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Abstract

This article analyzes the identifiability of k-variate, M -component finite mixture mod-
els without making parametric assumptions on the component distributions. We consider
the identifiability of both the number of components and the component distributions.
Under the assumption of conditionally independent marginals that have been used in the
existing literature, we reveal an important link between the number of variables (k), the
number of values each variable can take, and the number of identifiable components. The
number of components (M) is nonparametrically identifiable if k ≥ 2 and each element
of the variables takes at least M different values. The mixing proportions and the com-
ponent distributions are nonparametrically identified if k ≥ 3 and each element of the
variables takes at least M different values. Our requirement on k substantially improves
the existing work, which requires either k ≥ 2M − 1 or k ≥ 6M logM . The number of
components is identified by the rank of a matrix constructed from the distribution func-
tion of the data. Exploiting this property, we propose a procedure to nonparametrically
estimate the number of components.
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1 Introduction

Finite mixture models provide flexible ways to model unobserved population heterogeneity.
Because of their flexibility, finite mixtures have been used in numerous applications in diverse
fields such as biological, physical, and social sciences. For example, empirical researchers
in economics often use finite mixtures to control unobserved individual-specific effects (cf.,
Keane and Wolpin 1997; Cameron and Heckman 1998). Comprehensive theoretical account
and examples of applications can be found in Everitt and Hand (1981), Titterington et al.
(1985), McLachlan and Basford (1988), Lindsay (1995), and McLachlan and Peel (2000).

A finite mixture model is characterized by three main determinants; the component dis-
tributions, the number of components, and the mixing proportions. Despite their key role in
the specification of mixtures, there is often little theoretical guidance for selecting the form
of the component distributions and/or the number of components. In many applications,
the component distributions are assumed to belong to a certain parametric family, such as
normal, even though it may be unrealistic to assume so. The number of components then is
either fixed or determined by the fit of the model to the data.

However, the shape of the component distributions and the number of components are
related to each other. For example, the skewness in a sample distribution can be attributed
either to a mixture of normals or a single skewed distribution (Schork et al. 1990). Further, it
has been known that the estimates of the number of components are sensitive to the choice of
the component distributions. For example, Roeder (1994) fits normal mixture models to red
blood cell sodium-lithium countertransport (SLC) activity data. For the raw data, her test
supports a three-component normal mixture, whereas a square root transformation of the
data pulls in the large values, and supports a two-component normal mixture. Cruz-Medina
et al. (2004) report a simulation result in which imposing incorrect parametric restrictions
on the component distributions leads to erroneous inference on the number of components.

This article analyzes the nonparametric identifiability of finite mixture models. We es-
tablish sufficient conditions under which the true model (the component distributions, the
number of components, and the mixing proportions) is identified from the distribution func-
tion of the data when no parametric assumptions are imposed on the component distributions.
Nonparametric identifiability of finite mixtures has recently attracted increasing attention.
Hall and Zhou (2003) and Hall et al. (2005) analyze nonparametric identifiability of k-variate
finite mixture models in which the marginal distributions are independent conditional on be-
longing to a subpopulation. Hettmansperger and Thomas (2000) and Cruz-Medina et al.
(2004) provide sufficient conditions for the nonparametric identification of models analogous
to that of Hall and Zhou (2003) by reducing the data to binomial or multinomial responses.

We impose the same assumption as Hall and Zhou (2003) and the papers mentioned
earlier: we assume the data are k-variate, and the marginal distributions are independent
conditional on belonging to a subpopulation. This independent marginal assumption is a
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key assumption, and it is certainly strong. However, it is applicable to many cases in prac-
tice. For example, Cruz-Medina et al. (2004) employ this assumption in analyzing data
from six repeated measurements of children’s reaction time to a cognitive task. It is uni-
versally recognized that there are large differences in the ways children approach cognitive
tasks. Cruz-Medina et al. (2004) model these differences by a finite mixture, in which each
subpopulation represents a child’s solution strategy. Repeated measurements of each child
may then be assumed as independent, provided that the experiments are designed properly.
Hettmansperger and Thomas (2000) use the same model as Cruz-Medina et al. (2004) to
analyze data from eight repeated measurements of reactions of college-age women to a cogni-
tive task. Zhou et al. (2005) use a similar model to estimate ROC curves. Further, as argued
by Hall et al. (2005), a practical consideration may necessitate imposing independence when
modeling multivariate data. For example, a two-component, k-dimensional normal mixture
has k2 + 3k + 1 parameters to be estimated.

We make the following contributions. Let X denote the k-vector variable of interest.
First, we show that the number of components is nonparametrically identified if k ≥ 2 and
some regularity conditions are satisfied. In our model, the variation in X provides a source of
identification, and the identifiable number of components is related to the number of different
values X can take. For example, if k = 2 and each element of X takes M different values, it is
possible to identify the existence of up to M components. Second, we show that, in addition
to the number of components, the mixing proportions and the component distributions are
nonparametrically identified if k ≥ 3 and some regularity conditions are satisfied. Here, the
requirement on k is stronger than in identifying only the number of components. Similarly,
the number of identifiable components is determined by the number of values X can take.
For example, if k = 3 and each element of X takes M different values, it is possible to identify
up to M component distributions. If X is continuously distributed, one can identify as many
component distributions as desired.

Our sufficient conditions for nonparametric identification substantially improve the re-
quirement on the number of elements, k, in the existing literature. Under an additional as-
sumption of identically distributed variables, Hettmansperger and Thomas (2000) and Cruz-
Medina et al. (2004) transform the data into binomial or multinomial variables and apply
the results on the identifiability of binomial and multinomial mixtures of Blischke (1964)
and Elmore and Wang (2003). The reduction to binomial and multinomial mixtures, how-
ever, leads to a loss of information. The sufficient condition of Hettmansperger and Thomas
(2000) and Cruz-Medina et al. (2004) requires k ≥ 2M − 1, hence the maximum number of
identifiable components is quite limited when k is small; for instance, if k = 3, at the most,
two components are identifiable. In contrast, our analysis suggests that, even when k = 3,
a large number of components can be identified using the variation in X. Hall et al. (2005)
show identifiability using a different approach from ours. The sufficient condition by Hall et
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al. (2005) requires k ≥ (1 + o(1))6M logM as M → ∞, which they state “is undoubtedly
larger than the minimal value.”

Our identification condition of the number of components is stated in terms of the rank
of a matrix constructed from the distribution function of X. By estimating the rank of its
empirical analogue, we develop a procedure to statistically test this identification condition,
and consistently estimate the number of components. Numerous methods to select the num-
ber of components have been proposed in a parametric setting (see Henna 1985; Leroux 1992;
Lindsay and Roeder 1992; Windham and Cutler 1992; Roeder 1994; Chen and Kalbfleisch
1996; Dacunha-Castelle and Gassiat 1997, 1999; Keribin 2000; James et al. 2001; Woo and
Sriram 2006). Our proposed procedure requires the conditional independence assumption
but makes no distributional assumptions on the components. Further, most of the existing
selection procedures require repeated estimation of a mixture model with a different number
of components (e.g., Leroux 1992; Lindsay 1995; Chen and Kalbfleisch 1996), and can be
computationally intensive because of possible multiple local maxima in criterion function; on
the other hand, our procedure is easy to implement without the requirement of the estimation
of a mixture model. We also develop a procedure to statistically test and consistently esti-
mate the number of components in mixtures of binomial distributions. Simulations illustrate
that our procedure performs well.

Kasahara and Shimotsu (2008) study nonparametric identification of finite mixture dy-
namic discrete choice models widely used in econometrics using a similar approach to this
article. This article analyzes nonparametric identifiability in a more general context of mul-
tivariate mixtures.

The remainder of the article is organized as follows. Section 2 discusses the nonparametric
identifiability of the number of components under k ≥ 2. Section 3 provides a sufficient
condition for nonparametric identification of the mixing proportions and the component
distributions under k ≥ 3. Section 4 introduces a test of the number of mixture components.
Section 5 reports simulation results, and an empirical example with the same dataset as in
Hettmansperger and Thomas (2000). Proofs are collected in the Appendix.

2 Nonparametric identification of the number of components

Consider the following M -component finite mixture model of a k-vector X = (X1, . . . , Xk),
where the elements of X are independently distributed within each component:

F (x) = F (x1, . . . , xk) =
M∑

m=1

πm
k∏

j=1

F jm(xj), πm > 0,
M∑

m=1

πm = 1, (1)

where F (x) is the distribution function of X, πm is the mixture proportion of the mth
subpopulation, and F jm(xj) is the distribution function of Xj conditional on being from the
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mth subpopulation.
In this section, we provide a sufficient condition to nonparametrically identify the number

of mixture components, M . Section 2.1 analyzes a general case, whereas Section 2.2 studies
binomial mixtures.

2.1 General case

Suppose the distribution function of X is given by (1) with k = 2. Here, we are interested
in identifying M , but not the component distributions such as F jm(xj). Let Xj denote the
support of Xj for j = 1, 2. Consider a partition of Xj into Rj subsets, Ξj

1, . . . ,Ξ
j
Rj

. We may
set R1 and R2 to be the same, but it is not necessary to do so. Define, for j = 1, 2 and
α = 1, . . . , Rj ,

pjm
α = Pr(Xj ∈ Ξj

α|Xj is from the mth subpopulation) =
∫

1{xj ∈ Ξj
α}dF jm(xj). (2)

Define, for a = 1, . . . , R1 and b = 1, . . . , R2,

P 12
a,b = Pr(X1 ∈ Ξ1

a, X2 ∈ Ξ2
b) =

M∑
m=1

πmp1m
a p2m

b . (3)

Arrange p1m
a ’s and p2m

b ’s into M ×R1 and M ×R2 matrices as

L1 =


p11
1 · · · p11

R1

...
. . .

...
p1M
1 · · · p1M

R1

 , L2 =


p21
1 · · · p21

R2

...
. . .

...
p2M
1 · · · p2M

R2

 . (4)

The mth row of Lj represents the distribution function of Xj with respect to the partition
Ξj

1, . . . ,Ξ
j
Rj

conditional on being from the mth subpopulation. Arrange the P 12
ab ’s into a

R1 ×R2 matrix as

P =


P 12

1,1 · · · P 12
1,R2

...
. . .

...
P 12

R1,1 · · · P 12
R1,R2

 , (5)

The following proposition establishes that the rank of P gives the lower bound of M .

Proposition 1 The number of components is no smaller than the rank of P ; i.e., M ≥
rank(P ). Furthermore, if both L1 and L2 have rank M , then M = rank(P ).

The intuition behind our identification result is simple. Suppose there is only one compo-
nent, so that M = 1. Then, the joint distribution of X1 and X2 is a product of their marginal
distributions, and we have P = (L1)′L2, where L1 and L2 are row vectors. Consequently, the
rank of P equals one, which is the number of components. For M ≥ 2, we may write P as
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P = (L1)′V L2 with V = diag(π1, . . . , πM ). Then, the rank of P provides information on the
rank of L1 and L2, which is related to the number of components. In Section 4, we test the
(lower bound of the) number of components by estimating P and testing its rank.

The condition on the rank of L1 and L2 is not empirically testable. Recall that the
mth row of Lj represents the marginal distribution of Xj conditional on being from the mth
subpopulation. If this rank condition fails, a component distribution ofXj can be expressed as
a liner combination of the other component distributions, which reduces the effective number
of components. Therefore, this rank condition means that the marginal distribution of the
Xj ’s needs to have M different components for M = rank(P ) to hold. The rank condition
also requires that R1, R2 ≥ M . Hence, in order to identify M , all the elements of X need
to take at least M distinct values. The proof of Proposition 1 follows closely the proof of
Proposition 3 of Kasahara and Shimotsu (2008).

When k ≥ 3, we can group variables into two groups and apply Proposition 1. For
example, when k is even, we may let Z1 = (X1, . . . , Xk/2), Z2 = (Xk/2+1, . . . , Xk), and
partition the support of Z1 and Z2 to construct P . Reducing the data into bivariate vectors
is another option. For instance, as our real data example in Section 5.3 illustrates, we may
define Z1 = X1 + · · · + Xk/2 and Z2 = Xk/2+1 + · · · + Xk, and partition the support of Z1

and Z2 to construct P .

2.2 Binomial mixtures

We can use the idea in Section 2.1 to identify the number of components in binomial mixtures.
Suppose Y follows an M -component mixture of binomial distributions, B(K, pm), in which
pm is the parameter of the mth component distribution. It has been known that K ≥ 2M−1
is both necessary and sufficient to identity the parameters of the model (Teicher, 1961, 1963;
Blischke, 1964). However, little is known about the identifiability ofM itself. In the following,
we show that M is identified as the rank of a matrix of the factorial moments of the data.

When Y follows an M -component mixture of binomial distributions, B(K, pm), the dis-
tribution function of Y is

Pr(Y = k) =
M∑

m=1

πm(1− pm)K−kpk
m, k = 0, . . . ,K, (6)

where 0 < p1 < · · · < pM < 1, πm > 0, and
∑M

m=1 π
m = 1. Similar to Blischke (1964), define

the kth (normalized) population factorial moment as

f(k) = E

[
Y (Y − 1) · · · (Y − k + 1)
K(K − 1) · · · (K − k + 1)

]
,
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for k = 1, . . . ,K, and define f(0) = 1. Then, as shown in Blischke (1962, 1964),

f(k) =
M∑

m=1

πmpk
m.

Let K∗ be an even number no larger than K. Define the following (K∗/2 + 1)× (K∗/2 + 1)
matrix

PB =


f(0) f(1) · · · f(K∗/2)
f(1) f(2) · · · f(K∗/2 + 1)

...
...

. . .
...

f(K∗/2) f(K∗/2 + 1) · · · f(K∗)

 , (7)

as well as V =diag(π1, . . . , πM ) and1

LB =


1 p1 · · · p

K∗/2
1

...
...

...

1 pM · · · p
K∗/2
M

 .
Then, it follows that PB = L′

BV LB, and the rank of PB provides the information on M via
the rank of LB. Using an analogous argument to the proof of Proposition 1, we obtain the
following corollary that identifies M .

Corollary 1 Suppose Y follows (6), and assume K∗ ≥ 2M − 2. Define PB as in (7). Then
M =rank(PB).

Note that the condition on K is K∗ ≥ 2M−2. This condition is weaker than K ≥ 2M−1,
the necessary and sufficient condition for identifying {πm, pm}M

m=1. Hence, in order to identify
only M , we need one less variation in Y .

3 Nonparametric identification of the component distribu-

tions

In this section, we assumeM is known, and provide sufficient conditions for nonparametrically
identifying the mixing proportions and the component distributions.

When k = 2, Hall and Zhou (2003) prove that there exists a continuum of compo-
nent distributions that satisfy (1) for a given F (x). Hence, the component distributions in
model (1) is nonparametrically non-identifiable if k = 2. Somewhat surprisingly, this non-
identifiability holds regardless of the number of values the Xj ’s can take. Suppose both
X1 and X2 can take at least J distinct values, {ξ1, . . . , ξJ}. Then, considering F (x) for

1FB , V , and LB corresponds to D, A, and P in Blischke (1964, pp. 513-514).
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all possible values of X provides J2 − 1 restrictions, whereas the number of unknowns in
Q = {π, {F 11(ξl), F 21(ξl), F 12(ξl), F 22(ξl)}J

l=1} is 4J + 1. This suggests that it may be possi-
ble to nonparametrically identify Q if J is sufficiently large. However, the restrictions from
F (x) at different values of x cancel with each other, and the effective number of restrictions
is always smaller than the number of unknowns.

When k ≥ 3, the restrictions from F (x) at different values of x help identification. The
mixing proportions and the component distributions are nonparametrically identified, and
the number of identifiable components increases as the Xj ’s take more different values. We
focus on the case k = 3, but the following argument is also valid for k ≥ 3. The distribution
function of X is given by (1). Consider a partition of Xj into M subsets, Ξj

1, . . . ,Ξ
j
M , and

define pjm
· ’s for j = 1, . . . , 3 as in (2). Define, for a, b, c = 1, . . . ,M ,

P 123
a,b,c = Pr(X1 ∈ Ξ1

a, X2 ∈ Ξ2
b , X3 ∈ Ξ3

c) =
M∑

m=1

πmp1m
a p2m

b p3m
c . (8)

We use a similar notation to Section 2 but set R1 = R2 = M . Arrange the p1m
· ’s and p2m

· ’s
into two M ×M matrices as

Lj =


pj1
1 · · · pj1

M
...

. . .
...

pjM
1 · · · pjM

M

 , j = 1, 2. (9)

Define, for h ∈ {1, . . . ,M}, two M ×M matrices as

P =


P 12

1,1 · · · P 12
1,M

...
. . .

...
P 12

M,1 · · · P 12
M,M

 , Ph =


P 123

1,1,h · · · P 123
1,M,h

...
. . .

...
P 123

M,1,h · · · P 123
M,M,h

 . (10)

Define V = diag(π1, . . . , πM ) and Dh = diag(p31
h , . . . , p

3M
h ). Then P and Ph are expressed as

P = L′
1V L2, Ph = L′

1DhV L2 = L′
1V DhL2. (11)

The following proposition and corollary provide a sufficient condition for nonparamet-
rically identifying L1, L2, V , and Dh. Here, P and Ph are functions of the observables,
while L1, L2, V , and Dh are unknowns. The restrictions from P alone are not sufficient to
determine L1, L2 and V uniquely: additional information from Ph enables the identification.

Proposition 2 Suppose P is nonsingular and we can find h such that the characteristic roots
of PhP

−1 are distinct. Then L1, L2, Dh, and V are uniquely determined from P and Ph.
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Corollary 2 Suppose L1 and L2 are nonsingular and that there exists h such that p3m
h 6= p3n

h

for any m 6= n. Then, L1, L2, Dh, and V are uniquely determined from P and Ph.

Once L1 and V are identified, we can identify

p3m
S = Pr(X3 ∈ S|X3 is from the mth subpopulation)

for any subset S of X3. To see why, define P 13
a,S = Pr(X1 ∈ Ξ1

a, X3 ∈ S) =
∑M

m=1 π
mp1m

a p3m
S ,

and

PS =


P 13

1,S
...

P 13
M,S

 , LS =


p31

S
...

p3M
S

 .
Then, PS = L′

1V LS holds, and LS is determined uniquely by LS = V −1(L′
1)

−1PS . Using the
same argument, we can identify pjm

S for any subset S of Xj for j = 1, 2.

Remark 1

1. Identification requires both L1 and L2 to be nonsingular. Therefore, for identifying
M components, all the elements of X need to take at least M distinct values. If X
is continuously distributed, it is possible to identify as many components as desired,
provided that the relevant rank condition is satisfied.

2. Hettmansperger and Thomas (2000) analyze nonparametric estimation and inference
of the model (1) with conditionally iid marginals by defining Y =

∑k
j=1 1{Xj ≤ c},

and reducing the data to a mixture of binomials. Cruz-Medina et al. (2004) consider
splitting the support of Xj further and reducing the data to a mixture of multinomials.
In both cases, identification requires k ≥ 2M − 1.

3. Hall and Zhou (2003, section 4.2) show the nonparametric non-identifiability of the fol-
lowing model with a continuously distributed random effect: ψ(x) =

∫
{
∏k

j=1 Fj(xj |λ)}φ(λ)dλ,
where φ is the density of the random effect Λ, and Fj(xj |λ) is the distribution function
of Xj conditional on the realization λ of Λ. Our results show that, if the random effect
has a discrete distribution with finite support, then it is possible to nonparametrically
identify Fj(xj |λ), and the distribution function of the random effect.

4. When k ≥ 4, and X can be decomposed into k′ ≥ 3 conditionally independent subvectors,
we can apply Proposition 2 to these subvectors. For example, assume k is odd, let
Z1 = (X1, . . . , X(k−1)/2), Z2 = (X(k−1)/2+1, . . . , Xk−1), and assume Z1, Z2, and Xk are
independent conditional on belonging to a subpopulation. Partition the support of Z1,
Z2, and Xk to construct P and Ph. When the Xj’s have J distinct support points, it is
possible to identify up to J (k−1)/2 components.
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Example 1 Example 3 of Hettmansperger and Thomas (2000) considers the following exper-
imental data. In the experiment, college-age women are repeatedly asked to adjust a luminous
rod to the vertical position in a darkened room, where the rod is surrounded by a luminous
square frame tilted 28o to the right or left. There are k = 8 repeated measurements for each
woman. The rod’s error deviation in degrees from the vertical is used as the measurement in
task, i.e., Xj in our notation with j = 1, . . . , 8.

Hettmansperger and Thomas define the response variable for each subject Y =
∑8

j=1 I{|Xj | ≤
5o}, which is assumed to follow a mixture of binomials. Because k = 8, they can identify up
to four components. Our Proposition 2 implies, however, that more than four components
are identifiable because Xj is continuously distributed. A part of identifying information is
lost upon summing the indicator functions, I{|Xj | ≤ 5o}, over j.

The proof of Proposition 2 uses the idea in the analysis of latent class models by Anderson
(1954) and Gibson (1955). Finite mixture models have been studied and widely used in psy-
chometrics and biostatistics under the name of latent class models. In latent class models, an
observation vector X = (X1, . . . , Xk) consists of k dichotomous or polychotomous responses,
typically answers to questions or results of diagnoses. The observations are assumed to belong
to one of M classes, with the probability of being in class m ∈ {1, . . . ,M} equal to πm and
unknown. The responses are assumed to be conditionally independent given membership in
a given latent class.

Anderson (1954) and Gibson (1955) analyze nonparametric identification of latent class
models with k dichotomous responses, which is a special case of our model (1) where the Xj ’s
take only two values. Anderson (1954) and Gibson (1955) derive a sufficient condition for
nonparametric identification under the assumption k ≥ 2M − 1. Madansky (1960) extends
their analyses to obtain a sufficient condition under the assumption 2(k−1)/2 ≥ M , thus
relaxing the assumption of Anderson and Gibson. Lazarsfeld and Henry (1968) summarize
early contributions to latent class models, and its Chapter 4 nicely summarizes the results of
Anderson (1954), Gibson (1955), and Madansky (1960).

Since both Anderson and Gibson consider only dichotomous responses, their sufficient
conditions require a large k if M is not very small. Our analysis highlights that the variation
in the Xj ’s provides an important source of identification and helps identification even when
k is not very large.

In some cases, we have an access to two different samples with different mixing probabili-
ties but the same component distributions. The distribution function of the first and second
sample is respectively given by

F (x) =
M∑

m=1

πm
k∏

j=1

F jm(xj), F̄ (x) =
M∑

m=1

π̄m
k∏

j=1

F jm(xj).
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For example, suppose we have the results of k diagnostic tests from two different groups of
patients, whose disease status is unknown. The fraction of patients with disease (m = 1)
differs across two groups of patients, so π1 6= π̄1. But the distributions of the test outcomes are
the same across groups once one conditions on the true disease status, so that the F jm(xj)’s
are common.

In this case, we may nonparametrically identify the model even when k = 2. Define
V =diag(π1, . . . , πM ) and V̄ =diag(π̄1, . . . , π̄M ), and consider a decomposition similar to
(11): P = L′

1V L2 and P̄ = L′
1V̄ L2. It follows that P (P̄ )−1 = L′

1V (V̄ )−1(L′
1)

−1. Conse-
quently, V (V̄ )−1 and L′

1 are identified with the characteristic roots and characteristic vectors
of P (P̄ )−1. Similarly, the characteristic vectors of P̄P−1 identify L2, and we in turn identify
V and V̄ . This result is useful in the context of diagnostic tests (cf., Hall and Zhou, 2003),
making it possible to determine the distributional properties of diagnostic tests even when
only two tests are available.

4 Estimating the number of identifiable components

Proposition 1 in Section 2 shows that the rank of P gives the lower bound of the number
of mixture components. If, in addition, both L1 and L2 have rank M , then the rank of P
equals the number of components. This suggests that we may estimate (the lower bound of)
the number of components by estimating P and its rank.

Several statistics for testing the rank of a matrix have been proposed (see Gill and Lewbel
1992; Cragg and Donald 1996, 1997; Robin and Smith 2000; Kleibergen and Paap 2006). We
use the test statistic by Robin and Smith (2000), because it does not require the covariance
matrix of the estimate of the matrix to be of full rank. In the following, we briefly review
the statistic by Robin and Smith (2000), and then propose two procedures to estimate the
number of components by estimating the rank of a matrix: a model selection procedure and
a sequential hypothesis testing procedure.

4.1 Statistic by Robin and Smith (2000)

Robin and Smith (2000) propose a test statistic for the rank of a matrix based on the char-
acteristic roots. The basic idea is simple. The rank of a matrix is equal to the number of
non-zero characteristic roots. Thus, given an estimate of a matrix, we may test the rank of
a matrix by testing the number of characteristic roots that are non-zero.

With a slight abuse of notation, let P be a p×q matrix with p ≥ q. Suppose the rank of P
is r0, where 0 ≤ r0 < q. Our interest is to test H0 : rank(P ) = r0 against H1 : rank(P ) > r0,
using a consistent estimate of P , denoted by P̂ .

Given that the rank of P is the same as the rank of PP ′, Robin and Smith (2000) develop a
procedure based on the estimate of the characteristic roots of PP ′. Let λ1 ≥ · · · ≥ λp denote
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the ordered characteristic roots of PP ′. Let λ̂1 ≥ · · · ≥ λ̂p be the ordered characteristic
roots of P̂ P̂ ′. When p > q, it is always the case that λ̂q+1 = ... = λ̂p = 0 even in finite
sample. Furthermore, if r0 is the true rank, then we expect that λ̂1 ≥ · · · ≥ λ̂r0 > 0 while∑q

i=r0+1 λ̂i →p 0 as the sample size increases. Thus, Robin and Smith (2000) propose the
following test statistic

CRT (r) = N

q∑
i=r+1

λ̂i.

If r < r0, then
∑q

i=r+1 λi > 0 and CRT (r) goes to infinity as the sample size increases.
When r = r0, the asymptotic distribution of CRT (r) is given by a weighted sum of squared
independent standard normal variates as the following Proposition 3 states.

We first introduce the assumptions. Let C = (c1, ..., cp) be a p×p matrix, where ci denotes
the characteristic vector of PP ′ associated with the i-th largest characteristic root λi. For
0 ≤ r < p, partition C as C = (Cr, Cp−r), where Cr = (c1, . . . , cr) and Cp−r = (cr+1, . . . , cp).
Similarly, let D = (d1, ..., dq) be a q× q matrix, and partition D as D = (Dr, Dq−r), where di

denotes the characteristic vector of P ′P associated with the i-th largest characteristic root
of P ′P .

Assumption 1
√
Nvec(P̂ − P ) →d N(0,Ω) where Ω is finite and rank s, 0 < s ≤ pq.

Assumption 2 If r0 < q ≤ p, the (p − r0)(q − r0) × (p − r0)(q − r0) matrix (Dq−r0 ⊗
Cp−r0)

′Ω(Dq−r0 ⊗ Cp−r0) is nonzero; i.e., rank[(Dq−r0 ⊗ Cp−r0)
′Ω(Dq−r0 ⊗ Cp−r0)] > 0.

Assumption 3 There exists Ω̂ such that Ω̂ →p Ω.

Assumption 2 is a weak assumption, requiring that at least one column of Dq−r0 ⊗ Cp−r0 is
not in the null space of Ω. If Ω has full rank, this assumption is automatically satisfied.

Robin and Smith (2000) derive the asymptotic distribution of CRT (r0) when r0 < q:

Proposition 3 (Robin and Smith, 2000, Theorem 3.2 and Corollary 3.2) If r0 < q and
Assumptions 1-2 hold, CRT (r0) has an asymptotic distribution described by

∑t
i=1 γiZ

2
i , where

t ≤ min{s, (p− r0)(q− r0)}, and γ1 ≥ · · · ≥ γt are the nonzero ordered characteristic roots of
the matrix (Dq−r0 ⊗Cp−r0)

′Ω(Dq−r0 ⊗Cp−r0), and {Zi}t
i=1 are independent standard normal

variates.

As shown by Robin and Smith (2000, Theorem 4.1), we can estimate the asymptotic distri-
bution function of CRT (r0) consistently by F̂CRT

r0
(·), the distribution function of

∑(p−r0)(q−r0)
i=1 γ̂iZ

2
i ,

where γ̂i is the consistent estimate of γi obtained from P̂ . The distribution function F̂CRT
r0

(·)
can be easily computed by simulations once the γi’s are estimated.
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4.2 Model selection procedure

We first propose a model selection procedure based on the statistic CRT (r) to estimate r0
consistently. Consider the following criterion function

S(r) = CRT (r)− f(N)g(r),

where g(r) is a (possibly stochastic) penalty function, which is bounded in probability. Define

r̃ = arg min
1≤r≤q

S(r).

Under a standard condition on f(N) and g(N), this gives a consistent estimate of r0:

Proposition 4 Suppose that f(N) → ∞, f(N)/N → 0, and Pr(g(r) − g(r0) < 0) → 1 for
all r > r0 as N →∞. Then r̃ →p r0.

If the asymptotic distribution of CRT (r0) were chi-squared with (p − r0)(q − r0) degrees of
freedom, then using f(N) = 1 and g(r) = 2(p− r)(q − r) would give an AIC-type criterion,
while using f(N) = log(N) and g(r) = (p− r)(q − r) would give a BIC-type criterion.

In light of the non-standard asymptotic distribution of CRT (r0), we propose the following
penalty function g(r) for a BIC-type criterion:

g(r) = (p− r)(q − r)γ̄(r) (12)

where γ̄(r) =
∑(p−r)(q−r)

i=1 γ̂i/{(p − r)(q − r)} is the average of the characteristic roots of
(D̂q−r ⊗ Ĉp−r)′Ω̂(D̂q−r ⊗ Ĉp−r). In an AIC-type criterion, g(r) is multiplied by 2. The term
γ̄(r) in (12) makes our model selection procedure invariant to a rescaling of P . Further,
the asymptotic distribution of CRT (r0)/γ̄(r0) has the same mean as a chi-squared random
variable with (p− r0)(q − r0) degrees of freedom.

To apply Proposition 4 with g(r) defined in (12), we need additional assumptions to
guarantee that g(r) becomes strictly decreasing in r as N →∞. Using the relation tr(AB) =
tr(BA), and the properties of the Kronecker product, we obtain

g(r)− g(r + 1) = tr{(d̂r+1 ⊗ ĉr+1)′Ω̂(d̂r+1 ⊗ ĉr+1)}+
p∑

j=r+2

tr{(d̂r+1 ⊗ ĉj)′Ω̂(d̂r+1 ⊗ ĉj)}

+
q∑

i=r+2

tr{(d̂i ⊗ ĉr+1)′Ω̂(d̂i ⊗ ĉr+1)}. (13)

Since Ω̂ is positive semidefinite, it follows that g(r) is nonincreasing in r. g(r) becomes strictly
decreasing as N →∞ if the right hand side of (13) becomes strictly positive for any r. This
holds, for example, if (dr ⊗ cr)′Ω(dr ⊗ cr) > 0 for 1 ≤ r ≤ q, or if for any 1 ≤ r ≤ q there
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exists a pair (i, j) such that (di ⊗ cj)′Ω(di ⊗ cj) > 0 where r + 1 ≤ i ≤ p and r + 1 ≤ j ≤ q.

4.3 Sequential hypothesis testing

Using the consistent estimate for the asymptotic distribution function of CRT (r0), F̂CRT
r0

(·),
we may test H0 : rank(P ) = r against H1 : rank(P ) > r for any integer value of r. To
estimate r0, we sequentially test H0 : rank(P ) = r against H1 : rank(P ) > r starting from
r = 0, and then r = 1, . . . , q. The first value for r that leads to a nonrejection of H0 gives
our estimate for r0.

For r = 0, . . . , q, let ĉr1−αN
denote the 100(1− αN ) percentile of the cdf F̂CRT

r (·). Then,
our estimator based on sequential hypothesis testing is defined as

r̂ = min
r∈{0,...,q}

{r : CRT (r) ≥ ĉi1−αN
, i = 0, . . . , r − 1, CRT (r) < ĉr1−αN

}. (14)

The estimator r̂ depends on the choice of the significance level αN . To achieve consistency,
we allow the significance level of the test to decrease with the sample size N . The following
proposition states that, by letting αN go to zero at a sufficiently slow rate as the sample size
increases, r̂ converges to the rank of P .

Proposition 5 (Robin and Smith, 2000, Theorem 5.2) If the conditions of Proposition 3 and
Assumption 3 hold, and if αN = o(1) and −N−1 lnαN = o(1) as N →∞, then r̂−r0 = op(1).

5 Simulation study

5.1 General case: an example with normal mixtures

We conduct Monte Carlo simulation experiments with normal mixtures to assess the finite
sample performance of our proposed procedures for selecting the number of components.
The reported results are based on 10, 000 simulated samples. Regarding the number of
components, we experiment with M = 2 and 3.

While the simulated DGP is a parametric (normal) model, our selection procedures do
not assume the knowledge of parametric structures. We partition the support of Xj into
Rj subsets such that Pr(Xj ∈ Ξj

l ) = 1/Rj for l = 1, . . . , Rj . Specifically, let x̄j
β denote

the β quantiles of Xj . Let βl = l/Rj for l = 0, 1, . . . , Rj , and define Ξj
l = (x̄j

βl−1
, x̄j

βl
] for

l = 1, . . . , Rj − 1 and Ξj
Rj

= (x̄βRj−1
,∞).

We construct a consistent estimator of the covariance matrix of
√
Nvec(P̂ −P ) as follows.

With a slight abuse of notation, let X1, . . . , XN denote N iid draws of X, and let Xt,j

denote the jth element of Xt. Let P̂ be the empirical distribution estimator of P : for
a = 1, . . . , R1 and b = 1, . . . , R2, the (a, b)th element of P̂ is P̂ 12

a,b = N−1
∑N

t=1 1{Xt,1 ∈
Ξ1

a, Xt,2 ∈ Ξ2
b}. Because {NP̂ 12

a,b}a=1,...,R1,b=1,...,R2 follows a multinomial distribution with the
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parameter {P 12
a,b}, we can easily see

EP̂ 12
a,b = P 12

a,b, var(P̂ 12
a,b) = P 12

a,b(1− P 12
a,b)/N,

cov(P̂ 12
a,b, P̂

12
c,d) = −P 12

a,bP
12
c,d/N, (a, b) 6= (c, d).

Let Ω denote the (R1R2)× (R1R2) covariance matrix of
√
Nvec(P̂ −P ). Note that the rank

of Ω is R1R2−1 because
∑R1

a=1

∑R2
b=1 P̂

12
a,b = 1. Let θ = vec(P ), then the ith diagonal element

of Ω is given by θi(1− θi), and the (i, j)th off-diagonal element of Ω is given by −θiθj .
We first consider a bivariate normal mixture

F (x) =
M∑

m=1

πmFm(x), (15)

where x = (x1, x2)′, and Fm(x) is N2(µm, I). We set µ1 = (0, 0)′ and µ2 = (2.0, 1.0)′ for
M = 2. For M = 3, we set, in addition, µ3 = (4.0, 3.0)′. The mixing probabilities are equal
across subpopulations, so that π1 = π2 = 1/2 for M = 2, while π1 = π2 = π3 = 1/3 for
M = 3. R1 and R2 are chosen to R1 = R2 = M + 1.2 In simulations, we use the sample
quantiles of Xj ’s to determine the boundaries of Ξj

l . This introduces additional variation,
and may affect the asymptotic distribution of CRT (r) statistic, but the consistency of our
procedure is not affected. We experimented bootstrapping CRT (r) statistic, however it did
not improve the results substantially.

Table 1 reports the result of experiments when the data is generated from the model
with two components (M = 2). For the sequential hypothesis testing procedure (SHT), the
smaller the significance level α is, the more likely the procedure underestimates the number
of components. The performance of the SHT improves at all the significance levels as the
sample size increases. Furthermore, the “optimal” choice of significance level, i.e., α that
selects M = 2 most frequently, decreases from 0.1 to 0.05, and then to 0.01 as the sample size
increases from N = 50 to 200, and then to 1000, respectively. These results are in agreement
with Proposition 5. Overall, the SHT performs well in reasonably sized samples.

The last two rows of Table 1 report the performance of the AIC and BIC. With a small
sample size of N = 50, the AIC performs better than the SHT. With a larger sample size of
N = 200 however, the AIC substantially overestimates the number of components, highlight-
ing its inconsistency. On the other hand, the BIC performs worse than both the SHT and
AIC when N = 50, but the performance of the BIC is comparable to that of the SHT when
N = 1000. The performance of the BIC is somewhat disappointing, despite its theoretical
superiority to the AIC.

Table 2 reports the simulation results when the data is generated from the model with
2We also experimented with R1 = R2 = M + 2 (not reported here) and found that the procedures with

R1 = R2 = M + 1 performed better than those with R1 = R2 = M + 2.
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three components (M = 3). The overall pattern is similar to Table 1, but the tendency to
underestimate M is more pronounced. For the SHT and BIC, the frequency of choosing
M = 3 approaches one as the sample size increases. The AIC performs better than the SHT
and BIC when N = 100 and N = 400, but overestimates the number of components more
often than the SHT and BIC when N = 2000.

Next, we consider a trivariate normal mixture of the form (15) with two components
(M = 2), where x = (x1, x2, x3)′ and Fm(x) is N3(µm, I). We set the first two variables,
(X1, X2), to have the same distribution as the bivariate case while the third variable X3 has
the same distribution as X2. To apply our selection procedure to trivariate mixtures, we
group the second and the third variables into one group as Z2 = (X2, X3)′. We partition
X1 into 3 subsets while X2 and X3 are partitioned into R2 = R3 = 2 subsets and, thus, the
support of Z2 is partitioned into 22 = 4 subsets. Accordingly, we estimate the rank of the
following matrix (see (5)):

P =

 P1,(1,1) P1,(1,2) P1,(2,1) P1,(2,2)

P2,(1,1) P2,(1,2) P2,(2,1) P2,(2,2)

P3,(1,1) P3,(1,2) P3,(2,1) P3,(2,2)

 ,
where Pa,(b,c) = Pr(X1 ∈ Ξ1

a, Z2 ∈ Ξ2
b × Ξ3

c).
Table 3 shows the result of this model. Comparing Table 3 with Table 1, we find that

our selection procedures perform better with trivariate mixtures than with bivariate mixtures
across different procedures and sample sizes. Thus, the additional information from the third
variable can improve the performance of our selection procedures.

5.2 Binomial mixtures

We also conduct Monte Carlo simulations for mixtures of binomial distributions, B(K, pm), as
defined in (6) with M = 2, 3, and 4. We set (p1, p2) = (0.2, 0.5), (p1, p2, p3) = (0.2, 0.5, 0.9),
and (p1, p2, p3, p4) = (0.05, 0.3, 0.7, 0.95) for models with two, three and four components,
respectively. The value of K is chosen to K = 2M so that the maximum identifiable number
of components is the true number of components plus one. As before, the mixing probabilities
are set to equal to each other across subpopulations.

For binomial mixtures, we construct a consistent estimate of Ω from an estimate of the
covariance matrix of the sample factorial moments. Define ν(Y, k) = Y (Y −1)···(Y −k+1)

K(K−1)···(K−k+1) so that
f(k) = E(ν(Y, k)). We estimate f(k) by f̂(k) = N−1

∑N
i=1 ν(Yi, k). Hence, Ncov(f̂(j), f̂(k))

is equal to E(ν(X, j)ν(Y, k))−E(ν(Y, j))E(ν(Y, k)), which is a linear function of EY, . . . , EY j+k

and, thus, can be estimated from sample moments of Y .
Tables 4, 5, and 6 show the results for models with two, three, and four components,

respectively. Across three different models, as the sample size increases, the frequency to
select the true number of components approaches one in the SHT and BIC; on the other
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hand, the AIC tends to overestimate the true number of components. It is also seen that a
relatively large number of observations is required to estimate M accurately when M is large.

5.3 Example 3 of Hettmansperger and Thomas (2000)

The data consists of n = 83 college-age women each with eight replications of Witkin’s rod-
and-frame task. The response variable, measured as the rod’s error deviation in degrees
from the vertical, is continuously distributed. We denote the eight response variables for
each woman by {Xj : j = 1, . . . , 8}. Hettmansperger and Thomas apply various tests of
the number of components for binomial mixtures to the transformed data. Lindsay’s (1995)
gradient function method suggests M = 4, the Hellinger and the Pearson penalized distances
suggest M = 2, and the bootstrapped likelihood ratio test suggests M = 3.

We apply our method by taking the average of the first and the last four variables for
each woman and defining Z1 =

∑4
j=1 |Xj |/4 and Z2 =

∑8
j=5 |Xj |/4. We then partition the

space of Z1 and Z2 into 4 regions using their quantiles, construct a P matrix corresponding
to (5), and estimate the rank of P . The result is presented in Table 7. When M = 4, the
criterion function takes the value of zero because q = r. In this example, the SHT and BIC
estimate M = 3 while the AIC selects M ≥ 4.

More generally, there are 8C4/2 = 35 ways to construct a pair (Z1, Z2) (up to permutation
of Z1 and Z2) by choosing 4 response variables out of 8 variables. By estimating the rank of
P for all the pairs of (Z1, Z2), we obtain 35 different estimates of the number of components.
Table 8 presents the frequencies of the estimated number of components across these 35
estimates. M = 3 is most frequently chosen for all three procedures, followed by M ≥ 4.

Following Hettmansperger and Thomas, we also construct the response variable Y =∑8
j=1 1{|Xj | ≤ 5o}, which is viewed as a mixture of binomial distributions, and then estimate

the number of components by our method in Section 4. As shown in Table 9, all of the SHT,
AIC, and BIC indicate that there are M = 3 components.
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6 Appendix: proofs

6.1 Proof of Proposition 1

Let V = diag(π1, . . . , πM ), then P = (L1)′V L2. It follows that rank(P ) ≤ min{rank(L1),
rank(L2), rank(V )}. Since rank(V ) = M , it follows that rank(P ) ≤ M where the inequality
becomes strict when rank(L1) or rank(L2) is smaller than M .

17



When rank(L1) = rank(L2) = M , multiplying both sides of P = (L1)′V L2 from the right
by (L2)′(L2(L2)′)−1 gives P (L2)′(L2(L2)′)−1 = (L1)′V . There are M linearly independent
columns in (L1)′V , because (L1)′ has M linearly independent columns while V is a diagonal
matrix with strictly positive elements. Thus, rank(P (L2)′(L2(L2)′)−1) = M . Hence, M ≤
min{rank(P ), rank(L2), rank(L2(L2)′)−1} ≤rank(P ), and it follows that rank(P ) = M . �

6.2 Proof of Corollary 1

Since PB = L′
BV LB, if follows from the proof of Proposition 1 that rank(PB) ≤M . In view

of the proof of Proposition 1, rank(PB) = M follows if we show rank(LB) = M .
First, rank(LB) ≤M because LB is a M × (K∗/2 + 1) matrix. To show rank(LB) ≥M ,

first note that the condition K∗ ≥ 2M − 2 guarantees that K∗/2 ≥ M − 1. Consider the
following M ×M submatrix of LB:

L∗
B =


1 p1 · · · pM−1

1
...

...
...

1 pM · · · pM−1
M

 .
Since L∗

B is a Vendermonde matrix, its determinant is given by
∏

i<j(pj−pi), which is nonzero
by definition. Hence, rank(L∗

B) = M . Since L∗
B is a submatrix of LB, rank(LB) ≥rank(L∗

B) =
M . It follows that rank(LB) = M . �

6.3 Proof of Proposition 2 and Corollary 2

Since P is nonsingular, we can construct a matrix Bh = PhP
−1 = L′

1Dh(L′
1)

−1. Because
BhL

′
1 = L′

1Dh, the characteristic roots of Bh determine the elements of Dh, and the charac-
teristic vectors of Bh determine the columns of L′

1 uniquely up to multiplicative constants.
Since p1m

1 + · · · + p1m
M = 1 for each m, each column of L′

1 must sum to one, and hence the
columns of L′

1 are uniquely determined. Having determined L′
1, we can recover the rows of

L2 uniquely up to multiplicative constants from (L′
1)

−1P because (L′
1)

−1P = V L2. Since
p2m
1 + · · ·+ p2m

M = 1 for each m, each row of L2 must sum to one, and hence the rows of L2

are uniquely determined. Then V is determined as V = (L′
1)

−1P (L2)−1.
Corollary 2 is proven by observing that P is nonsingular and the characteristic roots of

PhP
−1 are distinct when the conditions of Corollary 2 are satisfied. �
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6.4 Proof of Proposition 4

First, we show Pr(r̃ < r0) → 0. If r̃ < r0, this implies S(r) < S(r0) for some r < r0. Thus
Pr(r̃ < r0) ≤

∑r0−1
r=1 Pr(S(r) < S(r0)). Now, for any r < r0,

Pr(S(r) < S(r0)) = Pr(CRT (r)− CRT (r0)− f(N)g(r) + f(N)g(r0) < 0)

≤ Pr

(
N

r0∑
i=r+1

λ̂i + f(N)(g(r0)− g(r)) < 0

)
.

This probability tends to 0 as N →∞ because f(N)/N → 0 and
∑r0

i=r+1 λ̂i →p
∑r0

i=r+1 λi >

0 since the λi’s are continuous functions of the elements of B.
Second, we show Pr(r̃ > r0) → 0. Similarly as above, we have Pr(r̃ > r0) ≤

∑q
r=r0+1 Pr(S(r) <

S(r0)). Now, for any r > r0,

Pr(S(r) < S(r0)) ≤ Pr

(
−N

r∑
i=r0+1

λ̂i + f(N)(g(r0)− g(r)) < 0

)
.

This probability tends to 0 as N →∞ because N
∑r

i=r0+1 λ̂i converges to a weighted sum of
chi-squared variables, f(N) →∞, and Pr(g(r0)− g(r) > 0) → 1 as N →∞. �
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Table 1: Selection Frequencies of the Number of Components: Bivariate Normal with M = 2
N = 50 N = 200 N = 1000

M = 1 M = 2 M ≥ 3 M = 1 M = 2 M ≥ 3 M = 1 M = 2 M ≥ 3

SHT α = .10 0.494 0.448 0.058 0.025 0.890 0.086 0.000 0.902 0.098
α = .05 0.639 0.340 0.020 0.049 0.908 0.042 0.000 0.953 0.047
α = .01 0.854 0.144 0.002 0.153 0.839 0.008 0.000 0.990 0.010

AIC 0.396 0.513 0.092 0.013 0.847 0.140 0.000 0.845 0.155

BIC 0.789 0.201 0.010 0.281 0.704 0.015 0.000 0.992 0.008

Notes: The parameter values are: π1 = π2 = 1/2, µ1 = (0, 0)′ and µ2 = (2, 1).

Table 2: Selection Frequencies of the Number of Components: Bivariate Normal with M = 3
N = 100 N = 400

M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4

SHT α = .10 0.000 0.709 0.261 0.030 0.000 0.165 0.766 0.069
α = .05 0.000 0.818 0.171 0.010 0.000 0.259 0.709 0.032
α = .01 0.000 0.946 0.052 0.001 0.000 0.515 0.481 0.004

AIC 0.000 0.576 0.375 0.049 0.000 0.094 0.794 0.112

BIC 0.000 0.945 0.052 0.002 0.000 0.728 0.269 0.004

N = 2000
M = 1 M = 2 M = 3 M ≥ 4

SHT α = .10 0.000 0.000 0.904 0.096
α = .05 0.000 0.000 0.954 0.046
α = .01 0.000 0.000 0.990 0.010

AIC 0.000 0.000 0.846 0.154
BIC 0.000 0.002 0.992 0.006

Notes: The parameter values are: π1 = π2 = π3 = 1/3, µ1 = (0, 0)′, µ2 = (2, 1), and µ3 = (4, 3).
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Table 3: Selection Frequencies of the Number of Components: Trivariate Normal with M = 2
N = 50 N = 200 N = 1000

M = 1 M = 2 M ≥ 3 M = 1 M = 2 M ≥ 3 M = 1 M = 2 M ≥ 3

SHT α = .10 0.386 0.545 0.069 0.002 0.894 0.104 0.000 0.888 0.112
α = .05 0.528 0.441 0.031 0.005 0.940 0.055 0.000 0.940 0.060
α = .01 0.781 0.215 0.004 0.030 0.958 0.012 0.000 0.986 0.014

AIC 0.308 0.599 0.093 0.001 0.857 0.142 0.000 0.850 0.150

BIC 0.779 0.213 0.008 0.134 0.860 0.006 0.000 0.999 0.001

Notes: The parameter values are: π1 = π2 = 1/2, µ1 = (0, 0, 0)′ and µ2 = (2, 1, 1)′.

Table 4: Selection Frequencies of the Number of Components: Binomial with M = 2
N = 50 N = 200 N = 1000

M = 1 M = 2 M ≥ 3 M = 1 M = 2 M ≥ 3 M = 1 M = 2 M ≥ 3

SHT α = .10 0.749 0.189 0.062 0.242 0.686 0.072 0.000 0.910 0.090
α = .05 0.875 0.096 0.029 0.408 0.563 0.028 0.000 0.959 0.041
α = .01 0.976 0.019 0.005 0.749 0.247 0.004 0.001 0.991 0.008

AIC 0.628 0.275 0.093 0.001 0.857 0.142 0.000 0.850 0.150

BIC 0.779 0.213 0.008 0.134 0.860 0.006 0.000 0.999 0.001

Notes: The parameter values are π1 = π2 = 1/2, (p1, p2) = (0.2, 0.5), and K = 4.

Table 5: Selection Frequencies of the Number of Components: Binomial with M = 3
N = 100 N = 400

M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4

SHT α = .10 0.000 0.692 0.281 0.027 0.000 0.195 0.733 0.072
α = .05 0.000 0.787 0.204 0.009 0.000 0.292 0.675 0.033
α = .01 0.000 0.920 0.079 0.001 0.000 0.515 0.481 0.004

AIC 0.000 0.618 0.329 0.054 0.000 0.145 0.731 0.125

BIC 0.000 0.864 0.132 0.004 0.000 0.516 0.478 0.007

N = 2000
M = 1 M = 2 M = 3 M ≥ 4

SHT α = .10 0.000 0.000 0.906 0.094
α = .05 0.000 0.000 0.954 0.046
α = .01 0.000 0.001 0.991 0.008

AIC 0.000 0.000 0.849 0.151
BIC 0.000 0.002 0.994 0.004

Notes: The parameter values are π1 = π2 = π3 = 1/3, (p1, p2, p3) = (0.2, 0.5, 0.9), and K = 6.
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Table 6: Selection Frequencies of the Number of Components: Binomial with M = 4

N = 200 N = 800
M = 1 M = 2 M = 3 M = 4 M ≥ 5 M = 1 M = 2 M = 3 M = 4 M ≥ 5

SHT α = .10 0.000 0.006 0.663 0.302 0.030 0.000 0.000 0.192 0.746 0.062
α = .05 0.000 0.015 0.741 0.234 0.011 0.000 0.000 0.282 0.693 0.025
α = .01 0.000 0.050 0.838 0.111 0.001 0.000 0.000 0.492 0.504 0.004

AIC 0.000 0.003 0.600 0.344 0.053 0.000 0.000 0.139 0.752 0.109

BIC 0.000 0.033 0.822 0.143 0.003 0.000 0.000 0.526 0.471 0.004

N = 4000
M = 1 M = 2 M = 3 M = 4 M ≥ 5

SHT α = .10 0.000 0.000 0.000 0.909 0.091
α = .05 0.000 0.000 0.000 0.958 0.043
α = .01 0.000 0.000 0.000 0.992 0.008

AIC 0.000 0.000 0.000 0.849 0.151
BIC 0.000 0.000 0.002 0.995 0.003

Notes: The parameter values are π1 = π2 = π3 = π4 = 1/4, (p1, p2, p3, p4) = (0.05, 0.3, 0.7, 0.095), and K = 8.

Table 7: Real Data Example: p-value of the SHT and the Value of the AIC/BIC Criterion
Function

M = 1 M = 2 M = 3 M ≥ 4 No. of Components

SHT, p-value 0.000 0.000 0.106 – 3
AIC, S(r) 4.737 1.630 0.048 0.000 4
BIC, S(r) 3.537 1.010 -0.161 0.000 3

Notes: Based on Z1 =
P4

j=1 Xj/4 and Z2 =
P8

j=5 Xj/4.

Table 8: Real Data Example: Selection Frequency of the Number of Components
M = 1 M = 2 M = 3 M ≥ 4

SHT, α = .10 0.000 0.000 0.657 0.342
SHT, α = .05 0.000 0.029 0.714 0.257
SHT, α = .01 0.000 0.171 0.686 0.143

AIC 0.000 0.000 0.600 0.400

BIC 0.000 0.171 0.629 0.200

Notes: The reported numbers are the frequencies across 8C4/2 = 35 results.

Table 9: Real Data Example with Binomial Transformation: p-value of the SHT and the
value of the AIC/BIC Criterion Function

M = 1 M = 2 M = 3 M ≥ 4 No. of Components

SHT, p-value 0.000 0.001 0.377 0.289 3
AIC, S(r) 3.508 0.017 -3e-5 -4e-7 3
BIC, S(r) 3.187 0.012 -1e-4 0.000 3

Notes: Based on binomially distributed variable Y =
P8

j=1 1{|Xj | ≤ 5o}.
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