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This supplementary appendix contains the following details omitted from the main paper
due to space constraints: (A) numerical implementation of the sequential algorithm based on the
RPM, (B) the sequential GMM estimator, (C) the convergence properties of the NPL algorithm
for models with unobserved heterogeneity, (D) relative efficiency of the NPL, q-NPL, and MLE,
and (E) the equivalence of the NPL estimator using Λ(P, θ) and the NPL estimator using Ψ(P, θ).

A Numerical Implementation of the Sequential Algorithm based

on the RPM in Section 4.2

Implementing the sequential algorithm based on the RPM in Section 4.2 requires evaluating
(I −Π(θ̃j−1, P̃j−1)∇P ′Ψ(θ̃j−1, P̃j−1)Π(θ̃j−1, P̃j−1))−1 as well as computing an orthonormal basis
Z(θ̃j−1, P̃j−1) from the eigenvectors of ∇P ′Ψ(θ̃j−1, P̃j−1) for j = 1, . . . , k. This is potentially
costly when the analytical expression of ∇P ′Ψ(θ, P ) is not available.

In this section, we discuss how to reduce the computational cost of implementing the RPM
algorithm by updating (I − Π(θ̃j−1, P̃j−1)∇P ′Ψ(θ̃j−1, P̃j−1)Π(θ̃j−1, P̃j−1))−1 and Z(θ̃j−1, P̃j−1)
without explicitly computing ∇P ′Ψ(θ, P ) in each iteration. Denote Π̃j−1 = Π(θ̃j−1, P̃j−1),
Z̃j−1 = Z(θ̃j−1, P̃j−1), and Ψ̃P,j−1 = ∇P ′Ψ(θ̃j−1, P̃j−1).

First, using Π̃j−1 = Z̃j−1(Z̃j−1)′ and (Z̃j−1)′Z̃j−1 = I, we may verify that

(I − Π̃j−1Ψ̃P,j−1Π̃j−1)−1Π̃j−1 = Z̃j−1(I − (Z̃j−1)′Ψ̃P,j−1Z̃j−1)−1(Z̃j−1)′.

Let Z̃j−1 = [z̃1
j−1, . . . , z̃

m
j−1] and ε > 0. The ith column of Ψ̃P,j−1Z̃j−1 can be approximated

by Ψ̃P,j−1z̃
i
j−1 ≈ (1/ε)[Ψ(θ̃j−1, P̃j−1 + εz̃ij−1) − Ψ(θ̃j−1, P̃j−1)], which requires (m + 1) function

evaluations of Ψ(θ, P ). Further, evaluating (I − Π̃j−1Ψ̃P,j−1Π̃j−1)−1 only requires the inversion
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of the m×m matrix I − (Z̃j−1)′Ψ̃P,j−1Z̃j−1 instead of an inversion of an L× L matrix. Thus,
when m is small, numerically evaluating (I−Π̃j−1Ψ̃P,j−1Π̃j−1)−1 is not computationally difficult.

Second, it is possible to use Ψ̃P,jZ̃j−1 to update an estimate of the orthogonal basis Z.
Namely, given a preliminary estimate Z̃j−1, we may obtain Z̃j by performing one step of an
orthogonal power iteration (see Shroff and Keller, 1993, p. 1107 and Golub and Van Loan,
1996) by computing Z̃j =orth(Ψ̃P,jZ̃j−1), where “orth(B)” denotes computing an orthonormal
basis for the columns of B using Gram-Schmidt orthogonalization.

Our numerical implementation of the RPM sequential algorithm is summarized as follows.

Step 0 (Initialization): (a) Find the eigenvalues of Ψ̃P,0 ≡ ∇P ′Ψ(P̃0, θ̃0) of which modulus
is larger than δ. Let {λ̃0,1, . . . , λ̃0,m} denote them.1 (b) Find the eigenvectors of Ψ̃P,0

associated with λ̃0,1, . . . , λ̃0,m. (c) Using Gram-Schmidt orthogonalization, compute an
orthonormal basis of the space spanned by these eigenvectors. Let {z̃1

0 , . . . , z̃
m
0 } denote the

basis. (d) Compute Z̃0(I − Z̃ ′0Ψ̃P,0Z̃0)−1Z̃ ′0 and Π̃0 = Z̃0Z̃
′
0, where Z̃0 = [z̃1

0 , . . . , z̃
m
0 ].

Step 1 (Update θ): Given Z̃j−1(I−Z̃ ′j−1Ψ̃P,j−1Z̃j−1)−1Z̃ ′j−1 and Π̃j−1 = Z̃j−1(Z̃j−1)′, update
θ by θ̃j = arg maxθ∈Θj n

−1
∑n

i=1 ln Γ(θ, P̃j−1, θ̃j−1, Z̃j−1)(ai|xi), where Γ(θ, P̃j−1, θ̃j−1, Z̃j−1) =
Π̃j−1P̃j−1 + Z̃j−1(I − Z̃ ′j−1Ψ̃P,j−1Z̃j−1)−1Z̃ ′j−1 (Ψ(θ, P̃j−1)− P̃j−1) + (I − Π̃j−1)Ψ(θ, P̃j−1)
with Ψ̃P,j−1 ≡ ∇P ′Ψ(θ̃j−1, P̃j−1).

Step 2 (Update P ): Given (θ̃j , P̃j−1, θ̃j−1, Z̃j−1), update P by P̃j = Γ(θ̃j , P̃j−1, θ̃j−1, Z̃j−1).

Step 3 (Update Z): (a) Update the orthonormal basis Z by Z̃j =orth(Ψ̃P,jZ̃j−1), where the
i-th column of Ψ̃P,jZ̃j−1 is computed by Ψ̃P,j z̃

i
j−1 ≈ (1/ε)[Ψ(θ̃j , P̃j + εz̃ij−1) − Ψ(θ̃j , P̃j)]

for small ε > 0 with Z̃j−1 = [z̃1
j−1, . . . , z̃

m
j−1]. (b) Compute Π̃j = Z̃j(Z̃j)′ and Z̃j(I −

Z̃ ′jΨ̃P,jZ̃j)−1Z̃ ′j , where the i-th row of Ψ̃P,jZ̃j is given by Ψ̃P,j z̃
i
j ≈ (1/ε)[Ψ(θ̃j , P̃j + εz̃ij)−

Ψ(θ̃j , P̃j)]. (c) For every J iterations, update the orthonormal basis Z using the algorithm
of Step 0, where (θ̃0, P̃0) is replaced with (θ̃j , P̃j).

Step 4: Iterate Steps 1-3 k times.

When an initial estimate is not precise, the dominant eigenspace of Ψ̃P,j will change as
iterations proceed. In Step 3(a), the orthonormal basis is updated to maintain the accuracy of
the basis without changing the size of the orthonormal basis. If an initial estimate of the size of
the orthonormal basis is smaller than the true size, however, the estimated subspace P̃ = Π̃RL

may not contain all the bases for which eigenvalues are outside the unit circle. In such a case, the
algorithm may not converge. To safeguard against such a possibility, the basis size is updated
every J iterations in Step 3(c). In our Monte Carlo experiments, we chose J = 10. Corollary 1
implies that this modified algorithm will converge.

1Computing the m dominant eigenvalues of Ψ̃P,0 is potentially costly. We follow the numerical procedure
based on the power iteration method as discussed in section 4.1 of SK.
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B Sequential GMM estimators

Recently, many researchers extend the Hotz-Miller CCP estimator and develop various two-step
moment estimators for dynamic games (see Bajari, Benkard and Levin, 2007; Pakes, Ostrovsky
and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008). These estimators often suffer from
finite sample bias, however, especially when the initial estimator of P 0 is imprecise. This section
develops a recursive extension of two-step moment estimators called the nested GMM estimator
using an idea similar to that in the NPL algorithm.

Let P 0 = {P 0(a|x)}(a,x)∈A×X denote the equilibrium conditional choice probabilities. Then,
for any function h(a), the following conditional moment condition holds:

E

[
h(a)−

∑
a′∈A

h(a′)P 0(a′|x)

∣∣∣∣∣x
]

= E [h(a)|x]− E

[∑
a′∈A

h(a′)P 0(a′|x)

]
= 0.

Here, E[h(a)|x] represents the model-free conditional expectation of h(a), whereas E[
∑

a′∈A h(a′)P 0(a′|x)]
represents the conditional expectation of h(a) implied by the model P 0. For example, we may
choose h(a) = a or h(a) = a2. The conditional moment condition implies that the following
unconditional moment condition holds for any function ρm(x) and hm(a), where m = 1, . . . ,M :

E
[
gm(a, x;P 0)

]
= 0, gm(a, x;P 0) = ρm(x)

(
hm(a)−

∑
a′∈A

hm(a′)P 0(a′|x)

)
. (21)

We consider a generalized method of moments (GMM) estimator based on these moment con-
ditions when the equilibrium conditional choice probabilities belong to a parametric class with
a fixed point constraint: M = ∪θ∈ΘMθ, where Mθ = {P ∈ BP : P = Ψ(θ, P )}. Define the
GMM estimator as:

θ̂GMM = arg min
θ∈Θ

{
min
P∈Mθ

ḡ(P )′Ŵ ḡ(P )
}
,

where ḡ(P ) = n−1
∑n

i=1 g(ai, xi;P ), and Ŵ →p W , which is positive definite. Here, g(a, x;P ) =
(g1(a, x;P ), . . . , gM (a, x;P ))′ is an M -vector of moment conditions, where the gm(a, x;P )’s are
defined in (21).

To compute the GMM estimator, we need to repeatedly solve the fixed point P = Ψ(θ, P )
for each candidate parameter value θ until one finds the parameter that minimizes the GMM
objective function. When solving the fixed point is costly, this estimator is impractical.

The two-step GMM estimator is defined as θ̂2GMM = arg minθ∈Θ ḡ(Ψ(θ, P̂0))′Ŵ ḡ(Ψ(θ, P̂0)),
where P̂0 is an initial consistent estimator for P 0.
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We introduce the following notation:

Ḡθ(Ψ(θ, P )) = ∇θ′ ḡ(Ψ(θ, P )), ḠP (Ψ(θ, P )) = ∇P ′ ḡ(Ψ(θ, P )),

Gθ = E[∇θ′g(ai, xi; Ψ(θ0, P 0))], GP = E[∇P ′g(ai, xi; Ψ(θ0, P 0))].

Define L = |A||X|. Let fx be an L × 1 vector of Pr(x = xs), s = 1, . . . , |X|, whose el-
ements are arranged conformably with P 0(aj |xs), and let f̂x be the frequency estimator of
fx. Denote ∆x = diag(fx) and ∆̂x = diag(f̂x). Let γm be an L × 1 vector of ρm(xs)hm(aj)
whose elements are ordered conformably with P 0(aj |xs), and let H = (γ1, . . . , γM )′, which
is an M by L matrix. With this notation, we may write Ḡθ(Ψ(θ, P )) = −H∆̂x∇θ′Ψ(θ, P ),
ḠP (Ψ(θ, P )) = −H∆̂x∇P ′Ψ(θ, P ), Gθ = −H∆xΨθ and GP = −H∆xΨP . Let r(a, x) be an
L× 1 vector of indicator functions whose elements are ordered conformably with P 0(aj |xs), so
that P̂0 − P 0 = n−1

∑n
i=1 r(ai, xi) + op(n−1/2). The explicit form of r(a, x) can be found by

expanding P̂0 − P 0.

Assumption 9 (a) For any θ 6= θ0, E[g(a, x; Ψ(θ, P 0))] 6= 0; (b) G′θWGθ is nonsingular;
(c) E supθ∈Θ ||g(a, x; Ψ(θ, P 0))|| <∞; (d) E supθ∈Θ ||∇θ′g(a, x; Ψ(θ, P 0))|| <∞,
E supθ∈Θ ||∇P ′g(a, x; Ψ(θ, P 0))|| <∞; (e) E||g(a, x;P 0)||2 <∞.

Under Assumptions 1 and 9, θ̂2GMM is consistent and asymptotic normal:
√
n(θ̂2GMM − θ0)→d

N(0, V2GMM ), where V2GMM = (G′θWGθ)−1G′θWSWGθ(G′θWGθ)−1 with S = E[(g(ai, xi;P 0)−
GP (r(ai, xi) − P 0))(g(ai, xi;P 0) − GP (r(ai, xi) − P 0))′]. Using the optimal weighting matrix
W = S−1, the limiting variance is given by V2GMM = (G′θS

−1Gθ)−1.
We now consider a recursive extension of the two-step GMM estimator called the nested

GMM algorithm which iterates the following steps until j = k:

Step 1: Given P̃j−1, update θ by θ̃j = arg minθ ḡ(Ψ(θ, P̃j−1))′Ŵ ḡ(Ψ(θ, P̃j−1)).

Step 2: Update P using the obtained estimate θ̃j : P̃j = Ψ(θ̃j , P̃j−1).

If the iterations converge, the limit satisfies θ̌ = arg minθ∈Θ ḡ(Ψ(θ, P̌ ))′W̌ ḡ(Ψ(θ, P̌ )) and P̌ =
Ψ(θ̌, P̌ ). Among the pairs (θ̌, P̌ ) that satisfy these two conditions, the one that minimizes
the value of the criterion function ḡ(Ψ(θ, P ))′Ŵ ḡ(Ψ(θ, P )) is called the nested GMM (NGMM)
estimator, which we denote by (θ̂NGMM , P̂NGMM ).

Under regularity conditions similar to the ones in Assumption 1, the sequence of estimators
generated by this algorithm is consistent. The following proposition establishes the limiting
distribution of the NGMM estimator.

Proposition 11 Suppose Assumptions 1 and 9 hold. Then

√
n(θ̂NGMM − θ0)→d N(0, (G′θWG∞θ )−1G′θWΩW ′Gθ((G∞θ )′W ′Gθ)−1),
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where Ω = E[g(ai, xi;P 0)g(ai, xi;P 0)′] and G∞θ = −H∆x(I−ΨP )−1Ψθ. If we choose W = Ω−1,
the asymptotic variance is given by (G′θΩ

−1G∞θ )−1G′θΩ
−1Gθ((G∞θ )′Ω−1Gθ)−1.

Remark 2 When ΨP = 0, the two-step GMM estimator with the optimal weighting matrix is
asymptotically equivalent to the NGMM estimator with W = Ω−1.

The NGMM estimator can be obtained as the limit of the sequence of estimators generated
by the NGMM algorithm if iterations converge. The convergence properties of the NGMM
estimator is given by the following proposition.

Proposition 12 Suppose Assumptions 1 and 9 hold, and P̃0 − P 0 = op(1). Then, for j =
1, . . . , k,

θ̃j − θ̂NGMM = Op(||P̃j−1 − P̂NGMM ||),

P̃j − P̂NGMM = [I + Ψθ(G′θŴGθ)−1G′θŴH∆x]ΨP (P̃j−1 − P̂NGMM )

+Op(n−1/2||P̃j−1 − P̂NGMM ||) +Op(||P̃j−1 − P̂NGMM ||2).

Remark 3 Because −Ψθ(G′θŴGθ)−1G′θŴH∆x = Ψθ(Ψ′θ∆
′
xH
′ŴH∆xΨθ)−1Ψ′θ∆

′
xH
′ŴH∆x is

a projection matrix, the convergence properties of the NGMM algorithm is analogous to that of
the NPL algorithm. Again, the convergence rate is primarily determined by the eigenvalues of
ΨP .

B.1 Proof of propositions in Section B

Proof of Proposition 11 Suppress the subscript NGMM from θ̂NGMM and P̂NGMM . The
consistency of (θ̂, P̂ ) follows from applying the proof of Proposition 2 of Aguirregabiria and Mira
(2007).

For the asymptotic distribution of (θ̂, P̂ ), observe that (θ̂, P̂ ) satisfies Ḡθ(Ψ(θ̂, P̂ ))′Ŵ ḡ(Ψ(θ̂, P̂ )) =
0 and P̂−Ψ(θ̂, P̂ ) = 0. Expanding ḡ(Ψ(θ̂, P̂ )) around (θ0, P 0) and using the consistency of (θ̂, P̂ )
gives

G′θWḡ(Ψ(θ0, P 0)) +G′θWGθ(θ̂ − θ0) +G′θWGP (P̂ − P 0) = op(n−1/2),

(I −ΨP )(P̂ − P 0)−Ψθ(θ̂ − θ0) = op(n−1/2).

Eliminating (P̂ − P 0) from these equations and using G′θWGθ + G′θWGP (I − ΨP )−1Ψθ =
G′θWG∞θ , where G∞θ = ∇θ′ ḡ(Pθ0) = −H∆x(I −ΨP )−1Ψθ, we have

√
n(θ̂ − θ0)→d

N(0, (G′θWG∞θ )−1G′θWΩW ′Gθ((G∞θ )′W ′Gθ)−1), where Ω = E[g(ai, xi;P 0)g(ai, xi;P 0)′]. �

Proof of Proposition 12 Suppress the subscript NGMM from θ̂NGMM and P̂NGMM . We use
induction. Assume P̃j−1 is consistent. Then, θ̃j is consistent because ḡ(Ψ(θ, P̃j−1))′Ŵ ḡ(Ψ(θ, P̃j−1))
converges uniformly to Eg(ai, xi; Ψ(θ, P 0))′WEg(ai, xi; Ψ(θ, P 0)).
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For the bound of θ̃j , recall that θ̃j satisfies the first order condition

Ḡ′θ(Ψ(θ̃j , P̃j−1))Ŵ ḡ(Ψ(θ̃j , P̃j−1)) = 0. (22)

Expanding ḡ(Ψ(θ̃j , P̃j−1)) around (θ̂, P̂ ) in (22) and using Ḡ′θ(Ψ(θ̂, P̂ ))Ŵ ḡ(Ψ(θ̂, P̂ )) = 0 gives

θ̃j − θ̂ = [Ḡ′θ(Ψ(θ̃j , P̃j−1))Ŵ Ḡθ(Ψ(P̄ , θ̄)) + op(1)]−1[Ḡ′θ(Ψ(θ̃j , P̃j−1))Ŵ ḠP (Ψ(P̄ , θ̄)) + op(1)](P̃j−1 − P̃ )

= Op(||P̃j−1 − P̃ ||), (23)

where (θ̄, P̄ ) lies between (θ̃j , P̃j−1) and (θ̂, P̂ ).
For the second result, we begin by using (23) to obtain

P̃j − P̂ = Ψθ(θ̃j − θ̃) + ΨP (P̃j−1 − P̂ ) +Op(n−1/2||P̃j−1 − P̂ ||) +Op(||P̃j−1 − P̂ ||2) (24)

Expanding ḡ(Ψ(θ̃j , P̃j−1)) in (22) twice around (θ̂, P̂ ) and using Ḡ′θ(Ψ(θ̃j , P̃j−1))Ŵ ḡ(Ψ(θ̂, P̂ )) =
Op(n−1/2||θ̃j − θ̂||) +Op(n−1/2||P̃j−1 − P̂ ||),

ḠP (Ψ(θ̂, P̂ )) = GP +Op(n−1/2), Ḡθ(Ψ(θ̂, P̂ )) = Gθ +Op(n−1/2), (25)

and (23) gives

0 = Ḡ′θ(Ψ(θ̃j , P̃j−1))ŴGP (P̃j−1 − P̂ ) + Ḡ′θ(Ψ(θ̃j , P̃j−1))ŴGθ(θ̃j − θ̂)

+Op(n−1/2||P̃j−1 − P̂ ||) +Op(||P̃j−1 − P̂ ||2). (26)

Expanding Ψ(θ̃j , P̃j−1) around (θ̂, P̂ ) and using (23) and (25) in (26), we have

θ̃j − θ̂ = −(G′θŴGθ)−1G′θŴGP (P̃j−1 − P̂ ) +Op(n−1/2||P̃j−1 − P̂ ||) +Op(||P̃j−1 − P̂ ||2).

Substituting this into (24) and noting that Gθ = −H∆xΨθ and GP = −H∆xΨP , we obtain

P̃j−P̂ = [I+Ψθ(G′θŴGθ)−1G′θŴH∆x]ΨP (P̃j−1−P̂ )+Op(n−1/2||P̃j−1−P̂ ||)+Op(||P̃j−1−P̂ ||2),

and the second result follows. �

C Unobserved Heterogeneity

This section extends our analysis to models with unobserved heterogeneity. The NPL algo-
rithm has an important advantage over two step methods in estimating models with unobserved
heterogeneity because obtaining a reliable initial estimate of P is difficult in this context.

Suppose that there are M types of agents, where type m is characterized by a type-specific
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parameter θm, and the probability of being type m is πm with
∑M

m=1 π
m = 1. These types

capture time-invariant state variables that are unobserved by researchers. With a slight abuse
of notation, denote θ = (θ1, . . . , θM )′ ∈ ΘM and π = (π1, . . . , πM )′ ∈ Θπ. Then, ζ = (θ′, π′)′ is
the parameter to be estimated, and let Θζ = ΘM × Θπ denote the set of possible values of ζ.
The true parameter is denoted by ζ0.

Consider a panel data set {{ait, xit, xi,t+1}Tt=1}ni=1 such that wi = {ait, xit, xi,t+1}Tt=1 is ran-
domly drawn across i’s from the population. The conditional probability distribution of ait given
xit for a type m agent is given by a fixed point of Pθm = Ψ(θm, Pθm). To simplify our analysis,
we assume that the transition probability function of xit is independent of types and given by
fx(xi,t+1|ait, xit) and is known to researchers.2

In this framework, the initial state xi1 is correlated with the unobserved type (i.e., the initial
conditions problem of Heckman (1981)). We assume that xi1 for type m is randomly drawn
from the type m stationary distribution characterized by a fixed point of the following equation:
p∗(x) =

∑
x′∈X p

∗(x′)
(∑

a′∈A Pθm(a′|x′)fx(x|a′, x′)
)
≡ [T (p∗, Pθm)](x). Since solving the fixed

point of T (·, P ) for given P is often less computationally intensive than computing the fixed
point of Ψ(·, θ), we assume the full solution of the fixed point of T (·, P ) is available given P .

Let Pm denote typem’s conditional choice probabilities, stack the Pm’s as P = (P 1′ , . . . , PM
′
)′,

and let P0 denote its true value. Define Ψ(θ,P) = (Ψ(θ1, P 1)′, . . . ,Ψ(θM , PM )′)′. Then, for
a value of θ, the set of possible conditional choice probabilities consistent with the fixed point
constraints is given by M∗θ = {P ∈ BM

P : P = Ψ(θ,P)}. The maximum likelihood estimator
for a model with unobserved heterogeneity is:

ζ̂MLE = arg max
ζ∈Θζ

{
max
P∈M∗θ

ln ([L(π,P)](wi))
}
, (27)

where [L(π,P)](wi) =
∑M

m=1 π
mp∗Pm(xi1)

∏T
t=1 P

m(ait|xit)fx(xi,t+1|ait, xit), and p∗Pm = T (p∗Pm , P
m)

is the type m stationary distribution of x when the conditional choice probability is Pm. If P0 is
the true conditional choice probability distribution and π0 is the true mixing distribution, then
L0 = L(π0,P0) represents the true probability distribution of w.

We consider a version of the NPL algorithm for models with unobserved heterogeneity
originally developed by AM07 as follows. Assume that an initial consistent estimator P̃0 =
(P̃ 1

0 , . . . , P̃
M
0 ) is available. For j = 1, 2, . . ., iterate

Step 1: Given P̃j−1, update ζ = (θ′, π′)′ by ζ̃j = arg maxζ∈Θζ
n−1

∑n
i=1 ln

(
[L(π,Ψ(θ, P̃j−1))](wi)

)
,

Step 2: Update P using the obtained estimate θ̃j by P̃j = Ψ(θ̃j , P̃j−1),

2When the transition probability function is independent of types, it can be directly estimated from transition
data without solving the fixed point problem. Kasahara and Shimotsu (2008a) analyze the case in which the
transition probability function is also type-dependent in the context of a single-agent dynamic programming
model with unobserved heterogeneity.
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until j = k. If iterations converge, the limit satisfies ζ̂ = arg maxζ∈Θζ
n−1

∑n
i=1 ln([L(π,Ψ(θ, P̂))](wi))

and P̂ = Ψ(θ̂, P̂). Among the pairs that satisfy these two conditions, the one that maximizes
the pseudo likelihood is called the NPL estimator, which we denote by (ζ̂NPL, P̂NPL).

Let us introduce the assumptions required for the consistency and asymptotic normality of
the NPL estimator. They are analogous to the assumptions used in Aguirregabiria and Mira
(2007). Define ζ̃0(P) and φ0(P) similar to θ̃0(P ) and φ0(P ) in the main paper.

Assumption 10 (a) wi = {(ait, xit, xi,t+1) : t = 1, . . . , T} for i = 1, . . . , n, are independently
and identically distributed, and dF (x) > 0 for any x ∈ X, where F (x) is the distribution function
of xi. (b) [L(π,P)](w) > 0 for any w and for any (π,P) ∈ Θπ × BM

P . (c) Ψ(θ, P ) is twice
continuously differentiable. (d) Θζ and BM

P are compact. (e) There is a unique ζ0 ∈int(Θζ) such
that [L(π0,P0)](w) = [L(π0,Ψ(θ0,P0))](w). (f) For any ζ 6= ζ0 and P that solves P = Ψ(θ,P),
it is the case that Pr({w : [L(π,P)](w) 6= L0(w)}) > 0. (g) (ζ0,P0) is an isolated population
NPL fixed point. (h) ζ̃0(P) is a single-valued and continuous function of P in a neighborhood of
P0. (i) the operator φ0(P)−P has a nonsingular Jacobian matrix at P0. (j) For any P ∈ BP ,
there exists a unique fixed point for T (·, P ).

Under Assumption 10, the consistency and asymptotic normality of the NPL estimator can
be shown by following the proof of Proposition 2 of Aguirregabiria and Mira (2007).

We now establish the convergence properties of the NPL algorithm for models with unob-
served heterogeneity. Let l(ζ,P)(w) ≡ ln(L(π,Ψ(θ,P))(w)), and Ωζζ = E[∇ζ l(ζ0,P0)(wi)∇ζ′ l(ζ0,P0)(wi)].

Assumption 11 Assumption 10 holds. Further, P̃0 −P0 = op(1), Ψ(θ, P ) is three times con-
tinuously differentiable, and Ωζζ is nonsingular.

Assumption 11 requires an initial consistent estimator of the type-specific conditional proba-
bilities. Kasahara and Shimotsu (2006, 2008b) derive sufficient conditions for nonparametric
identification of a finite mixture model and suggest a sieve estimator which can be used to ob-
tain an initial consistent estimate of P. On the other hand, as Aguirregabiria and Mira (2007)
argue, if the NPL algorithm converges, then the limit may provide a consistent estimate of the
parameter ζ even when P̃0 is not consistent.

The following proposition states the convergence properties of the NPL algorithm for models
with unobserved heterogeneity.

Proposition 13 Suppose Assumptions 10-11 hold. Then, for j = 1, . . . , k,

ζ̃j − ζ̂NPL = Op(||P̃j−1 − P̂NPL||),

P̃j − P̂NPL = [I −ΨθDΨ′θL
′
P∆1/2

L MLπ∆1/2
L LP ]ΨP (P̃j−1 − P̂NPL)

+ Op(n−1/2||P̃j−1 − P̂NPL||) +Op(||P̃j−1 − P̂NPL||2).
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where D = (Ψ′θL
′
P∆1/2

L MLπ∆1/2
L LPΨθ)−1, MLπ = I −∆1/2

L Lπ(L′π∆LLπ)−1Lπ∆1/2
L , and Ψθ ≡

∇θ′Ψ(θ0,P0), ΨP ≡ ∇P′Ψ(θ0,P0), ∆L = diag((L0)−1), LP = ∇P ′L(π0,P0), and Lπ =
∇π′L(π0,P0).

Note that I − ΨθDΨ′θL
′
P∆1/2

L MLπ∆1/2
L LP is a projection matrix. The convergence rate

of the NPL algorithm for models with unobserved heterogeneity is primarily determined by
the dominant eigenvalue of ΨP . When the NPL algorithm encounters a convergence problem,
replacing Ψ(θ, P ) with Λ(θ, P ) or Γ(θ, P ) improves the convergence.

Remark 4 It is possible to relax the stationarity assumption on the initial states by estimating
the type-specific initial distributions of x, denoted by {p∗m}Mm=1, without imposing a stationarity
restriction in Step 1 of the NPL algorithm. In this case, Proposition 13 holds with additional
reminder terms.

Proof of Proposition 13 We suppress the subscript NPL from ζ̂NPL and P̂NPL. The
proof follows the proof of Lemma 1. Define lζ(ζ,P) = n−1

∑n
i=1∇ζ l(ζ,P)(wi), lζζ(ζ,P) =

n−1
∑n

i=1∇ζζ′ l(ζ,P)(wi), and lζP(ζ,P) = n−1
∑n

i=1∇ζP′ l(ζ,P)(wi). Expanding the first order
condition l̄ζ(ζ̃j , P̃j−1) = l̄ζ(ζ̂, P̂) = 0 gives

ζ̃j − ζ̂ = −lζζ(ζ̄, P̄)−1lζP (ζ̄, P̄)(P̃j−1 − P̂) = Op(||P̃j−1 − P̂||). (28)

where (ζ̄, P̄) is between (ζ̃j , P̃j−1) and (ζ̂, P̂). This gives the bound for ζ̃j − ζ̂. Rewriting this
further using Assumption 11 gives

ζ̃j − ζ̂ = −Ω−1
ζζ ΩζP (P̃j−1 − P̂) +Op(n−1/2||P̃j−1 − P̂||) +Op(||P̃j−1 − P̂||2), (29)

where ΩζP = E
[
∇ζ l(ζ0,P0)(wi)∇P′ l(ζ0,P0)(wi)

]
. On the other hand, expanding the second

step equation P̃j = Ψ(ζ̃j , P̃j−1) twice around (ζ̂, P̂), using the root-n consistency of (ζ̂, P̂) and
(28) give

P̃j − P̂ = ΨP (P̃j−1 − P̂) + Ψζ(ζ̃j − ζ̂) +Op(n−1/2||P̃j−1 − P̂||) +Op(||P̃j−1 − P̂||2), (30)

where Ψζ ≡ ∇ζ′Ψ(θ0,P0) = [Ψθ,0]. Substituting (29) into (30) gives

P̃j − P̂ = [ΨP −ΨζΩ−1
ζζ ΩζP ](P̃j−1 − P̂) +Op(n−1/2||P̃j−1 − P̂||) +Op(||P̃j−1 − P̂||2).

Note that Ωζζ and ΩζP are written as

Ωζζ =

[
Ωθθ Ωθπ

Ωπθ Ωππ

]
=

[
Ψ′θL

′
P∆LLPΨθ Ψ′θL

′
P∆LLπ

L′π∆LLPΨθ L′π∆LLπ

]
, ΩζP =

[
ΩθP

ΩπP

]
=

[
Ψ′θL

′
P∆LLPΨP

L′π∆LLPΨP

]
,
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and

Ω−1
ζζ =

[
D −DΩθπΩ−1

ππ

−Ω−1
ππΩπθD Ω−1

ππ + Ω−1
ππΩπθDΩθπΩ−1

ππ

]
,

where D = (Ψ′θL
′
P∆1/2

L MLπ∆1/2
L LPΨθ)−1 with MLπ = I −∆1/2

L Lπ(L′π∆LLπ)−1Lπ∆1/2
L . Then,

using Ψζ = [Ψθ,0] gives ΨζΩ−1
ζζ ΩζP = ΨθDΨ′θL

′
P∆1/2

L MLπ∆1/2
L LPΨP , and the stated result

follows. �

D Relative efficiency of NPL, q-NPL, and MLE

The variance of the NPL estimator is given by

VNPL = [Ωθθ + ΩθP (I −ΨP )−1Ψθ]−1Ωθθ[Ωθθ + Ψθ(I −Ψ′P )−1Ω′θP ]−1

= (Ψ′θ(I −ΨP )−1∆PΨθ(Ψ′θ∆PΨθ)−1Ψ′θ∆P (I −Ψ′P )−1Ψθ)−1,

while the variance of the MLE is

VMLE =
(
E

[
Ψ′θ(I −ΨP )−1(a|x)

Pθ(a|x)
(I −Ψ′P )−1Ψθ(a|x)

Pθ(a|x)

])−1

=
(
Ψ′θ(I −ΨP )−1∆P (I −Ψ′P )−1Ψθ

)−1
.

Define B = ∆1/2
P Ψθ and D = ∆1/2

P (I − ΨP )−1Ψθ. Then V −1
NPL = D′B(B′B)−1B′D, V −1

MLE =
D′D = D′D(D′D)−1D′D, and V −1

MLE − V −1
NPL = D′[I − B(B′B)−1B′]D = UU ′, where U =

D′[I −B(B′B)−1B′]. Therefore, V −1
MLE − V

−1
NPL is positive semi-definite.

Next, consider the variance of the q-NPL estimator, denoted by VqNPL. First, evaluating
the derivatives at P = Pθ, we have Ψq

θ ≡ ∇θ′Ψ
q(θ, Pθ) = (I − ΨP )−1(I − Ψq

P )Ψθ and Ψq
P ≡

∇P ′Ψq(θ, Pθ) = (ΨP )q. Taking a derivative of Pθ = Ψq(θ, Pθ) = Ψ(θ, Pθ) with respect to θ gives
(Ψq

θ)
′(I −Ψq

P )−1 = Ψ′θ(I −ΨP )−1. Using this and defining Bq ≡ ∆1/2
P Ψq

θ = ∆1/2
P (I −ΨP )−1(I −

Ψq
P )Ψθ, we have V −1

qNPL = D′Bq(B′qBq)
−1B′qD. It follows that V −1

MLE − V −1
qNPL = UqU

′
q with

Uq = D′[I −Bq(B′qBq)−1B′q].
Note that D−Bq = ∆1/2

P (I −ΨP )−1Ψq
PΨθ = O(|λ∗|q), where λ∗ is the dominant eigenvalue

of ΨP . If all the eigenvalues of ΨP are less than one in absolute value, then Bq → D as q →∞
so that VqNPL → VMLE as q → ∞. Expanding D′Bq(B′qBq)

−1B′qD around Bq = D gives
V −1
qNPL − V

−1
MLE = O(||Bq −D||) = O(|λ∗|q).

E Equivalence of the NPL estimator with either Λ(P, θ) or Ψ(P, θ)

Recall that the definition of Λ(θ, P ) is

[Λ(θ, P )](a|x) ≡ {[Ψ(θ, P )](a|x)}αP (a|x)1−α.
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Therefore, the pseudo log-likelihood function of the NPL estimator with Λ(θ, P ) is

1
n

n∑
i=1

ln
(
{[Ψ(θ, P )](a|x)}αP (a|x)1−α) = α

1
n

n∑
i=1

ln Ψ(θ, P )(a|x) + (1− α)
1
n

n∑
i=1

lnP (a|x).

The first term on the right is α times the pseudo log-likelihood function of the NPL estimator
with Ψ(θ, P ), and the second term on the right does not depend on θ. Therefore, for a given P ,
the maximizer of the pseudo likelihood function of the NPL estimator with Λ(θ, P ) is identical
to that with Ψ(θ, P ).

Further, the first order condition of the two NPL estimators are equivalent. Without loss of
generality, let A = {1, 2, . . . , J}. Then, using that [Ψ(θ, P )](J |x) = 1−

∑J−1
j=1 [Ψ(θ, P )](j|x), the

first order condition of the maximization problem in (4) in the main text is given by

n−1
n∑
i=1

J−1∑
j=1

1(ai = j)[∇θ′Ψ(θ, P )](j|xi)
[Ψ(θ, P )](j|xi)

−
1(ai = J)

∑J−1
s=1 [∇θ′Ψ(P, θ)](s|xi)

1−
∑J−1

s=1 [Ψ(θ, P )](s|x)

 = 0.

When the mapping Ψ is replaced with Λ(P, θ) = {Ψ(θ, P )}αP 1−α, the corresponding first or-
der condition becomes n−1

∑n
i=1

(∑J−1
j=1

1(ai=j)[∇θ′Λ(P,θ)](j|xi)
[Λ(P,θ)](j|xi) − 1(ai=J)

PJ−1
s=1 [∇θ′Λ(P,θ)](s|xi)

1−
PJ−1
s=1 [Λ(P,θ)](s|x)

)
= 0,

where ∇θ′Λ(P, θ) = α{Ψ(θ, P )}α−1P 1−α∇θ′Ψ(θ, P ). Evaluated at the fixed point P̂NPL =
Ψ(P̂NPL, θ̂NPL) = Λ(P̂NPL, θ̂NPL), we have ∇θ′Λ(P̂NPL, θ̂NPL) = α∇θ′Ψ(P̂NPL, θ̂NPL) and
these two first order conditions become identical. The NPL estimator using Λ(θ, P ) in place of
Ψ(θ, P ) is, therefore, identical to the NPL estimator using Ψ(θ, P ).
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