σ2
φ,t = ψ−2ζ2

t , where ψ , ζt ∼ HC
(
0, 1

∣∣ 0, ∞).
Prüser relies on Makalic and Schmidt (2016) to map the unconditional HC

(
0, 1

∣∣ 0, ∞)
prior into a conditional posterior composed of a scale mixture of four IG distributions.

They devise a procedure to make conditionally independent posterior draws. The se-

quence of posterior draws starts by obtaining a new realization of the global component

ψ2 conditional on ln ξ2T , the local component ζ2
t , and δψ, which is the previous draw of

the precision (i.e. inverse of the scale) parameter of the IG posterior distribution of ψ2.

Next, a similar draw updates ζt conditional on the previous draws of ln ξ2
t , ln ξ2

t−1, ζ2
t , and

δζ , which is the previous draw of the precision parameter of the IG posterior distribution

of ζ2
t . Last, δψ and δζ are updated by drawing from the IG posterior distributions in which

the precision parameters ψ2
/(

1 + ψ2
)

and ζ2
t

/(
1 + ζ2

t

)
employ the most recent updates.

Implementing the horseshoe prior alters step 2 of the MH in Gibbs MCMC sampler

described in Appendix C in two ways. First, initial draws of ψ2, ζ2
0 , δψ, and δζ from IG

priors replace the initial draw of σ2
φ. These IG priors are grounded in the revised horseshoe

ordering between equations (6) and (7) of Makalic and Schmidt (2016). Second, step 2c) of

the MCMC sampling algorithm of Appendix C is altered to account for the conditionally

independent posterior draws discussed previously and outlined in Table B6.

Table B7 evaluates the fit of the TVP-SV-AR(n)s with the horseshoe prior. For

simplicity, we apply this model directly to πuk,t and omit the 4-span treatment of mea-

surement error. Both the ln MDD and WAIC criteria suggest a lag length of n = 6 years.

For comparison, Table B7 also repeats the same statistics for the TVP-SV-AR(n)s minus

measurement error with the priors of Table 3 in the paper that endow σ2
φ with an IG

prior. Overall, these statistics yield evidence on whether the data throws more support

to the TVP-SV-AR(6) reported on Table B7 or the TVP-SV-AR(4) of Table B5 that is

hardly worth mentioning. The gap in the WAICs is less than one showing both models

produce similar predictive loss at the 1-year horizon. Thus invoking a horseshoe prior on

σ2
φ,t does not result in TVP-SV-AR(n)s restricted by πuk,t = πt that receive more support

from the data or are superior forecasting models. Hence the horseshoe prior does not alter
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the evidence that TVP-SV-AR(n)s lacking in measurement error dominate our baseline

model of iid measurement error.

Figures B12–B16 contain results from the TVP-SV-AR(6) with the horseshoe prior

on SV in which πuk,t = πt that again are similar to those in Figures 4–8 of the paper.

There are, however, several, numerical similarities and differences across Figures 4 to 8

and B12 to B16 that are worth describing. First, there is less uncertainty surrounding

the median of the posterior of α0,t during the sample. For example, only from 1329 to

1910 do the 68% Bayesian credible sets include zero year by year in the upper left panel of

Figure B12. The upper left panel of Figure 4 shows this interval starts in 1261 (68 years

earlier) and ends on 1923 (13 years later) for the baseline model of iid measurement error.

Second, the upper right panel of Figure B12 displays wider Bayesian credible sets of the

posterior
∑6
i=1 αi,t from the mid 1300s to the mid 1600s compared with the same panel

in Figure 4. This plot has a trough in 1353 at -0.46 and peaks at 0.62 in 1974 while in

Figure B12 the trough occurs later, in 1486, at -0.61, but the peak of 0.69 is in the same

year. Third, the posterior median estimate of µπ,t peaks at 3.50% in 1977 as appears in

the lower left panel of Figure B12. This is two years after and almost a third less than

the same estimate of 5.06% produced by the baseline model of iid measurement error that

we report in the paper. Next, the lower right panel of this figure shows that SV declines

throughout the sample with local peaks in 1251, 1319, 1371, 1558, and 1921. The 1-year

ahead inflation forecasts and forecast errors of Figure B13 closely resemble the inflation

forecasts that appear in Figure 5. Fifth, the same is true for Figures 6 and B14, but the

latter shows larger maximum estimates of the posteriors of R2
ht at h = 2, 3, and 5 all

in 1975. Sixth, comparing Figures 7 and B15 reveals that employing the horseshoe prior

places the local peaks of the price stability statistics in the same years. However, the peaks

focused on 1917–1922 and 1975 dominate when using the horseshoe prior. Finally, posterior

estimates of short-term and long-term real interest rates are similar across Figures 8 and

B16. However, the horseshoe prior results in a 120 basis point increase to 12.9% in the

maximum of the median of the posterior of the short-term real rate in 1922 and a 60 basis

point increase to 11.7% in the maximum of the median of the posterior of the long-term

real interest rate in 1974.
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Table B6: Horseshoe Prior on the SV of the TVP-SV-AR(n)s

πt = α0,t +
n∑
i=1

αi,tπt−i + ξtεt, εt ∼ N (0, 1),

αt ≡ {α0,t, α1,t, α2,t, . . . , αn,t},

αt = αt−1 + ηt, ηt ∼ N
(
0n+1, Ωη

)
,

ln ξ2
t = ln ξ2

t−1 + σφ,tφt, φt ∼ N
(
0, 1

)
,

σ2
φ,t = ψ−2ζ2

t , ψ, ζt ∼ HC
(
0, 1

∣∣ 0, ∞).

Conditionally Posterior Parameters
Independent Draws Distribution θ1 θ2

ψ2
∣∣ ln ξ2

t , δψ, ζ
2
t IG T + 1

2
σ2
ξ,T + 1

/
δψ

ζ2
t

∣∣ ln ξ2T , ln ξ2
0 , δζ , ψ

2 IG 1 σ2
ξ,t + 1

/
δζ

δψ
∣∣ψ2 IG 1 1 + 1

/
ψ2

δζ
∣∣ ζ2
t IG 1 1 + 1

/
ζ2
t

Notes: Makalic and Schmidt (2016) represent the half-Cauchy (HC) distribution as conditional and un-

conditional IG distributions. As discussed in Prüser (2021), this implies for the random variables Y and λ

that conditioning the square of the former on the latter, Y2
∣∣λ ∼ IG(0.5, 1/λ) and λ ∼ IG

(
0.5, 1

)
, yields

Y ∼ HC
(

0, 1
∣∣ 0,∞), which is the HC distribution truncated to the non-negative part of the real line with

location and scale parameters θ1 = 0 and θ2 = 1. The IG distribution is parameterized by the shape and

scale parameters θ1 and θ2. The draws of ψ2 and ζ2t require computing σ2
ξ,T = 0.5

∑T

t=0

(
∆ ln ξ2t

)2/
ζ2t and

σ2
ξ,t = 0.5

(
∆ ln ξ2t

)2/
ψ2. Otherwise, see Table 3 of the paper for the priors on the initial conditions of α0,

Ωη, and ln ξ20 .
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Table B7. Evaluation of Fit of the TVP-SV-AR(n)s

with a Horseshoe Prior on SV

AR(1) AR(2) AR(3) AR(4) AR(5) AR(6)

No Measurement Error:

ln MDD 764.56 780.20 801.46 817.51 813.47 806.85

WAIC -1634.70 -1661.84 -1704.80 -1714.75 -1719.75 -1715.24

Horseshoe Prior:

ln MDD 758.49 778.34 807.13 805.17 809.33 818.40

WAIC -1620.89 -1669.76 -1696.45 -1710.08 -1708.58 -1718.85

Notes: See the notes to Table 4 of the paper. For simplicity the statistics are calculated directly on {πuk,t},

ignoring measurment error.
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Figure B12: Posterior Moments of the TVP-SV-HS-AR(6) on UK Inflation, 1251–2019

Notes: The top left panel contains the posterior median of the time-varying intercept, α0,t . The posterior median of the sum of the lag
TVPs,

∑6
ℓ=1αℓ,t , is found in the top right panel. A plot of the time-varying conditional mean of UK inflation is depicted in the bottom

left panel as the posterior median of µπ,t = α0,t
/(

1 −
∑6
ℓ=1αℓ,t

)
. The SV of UK inflation is displayed in the bottom right panel. The

four panels also display shadings that are 68% Bayesian credible sets (i.e., 16% and 84% quantiles) of the TVPs and SV.
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Figure B13: 1-Year Ahead Expected UK Inflation and Its Ex Post Forecast Error, 1251–2019

Notes: The top panel plots median 1-year ahead expected UK Inflation, Etπuk,t+1. Expected inflation is estimated using the Kalman
filter, sample UK inflation, and the posterior distribution of the TVP-SV-HS-AR

(
6
)
. The bottom panel contains the ex post forecast

error, πuk,t+1 − Etπuk,t+1. The panels also contain shadings that are 90% Bayesian credible sets (i.e., 5% and 95% quantiles).
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Figure B14: Predictability of UK Inflation 1-, 2-, 3-, and 5-Years Ahead, 1251–2019

Notes: The top left panel plots the median 1-year ahead R-square statistic, R2
1t , which is computed as described in appendix D, from

1251 to 2019. The shadings around R2
1t are 68% Bayesian credible sets. Similarly, median R2

2t , R
2
3t , and R2

5t appear in the top right,
bottom left, and bottom right panels along with 68% Bayesian credible sets as the shadings. The R2

ht statistics are computed using the
posterior distribution of the TVP-SV-HS-AR

(
6
)
.
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Figure B15: UK Price-Level Instability, 1251–2019

Notes: The top left panel plots the median of the 1-year ahead square root of the sum of the conditional variance and the squared,

conditional mean,
√

vart
(
puk,t+1 − Etpuk,t+1

)
+
(
Etpuk,t+1 − puk,t

)2
, from 1251 to 2019; see section 5.4 and appendix E for details. The

shadings around this statistic are 90% Bayesian credible sets. The median 2-, 3-, and 5-year ahead price-level stability statistics are
displayed in the top right, bottom left, and bottom right panels along with shadings that are 68% Bayesian credible sets. The price-level
stability statistics are computed using the posterior distribution of the TVP-SV-HS-AR

(
6
)
.

35



Figure B16: UK Nominal and Real Short- and Long-Term Interest Rates

Notes: The top row plots UK nominal short- and long-term interest rates; see section 6 for details. The bottom row depicts ex ante
short- and long-term real rates, rNS,i,t = RBofE,i,t − Etπuk,t+1, in the left and right panels, where i = S(short) and L(long). The rNS,S,t(
rNS,L,t

)
begins in 1695 (1703) and ends in 2019. One-year ahead expected inflation is computed using the posterior distribution of

the TVP-SV-HS-AR
(
6
)
. In the bottom row of panels, the shadings are 90% Bayesian credible sets.
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Appendix C: A MH in Gibbs MCMC Sampler

This section discusses the MH in Gibbs MCMC sampler that draws from the posterior

of the baseline iid measurement error model combined with the AR(n) with TVPs and an

innovation subject to SV of true inflation, πt. We reproduce the baseline measurement

error model, its state variables, πt and measurement error, mt, and the AR(n) with its

TVPs and SV as state variables here:

πuk,t = πt + mt, (1)

mt =
√
βτut, ut ∼ N

(
0, 1

)
, (2)

πt = α0,t +

n∑
i=1

αi,tπt−i + ξtεt, εt ∼ N
(
0, 1

)
, (3)

ln ξ2
t = ln ξ2

t−1 + σφφt, φt ∼ N
(
0, 1

)
, (4)

αt = αt−1 + ηt, ηt ∼ N
(
0n+1, Ωη

)
, (5)

where τ = 1, 2, 3, and 4 and ut is uncorrelated with εt, φt, and ηt at all leads and lags.

Equation (1) decomposes UK inflation, πuk,t, into πt, and mt. The former is generated

by the TVP-SV-AR(n) of equations (3)–(5). Measurement error is iid because it is the

realization of the Gaussian innovation ut scaled by the square root of βτ =
[
1 β2 β3 0

]′
.

The AR(n) of equation (3) is linear in the time-varying intercept, α0,t, and lag coeffi-

cients, α1,t, . . . , αn,t, but nonlinear in the Gaussian innovation εt that is hit by SV in the

form of ξt. The log of its square evolves as the geometric random walk (4) in the innovation

φt that is scaled by the static volatility σφ. Equation (5) is the multivariate random walk

generating updates of the time-varying intercept, α0,t, and lag coefficients αi,t, where αt

≡
[
α0,t α1,t α2,t . . . αn,t

]′
and ηt ≡

[
η0,t η1,t η2,t . . . ηn,t

]′
. Since the covariance matrix

Ωη is unrestricted, the multivariate random walk (4) yields TVPs that can be correlated.

This is not true of the elements of ηt and εt and φt because E
(
ηi,tφt

)
= E

(
ηi,tεt

)
= 0,

i = 0, 1, . . . , n. A similar restriction is imposed on φt and εt, E
(
φtεt

)
= 0.
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The MCMC sampler tacks a multivariate random walk proposal-MH decision criterion-

robust adaptive Metropolis (RAM) algorithm onto a sequence of Gibbs steps. The MH

part draw the three measurement error parameters computing updates using the RAM

algorithm of Vihola (2012). The TVPs and SV are drawn in a sequence of Gibbs steps.

The Gibbs component of the MCMC sampler rests on the Canova and Pérez Forero

(2015) implementation of the Del Negro and Primiceri (2015) algorithm. This algorithm

constructs the posterior of a state space model with SV in the observation equations.

Canova and Pérez Forero (2015) apply the algorithm to sample from the posterior of a

non-recursive structural VAR with TVPs and SV. We modify instructions in Canova and

Pérez Forero (2015) to sample from the TVP-SV-AR(n) of equations (3), (4), and (5).

The TVP-SV-AR(n) can be cast as a state space model in which observations on πuk,t are

connected to the TVPs and SV through equation (3) and these states are generated by

the random walks of equations (4) and (5). Our Gibbs MCMC sampler exploits this state

space representation to draw from the posterior of αt and Ωη similar to the way Canova and

Pérez Forero (2015) build on the insights of Carter and Kohn (1994) for Gibbs sampling

and algorithm 14 of Chib (2001) to Kalman filter and Kalman smooth the states. Similar

Kalman filtering and smoothing routines are employed to make posterior draws of ln ξ2
t

and σ2
φ after determining the volatility state st. Drawing st depends on results in Harvey,

Ruiz, and Shephard (1994) and Omori, Chib, Shephard, and Nakajima (2007).

A brief sketch of our changes to the Gibbs sampler of Canova and Pérez Forero (2015)

clarifies the conditioning needed to draw from the posterior of the TVP-SV-AR(n). Begin

by drawing αT conditional on the current draws of Ωη, ST , ξT , σ2
φ, πT , and mT , where,

for example, ST =
[
s1 s2 . . . st . . . sT

]′
. As in Canova and Pérez Forero (2015), we adopt

the advice of Koop and Potter (2011) to test whether any αt in αT =
[
α1 α2 . . . αt . . . αT

]′
is explosive by calculating the eigenvalues of the companion matrix:

At ≡


α1,t α2,t . . . αn−1,t αn,t

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .

If the largest modulus is greater than or equal to one, the proposed draw of αT is tossed out
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and the sampler adds another instance of the previous draw to the posterior. Otherwise,

the proposed αT is retained as the new draw. In either case, the draw helps to update Ωη,

given current draws of ST , ξT , σ2
φ, and πT . Note that a non-diagonal Ωη is consistent with

the multi-move sampler of Carter and Kohn (1994). Next, ST is drawn, given updates

of αT and Ωη and current draws of ξT , σ2
φ, and πT . This is followed by drawing ξT

conditional on updates of αT , Ωη, and ST , and current draws of σ2
φ and πT . Finally, draw

σ2
φ conditional on updates of αT , Ωη, ST , and ξT and the current draw of πT .

Drawing β2, β3, and the variance of ut, σ
2
u, is the MH part of the MCMC sampler.

Conditioning on updates of αT , Ωη, ST , ξT , and σ2
φ and the current draw of πT , we draw

a proposal of Ψ =
[
β2 β3 σ2

u

]′
from a multivariate random walk. The predictive likelihood

of the baseline model of equations (1)–(5) is computed using the Kalman filter and updates

of the TVPs and SV. The MH criterion is the rule on which the decision is made to accept

the proposal of Ψ or hold to the current draw. The RAM computations designed by Vihola

(2012) are employed to update the covariance matrix of Φ. Given all the updated draws,

the Kalman filter and smoother produce new draws of πT and mT .

The MH in Gibbs MCMC algorithm begins step q with the previous posterior draws,

~αTq−1, ~Ωη,q−1, ~S Tq−1, ~ξ 2T
q−1, ~σ 2

φ,q−1, ~Ψq−1, and ~πTq−1 and c, which is a count of the number

of times the proposal Ψ has been accepted in the MH step. The following (pseudo) code

outlines the algorithm that is conditioned on this information.

1) Run the Kalman filter to create
{
αt|t
}T
t=1

and its mean square error (MSE),
{

Γα,t|t
}T
t=1

,

given the initial condition α0|0 that is drawn according to the prior listed in Table 2.

a) Draw α̌T |T ∼ N
(
αT |T , Γα,T |T

)
, which input into the Kalman smoother aids in

producing α̌T−1|T ∼ N
(
ᾱT−1|T , Γ̄α,T−1|T

)
, and continue iterating the Kalman

smoother backwards in time to obtain smoothed candidate draws α̌T =
{
α̌t|T

}T
t=1

,

where ᾱt|T and its MSE, Γ̄α,t|T , are outputs of Kalman smoothing operations.

b) Employ α̌T to form ǍT . If any mod
(
Ǎt
)
≥ 1, discard α̌T and use the previous

draw ~αTq−1. Otherwise, update the posterior to ~αTq = α̌T .

c) Compute the empirical moment matrix of ~αTq , ∆α,q, to draw the update of Ωη,

which is ~Ωη,q ∼ IW
(

Ωα + ∆α,q, T + n+ 1
)

.
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2) Draw st from the 10-component mixture of Omori, Chib, Shephard, and Nakajima

(2007) using the fact εt is Gaussian.

a) Given ~S T = {~st}Tt=1, draw the initial condition ln ξ2
0|0 using the prior in Table 2

to generate
{

ln ξ2
t|t

}T
t=1

and its MSE,
{
γξ,t|t

}T
t=1

, by running the Kalman filter.

b) Operating the Kalman smoother backwards from date T creates ~ξ T =
{

ln ~ξ 2
t|T

}T
t=1

by first drawing ln ~ξ 2
T |T ∼ N

(
ln ξ2

T |T , γξ,T |T

)
that in turn helps to produce ln ξ̄ 2

t|T

and γ̄ξ,t|T to sample ln ~ξ 2
t|T ∼ N

(
ln ξ̄ 2

t|T , γ̄ξ,t|T

)
, t = T−1, . . . , 1.

c) Draw ~σ 2
φ,q ∼ IG

(
0.5
(
ν + T

)
, 0.5

(
ς + σ2

φ,q

))
, where ν and ς are the degrees of

freedom and variance of the prior on σ2
φ described in Table 2 and σ2

φ,q is the

empirical moment (i.e., sum of squares) of ~ξ T .

3) Generate the proposal Υ̌q = ~Υq−1 + Ω0.5
Υ ϕ, where ϕ ∼ N

(
03×1, I3

)
, ΩΥ is the

covariance matrix of Υ, Ω0.5
Υ is its Cholesky decomposition, and the vector Υ contains

transformations of the elements of Ψ that map from the unit interval to the unbounded

real line for β2,u and β3,u, Υ1 = ln Ψ1 − ln
(
1 − Ψ1

)
, Υ2 = ln Ψ2 − ln

(
1 − Ψ2

)
, and

from the positive part of the real line to the unbounded real line for σ2
u, Υ3 = ln Ψ3.

a) The Kalman filter yields proposals of π̌T and m̌T , given ~αTq , ~Ωη,q,
~ξ 2T
q , ~σ 2

φ,q,

and Ψ̌q, along with the predictive likelihood L
(
πTuk,t

∣∣~αTq , ~Ωη,q, ~ξ 2T
q , ~σ 2

φ,q, Ψ̌q

)
b) that is an input into the MH criterion

$q = min

 L
(
πTuk,t

∣∣~αTq , ~Ωη,q, ~ξ 2T
q , ~σ 2

φ,q, Ψ̌q

)
g
(
~Ψq−1, Ψ̌q

)
P
(

Ψ̌q

)
L
(
πTuk,t

∣∣~αTq , ~Ωη,q, ~ξ 2T
q , ~σ 2

φ,q,
~Ψq−1

)
g
(

Ψ̌q, ~Ψq−1

)
P
(
~Ψq−1

) , 1

 ,

against a uniform random variable ωq ∼ U
(

0, 1
)

, where g
(
·, ·
)

is the kernel of the

proposal distribution, which is the gradient of the target restricted by its support

as discussed by Lindström (2017), and P
(
·
)

is the prior of Ψ.

c) If ωq ≤ $q, we have ~Ψq = Ψ̌q. Otherwise, ~Ψq = ~Ψq−1. The latter decision keeps

c unchanged while the former outcome updates c = c + 1.

d) Given ~αTq , ~Ωη,q,
~ξ 2T
q , ~σ 2

φ,q, and ~Ψq, the Kalman filter and smoother produce ~πTq

and ~mT
q .
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e) The RAM law of motion of the covariance matrix of Ψ is

ΩΥ,q = Ω0.5
Υ,q−1Ω0.5 ′

Υ,q−1 + Ω0.5
Υ,q−1

(
min

(
1,dim

(
Ψ
)
qζ
)
×
(
ωq − ω?

) ϕqϕ′q∣∣∣∣ϕq∣∣∣∣2
)

Ω0.5 ′
Υ,q−1,

where dim
(
Ψ
)

= 3 and ζ is the step size to adapt new proposals. Vihola (2012)

suggests ζ ≈ -0.65. We set ω? = 0.315, which is about half way between the

optimal acceptance rate for a single parameter model and the optimal acceptance

rate of a model with six or more parameters.

4) Repeat steps 1 to 3 to obtain Q draws, where q = 1, . . . , Q.

Additional information is needed to construct the posterior of a TVP-SV-AR(n) by

running the Gibbs component of the MCMC sampler. The Gibbs MCMC sampler cali-

brates κn to yield an acceptance rate for
{
~αTq
}Q
q=1

ranging from 50% to 60%. The second

columns of Tables C1 to C4 lists the values of the tuning parameter, κn, that achieves the

desired acceptance rate for the baseline model of iid measurement error, the alternative

model of iid measurement error, the TVP-SV-AR
(
n
)

lacking measurement error, and the

same model that invokes the horseshoe prior on SV. The calibrations of κn are of note in

two ways. First, this tuning parameter is smaller as the lag length n increases in all four

tables. Second, κn is larger n by n in the models with measurement errors compared with

the same columns in Tables C3 and C4.

Next, sampling ~S T and ~ξ T relies on an approximation. Rewrite the TVP-SV-AR(n)

as ~Yt ≡ πt − ~α0,t −
∑k
i=1 ~αi,tπt−i = ξtεt, pass the natural log operator through to obtain

ln ~Y2
t = 2 ln ξt + ln ε2t , and the approximation ln

(
~Y 2
t + ι

)
≈ 2 ln ξt + ln ε2t , where ι =

0.0001 bounds away from zero the term inside the log on the left of the approximation.

Harvey, Ruiz, and Shephard (1994) brought attention to the fact that the log of the square

of a Gaussian random deviate is distributed ln ε2t ∼ lnχ2
(
1
)

with a mean of -1.2704 and a

variance equal to 3.14162
/

2. Omori, Chib, Shephard, and Nakajima (2007) approximate

lnχ2
(
1
)

using these facts and a 10-component mixture of normal distributions, which is

our source for drawing ~S T .

The initial condition ΩΥ,0 is drawn from a prior grounded in the IW distribution. We
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endow ΩΥ,0 ∼ IW
(
T + dim

(
Ψ
)

+ 2, 0.001I
dim
(

Ψ
)). However, β2, β3, and σ2

u are given

initial conditions of two-thirds, one-third, and 0.211142, respectively.

The three other models alternative fit easily into the MCMC sampling algorithm

summarized by steps 1, 2, and 3. The posterior of the alternative model of iid measurement

error is generated as outlined previously except that Ψ is changed to
[
σ2

1,u σ2
2,u σ2

3,u

]′
.

Table B1 presents the priors of the three measurement error parameters of the alternative

model. Results for this model are reported in Appendix B.2. The algorithm is a pure

Gibbs MCMC sampler for the two models lacking measurement error because step 3 is

dropped. The TVP-SV-AR
(
n
)

with the horseshoe prior is reviewed in Appendix B.4

while the standard specification of SV is discussed in Appendix B.3.

We generate a burn-in of 0.5Q = 250,000 steps from the MH in Gibbs MCMC sampler

and create Q posterior draws. Results are reported for the four models on a thinned

posterior. The Q posterior draws are thinned using random sampling without replacement

of the integers q = 1, . . . , Q. The thinned posteriors consist of D = 2000 draws.

The right most column of Tables C1 to C4 report the run-times of the four models.

Not surprisingly, the models setting πuk,t = πt have shorter run-times compared with

the baseline and alternative iid measurement error models. The horseshoe prior adds

marginally to the run-time relative to the model of equations (3)–(5). The baseline and

alternative iid measurement error models can take from about two and quarter hours at n

= 1 to a run-time between 10 and 11 hours for n = 6. The run-time of the models lacking

measurement error is 210 minutes or less.

The MH in Gibbs MCMC and Gibbs MCMC samplers are run using Julia v.1.6.6.

The same statistical and computational software is employed to calculate the log MDDs,

the WAICs, and the R2
ht and price stability statistics. The Estima econometric software

package RATS is the source of the unit root tests in Table 1 and the MA and Newey-West

confidence bands displayed in Figure 2. The remaining figures are constructed using the

Julia packages PyPlot and PyCall to engage the Python package Matplotlib v3.4.2.
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Table C1. Summary of the MH in Gibbs MCMC Sampler for the TVP-SV-AR
(
n
)

with Baseline Model of iid Measurement Error

Stationary
Acceptance Rate Elapsed

n κη
{
αTq
}Q
q=1

Run-Time

1 98.50 52.5% 2.25 hours

2 28.50 52.5% 3.37 hours

3 7.75 55.1% 4.40 hours

4 4.75 55.1% 6.32 hours

5 3.25 53.2% 8.47 hours

6 2.38 52.3% 10.90 hours

Notes: The second column of the table reports the tuning parameter, κη, on the prior of the initial

covariance matrix of the intercept and lag coefficients, αt, the acceptance rate of the stationary lag TVPs,

α`,t, ` = 1, ..., n, and the speed in (real) time needed to run the MH in Gibbs MCMC sampler on equations

(1)–(5) of the paper and the long annual UK inflation sample.
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Table C2. Summary of the MH in Gibbs MCMC Sampler for the TVP-SV-AR
(
n
)

with Alternative Model of iid Measurement Error

Stationary
Acceptance Rate Elapsed

n κη
{
αTq
}Q
q=1

Run-Time

1 108.50 52.8% 2.27 hours

2 33.50 53.0% 3.30 hours

3 7.98 55.4% 4.38 hours

4 5.85 53.0% 6.52 hours

5 3.95 52.4% 8.58 hours

6 3.18 52.4% 10.48 hours

Notes: See the notes to Table C1, but the speed in (real) time needed to run the MH in Gibbs MCMC

sampler is on equation (1) and equations (3)–(5) of the paper, mt = στ,uut, and the long annual UK

inflation sample, where τ = 1, 2, and 3.
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Table C3. Summary of the Gibbs MCMC Sampler for the TVP-SV-AR
(
n
)

Stationary
Acceptance Rate Elapsed

n κη
{
αTq
}Q
q=1

Run-Time

1 88.50 58.4% 0.42 hours

2 77.50 52.8% 1.00 hours

3 7.28 53.5% 1.33 hours

4 3.50 57.3% 2.00 hours

5 2.18×10−1 57.1% 2.47 hours

6 1.50×10−1 51.2% 3.33 hours

Notes: See the notes to Table C1, but elapsed run-time is the speed in (real) time needed to run the Gibbs

MCMC sampler on the TVP-SV-AR(n)s and long annual UK inflation sample, where πuk,t = πt.
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Table C4. Summary of the Gibbs MCMC Sampler for the TVP-SV-AR
(
n
)

with the Horseshoe Prior on SV

Stationary
Acceptance Rate Elapsed

n κη
{
αTq
}Q
q=1

Run-Time

1 90.80 53.0% 0.58 hours

2 73.80 58.0% 1.07 hours

3 7.98 51.1% 1.48 hours

4 2.38 57.7% 1.87 hours

5 2.12×10−1 52.2% 2.75 hours

6 1.25×10−1 58.8% 3.35 hours

Notes: See the notes to Table C3.
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Appendix D: The Formula for Inflation Predictability

We use the R2 statistic proposed by Cogley, Primiceri, and Sargent (2010) to summa-

rize the h-year ahead predictability of UK inflation, πuk,t. The R2 statistic is one minus

the ratio of the conditional variance to the unconditional variance. It lies between 0 and

1. If the series is completely unpredictable, the conditional variance and unconditional

variances coincide forcing the ratio to unity and R2 = 0. Also, it goes to zero as h→∞.

Computing the R2 statistic relies on the TVP-SV-AR(n) with measurement error be

in companion form. Recall that ξt is the date-t, scalar SV of the AR(n) and βτσuut is mea-

surement error. Define Πuk,t ≡ [πuk,t πuk,t−1 . . . πuk,t−n+1]
′
, A0,t ≡ [α0,t 0 . . . 0]

′
, Πt ≡

[πt πt−1 . . . πt−n+1]
′
, Mt ≡ [mt mt−1 . . . mt−n+1]

′
, mt =

√
βτσuut, Ξt ≡ [ξtεt 0 . . . 0]

′
,

and remember Appendix C defines the date t companion matrix of the AR(n) as:

At ≡


α1,t α2,t . . . αn−1,t αn,t

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 .
Putting the definitions together let us write the TVP-SV-AR(n) in companion form as:

Πuk,t = A0,t +AtΠt−1 +NMt + Ξt, (D1)

where N is a n×n matrix full of zeros except for a one as the first diagonal element.

Cogley, Primiceri, and Sargent (2010) invoke the anticipated utility model (AUM) of

Kreps (1998) as implemented by Cogley and Sbordone (1998) to calculate the R2 statistic.

This version of the AUM assumes a local approximation that holds posterior draws of

A0,t+j and At+j at their current realizations to forecast inflation j-years ahead, Etπt+j .

This assumption yields the statistic:

R2
ht ≈ 1−

s1

[∑h−1
j=0 A

j
tΩu,Ξ,t

(
Ajt
)′]

s′1

s1

[∑∞
j=0A

j
tΩu,Ξ,t

(
Ajt
)′]

s′1

, (D2)

which measures the total predictability of πuk,t at horizon h and year t with respect to true

inflation, πt, and measurement error,
√
βτσuut, where the selection vector s1 = [10...0]1×n,

Ωu,Ξ,t = AtΩu,tA′t + NΩu,tN ′t + ΩΞ,t, Ωu,t = MtM′t, and ΩΞ,t = ΞtΞ
′
t.
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Pass the vec operator through the n × n matrix
∑∞
j=0A

j
tΩu,Ξ,t(A

j
t )
′ in the denom-

inator of (D2) and employ the rule of vectorizing three conformable matrices to find[
In2 −

(
At ⊗At

)]−1
[[
At ⊗ At + N ⊗ N

]
vec(Ωu,t) + vec(ΩΞ,t)

]
, which is a n2 column

vector. This lets us define the initial infinite sum as the n× n matrix:

A∞,t = reshape
([
In2 − (At ⊗At)

]−1
[[
At ⊗At +N ⊗N

]
vec(Ωu,t) + vec(ΩΞ,t)

]
, n, n

)
.

In the numerator, adding and subtracting
∑∞
j=hA

j
tΩu,Ξ,t

(
Ajt
)′

equates the finite sum∑h−1
j=0 A

j
tΩu,Ξ,t

(
Ajt
)′

to
∑∞
j=0A

j
tΩu,Ξ,t

(
Ajt
)′
−
∑∞
j=hA

j
tΩu,Ξ,t

(
Ajt
)′

. The change of

index j = `+ h yields:

∞∑
j=h

AjtΩu,Ξ,t
(
Ajt
)′

=

∞∑
`=0

A`+ht Ωu,Ξ,t

(
A`+ht

)′
= Aht

[ ∞∑
`=0

A`tΩu,Ξ,t
(
A`t
)′](

Aht
)′
.

Combining the last two equations produces:

∞∑
j=0

AjtΩu,Ξ,t
(
Ajt
)′
−
∞∑
j=h

AjtΩu,Ξ,t
(
Ajt
)′

= A∞,t − AhtA∞,t
(
Aht
)′
,

revises equation (D2) as:

R2
ht ≈ 1−

s1

[
A∞,t −AhtA∞,t

(
Aht
)′]

s′1

s1A∞,ts′1
. (D3)

Equation (D3) measures R2
ht for the analyst unaware of measurement error in πuk,t.

Nonetheless, R2
ht can be decomposed into the contributions of innovations to the AR(n),

ξtεt, of true inflation, πt, and of the additive measurement error,
√
βτσuut. This also omits

draws of At, Ωu,t, and ΩΞ,t from the posterior of TVP-SV-AR(n).

Our goal is to report the predictability of πt at horizon h for an economic agent able to

observe true inflation. Computing the contribution of Ξt for R2
ht sets to zero the variance of

measurement error of the τth span, βτσ
2
u, which is the

(
1, 1

)
element of Ωu,t. This restricts

A∞,t = reshape
([
In2 − (At ⊗At)

]−1
vec(ΩΞ,t), n, n

)
in the numerator and denominator

of equation (D3). In other words, for the conditional and unconditional variances we report

the contributions of movements in true inflation, πt, to the h-year ahead predictability of

sample inflation, πuk,t.
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Appendix E: The Formula for Price-Level Instability

At horizon h, instability in the UK price level is given by equation (8) of the paper:

√
vart

(
puk,t+h − Etpuk,t+h

)
+
(
Etpuk,t+h − puk,t

)2

, (8)

which is the square root of a conditional variance plus a squared, conditional mean.

The equation generating the volatility or uncertainty surrounding Etpuk,t+h − puk,t,

similar to equation (9) of Cogley, Sargent, and Surico (2015), is connected to the expected

accumulation of inflation over a h-year ahead horizon, Et
∑h
j=1 πuk,t+j . However, they use

a different parametric model of inflation. In our case, the conditional mean of inflation,

Etpuk,t+1 − puk,t = Etπt+1 = s1

[
Ã0,t + ÃtΠ̂t

]
at h = 1 using equations (1), (2), and (3)

of the paper, which equate πuk,t to the sum of true inflation, πt, and measurement error,

mt, and are the measurement error process and TVP-SV-AR(n) of true inflation, where

Ã0,t and Ãt are draws from the posterior distribution of the TVP-SV-AR(n).

For h ≥ 2, calculating Etpuk,t+h − puk,t is more difficult because of the TVPs. First,

define Ct ≡
(
In − At

)−1A0,t and then substitute for A0,t in the companion form of the

TVP-SV-AR(n) of true inflation, Πt = A0,t + AtΠt−1 + Ξt, and rearrange terms:

Πt − Ct = −At
(
Ct − Ct−1

)
+ At

(
Πt−1 − Ct−1

)
+ Ξt.

Push this equation h-years ahead and pass through the expectations operator to find:

Et

(
πt+h − ct+h

)
= s1Et

(
At+h

[(
Ct+h−1 − Ct+h

)
+
(

Πt+h−1 − Ct+h−1

)])
,

where Et

(
πt+h − ct+h

)
= s1Et

(
Πt+h −Ct+h

)
and disregard differences between Ã0,t and

A0,t and Ãt and At until later. Since Et

(
πt+1− ct+1

)
= s1At

[(
Ct−Ct+1

)
+
(

Πt−Ct
)]

,

iterating forward and substituting produces:

Et

(
πt+h − ct+h

)
= s1Et

 h∑
j=1

(
j∏
`=1

At+h+`−j

)[
Ct+h−j − Ct+h+`−j

]
+

h∏
j=1

At+j
[
Πt − Ct

].
Next, apply the AUM to the previous equation, Etπt+h = s1

[
Ct +Aht

(
Πt − Ct

)]
, and re-

place Ct with
(
In−At

)−1A0,t to give Etπuk,t+h = s1

([
In −Aht

](
In −At

)−1

A0,t +Aht Πt

)
,
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which when summed from 1- to h-years ahead results in:

Etpuk,t+h − puk,t = s1

hIn − h∑
j=1

Ajt

(In −At)−1

A0,t +
h∑
j=1

AjtΠt

 , (E1)

where A0,t and At are held at their current realizations to forecast the sum of inflation

h-years ahead, Etpuk,t+h is conditional on the history of inflation, TVPs, and SV through

date t
(
i.e., xt = [xt xt−1 . . . x1], xt = πt, At, and ξt

)
and the (hyper-)parameter σφ.

Given draws from the posterior distribution of a TVP-SV-AR
(
n
)
, squaring equation (E1)

produces
(
Etpuk,t+h − puk,t

)2

.

The conditional variance
(
Etpuk,t+h− puk,t

)2

is also computed given A0,t and At are

known at year t. Hence,

(
Etpuk,t+h − puk,t

)2

= s1

 h∑
j=1

AjtEt
(

ΠtΠ
′
t

) h∑
j=1

Ajt

′ s′1. (E2)

The right hand side of equation (3) is evaluated numerically by replacing
∑h
j=1A

j
t with

At
(
In−Aht

)(
In−At

)−1

and Et

(
ΠtΠ

′
t

)
= ΩΠ is the unconditional variance of Πt because

A0,t and At are known at year t, and vec
(

ΩΠ

)
=
[
In2 −At

⊗
At
]−1

vec
(

ΩΞ,t

)
using the

companion form of the TVP-SV-AR(n) of true inflation and the rule for vectorizing three

conformable matrices.

We calculate the conditional variance, vart

(
puk,t+h−Etpuk,t+h

)
, recognizing its equiv-

alence to vart

(
πuk,t+h − Etπuk,t+h + puk,t+h−1 − Etpuk,t+h−1

)
. Since the innovation to

the h-year ahead price level forecast is puk,t+h − Etpuk,t+h = s1

[
Πuk,t+h − EtΠuk,t+h

]
+ puk,t+h−1 − Etpuk,t+h−1, the first component of this recursion is constructed using the

companion form of the TVP-SV-AR(n). This is equation (D1) in the previous section. At

h = 1, the forecast error of the observed price level is:

puk,t+1 − Etpuk,t+1 = s1

[
Ã0,t+1 − Ã0,t + (In − Et) Ãt+1Π̂t + NMt+1 + Ξt+1

]
, (E3)

where Π̂t contains Kalman smoothed predictions of Πt. DefineH0,t+1 ≡ [η0,t+1 0 0 . . . 0]
′
,

η0,t+1 = s1H0,t+1,
√
βτσuut+1 = s1 NMt+1, and ξt+1ηt+1 = s1Ξt+1 to turn equation (E3)
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into puk,t+1 − Etpuk,t+1 = η0,t+1 + s1 (In − Et)At+1Πt +
√
βτσuut+1 + ξt+1ηt+1, where

we continue to ignore differences between Ãt+1 and At+1 and Π̂t and Πt.

For h ≥ 2, only πuk,t+h − Etπuk,t+h is needed to update the forecast error of the price

level. Moving from horizon h =1 to h = 2 lets us focus on computing:

πuk,t+2 − Etπuk,t+2 = s1

[
A0,t+2 −A0,t + (In − Et)

[
At+2A0,t+1 +At+2At+1Πt

]

+NMt+2 +At+2NMt+1 + Ξt+2 +At+2 Ξt+1

]
.

Combining the last expression with equation (E3) yields:

puk,t+2 − Etpuk,t+2 = s1

[
2∑
j=1

(
3− j

)
H0,t+j+(In − Et)

[
At+2A0,t+1+

(
At+2At+1+At+1

)
Πt

]

+NMt+2 +
(
In +At+2

)
NMt+1 + Ξt+2 +

(
In +At+2

)
Ξt+1

]
. (E4)

Using the same arguments at h = 3 gives:

πuk,t+3 − Etπuk,t+3 = s1

[
A0,t+3 −A0,t + (In − Et)

[
At+3A0,t+2 +At+3At+2A0,t+1

]
+ (In − Et)At+3At+2At+1Πt

+ NMt+3 +At+3NMt+2 +At+3At+2NMt+1

+ Ξt+3 +At+3 Ξt+2 +At+3At+2 Ξt+1

]
,

that added to equation (E4) results in:

puk,t+3 − Etpuk,t+3 = s1

[
3∑
j=1

(
4− j

)
H0,t+j + (In − Et)

(
At+3A0,t+2 +At+3At+2A0,t+1

+ At+2A0,t+1 +
[
At+3At+2At+1 +At+2At+1 +At+1

]
Πt

)
+ NMt+3 +

(
In +At+3

)
NMt+2 +

(
In +At+3At+2

)
NMt+1

+ Ξt+3 +
(
In +At+3

)
Ξt+2 +

(
In +At+3At+2

)
Ξt+1

]
. (E5)
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We infer from equations (E4) and (E5) that the conditional forecast error of the observed

price level for h ≥ 2 is:

puk,t+h − Etpuk,t+h = s1

[
h∑
j=1

(
h+ 1− j

)
H0,t+j + (In − Et)

[
h−1∑
j=1

At+j+1A0,t+j

+
h−1∏
j=1

At+j+1A0,t+1 +
h∑
j=1

(
j∏
`=1

At+`

)
Πt

]
+

h∑
j=1

(
NMt+j + Ξt,j

)

+

h−1∑
j=1

h−1∏
`=j

At+`+1

[NMt+j + Ξt,j

]]
, (E6)

where Ξt,j = [ξt+jεt+j 0 0 . . . 0]
′

and ξt+j = ξt exp
(

0.5σφ
∏j
i=1 φt+i

)
.

The expression on the right of equations (E6) shows the conditional forecast error of

puk,t+h depends on future intercept and lagged TVPs, current true inflation, and future

measurement errors and SVs. The latter two elements are summed from 1- to h-years ahead

weighted by future realizations of the companion matrix, At, of lagged TVPs. Similarly,

current true inflation is discounted by At from 1- to h-years ahead.

Once again, we invoke the local approximation of the AUM to compute the instability

statistic using equation (E6). Imposing the AUM on the A0,t+js and At+js that appear

in equation (E6) creates the local approximation:

puk,t+h − Etpuk,t+h ≈ s1

[
h∑
j=1

(
h+ 1− j

)
H0,t+j +

h∑
j=1

(
NMt+j + Ξt,j

)

+
h−1∑
j=1

Ah−jt

[
NMt+j + Ξt,j

]]
.

Since vart
(
puk,t+h − Etpuk,t+h

)
= Et

{(
puk,t+h − Etpuk,t+h

)2}
, multiple the right hand

side of the previous equation by its transpose to produce:

vart
(
puk,t+h − Etpuk,t+h

)
≈ Et

(
s1

[
h∑
j=1

(
h+ 1− j

)
H0,t+j +

h∑
j=1

(
NMt+j + Ξt,j

)

+

h−1∑
j=1

Ah−jt

[
NMt+j + Ξt,j

]][ h∑
j=1

(
h+ 1− j

)
H0,t+j

+
h∑
j=1

(
NMt+j + Ξt,j

)
+
h−1∑
j=1

Ah−jt

[
NMt+j + Ξt,j

]]′
. (E7)
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In equation (E7), the summations from j = 1 to h−1 are only relevant for h ≥ 2. Per-

forming the arithmetic of equation (E7) leads to:

vart
(
puk,t+h − Etpuk,t+h

)
≈

h∑
j=1

(
h+ 1− j

)2
s1Et

(
H0,t+j H′0,t+j

)
s′1

+ s1N
h∑
j=1

Et

(
Mt+jM′t+j

)
N ′s′1 + s1

h∑
j=1

Et

(
Ξt,j Ξ′t,j

)
s′1

+ s1

h−1∑
j=1

Ah−jt

[
NEt

(
Mt+jM′t+j

)
N ′
] (
Ah−jt

)′
s′1

+ s1

h−1∑
j=1

Ah−jt

[
Et

(
Ξt,j Ξ′t,j

)](
Ah−jt

)′
s′1

=

[
h
(
h+ 1

)(
2h+ 1

)
6

]
σ2
η,0 + hσ2

m,τ + σ2
ξ,h,t

+ s1

h−1∑
j=1

Ah−jt

[
NΩm,τ,jN ′ + ΩΞ,t,j

](
Ah−jt

)′
s′1, (E8)

where Et
(
εt+hεt+j

)
= Et

(
ut+hut+j

)
= 0 for h 6= j, ut, and εt are uncorrelated at all

leads and lags, along with being uncorrelated with Πt, At is in the date t information set,

Et

(
H0,t+jH′0,t+j

)
is a n×n matrix with σ2

η,0 in its
(
1, 1
)

position and zeros everywhere else,

Ωm,τ = Et

(
Mt+jM′t+j

)
is a n×n matrix full of zeros, but its

(
1, 1
)

element is σ2
m,τ , which

is βτσ
2
u, and ΩΞ,t = Et

(
Ξt,j Ξ′t,j

)
is a n×n matrix of zeros except its

(
1, 1
)

element is σ2
ξ,j,t

= Etξ
2
t+j = ξ2

tEt exp
(
σφ
∑j
i=1 φt+i

)
= ξ2

t exp

(
j

2
σ2
φ

)
because φt is distributed standard

normal. Lastly, the term attached to σ2
η,0 is calculated recognizing

∑h
j=1

(
h + 1 − j

)2
= h

(
h + 1

)2 − 2
(
h + 1

)∑h
j=1 j +

∑h
j=1 j

2. Since
∑h
i=j j = 0.5h

(
h + 1

)
and

∑h
j=1 j

2 =

h
(
h+1

)(
2h+1

)/
6,
∑h
i=0

(
h+1−j

)2
= h

(
h+1

)(
2h+1

)/
6. The result is h

(
h+1

)(
2h+1

)/
6,

which equals 1, 5, 14, and 55 at h = 1, 2, 3, and 5.

Equation (E8) shows the effect of using a TVP-SV-AR(n) with measurement error

to generate price-level uncertainty, vart
(
puk,t+h − Etpuk,t+h

)
. Price-level uncertainty is

driven by the variances of measurement error and SV of the TVP-SV-AR
(
n
)
. The impact
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of the sums of the measurement error variance and SV on the uncertainty surrounding the

price-level depend on the persistence embedded in At.

Instability in the UK price level is calculated by summing the square root of the

sum of price-level uncertainty, vart
(
puk,t+h−Etpuk,t+h

)
, and the uncertainty surrounding

Etpuk,t+h − puk,t. This is equation (8) of the paper. The former conditional variance

is computed, as noted in the previous paragraph, using equation (E8) that shows the

impact of the scale volatility on the innovation to the random walk of the TVP intercept,

measurement error, SV, and lagged TVPs on the instability of puk,t at forecast horizon

h. Similarly, equation (E2) measures the contribution of the uncertainty surrounding

Etpuk,t+h − puk,t to instability in puk,t but only with SV and the lagged TVPs. Lastly, we

calculate these conditional variances on the posterior distributions of the TVP-SV-AR(n)s

with and without measurement error.
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