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Abstract

Recently, Shimotsu and Phillips (2005) developed a new semiparametric es-
timator, the exact local Whittle (ELW) estimator, of the memory parameter (d)
in fractionally integrated processes. The ELW estimator has been shown to be
consistent, and has the same N(0, 1

4 ) asymptotic distribution for all values of d,
if the optimization covers an interval of width less than 9

2 and the mean of the
process is known. With the intent to provide a semiparametric estimator suitable
for economic data, we extend the ELW estimator so that it accommodates an
unknown mean and a polynomial time trend. We show that the two-step ELW
estimator, which is based on a modified ELW objective function using a tapered
local Whittle estimator in the first stage, has a N(0, 1

4 ) asymptotic distribution
for d ∈ (− 1

2 , 2) (or d ∈ (− 1
2 ,

7
4 ) when the data has a polynomial trend). Our sim-

ulation study illustrates that the two-step ELW estimator inherits the desirable
properties of the ELW estimator.

JEL Classification: C22

∗E-mail: shimotsu@econ.queensu.ca. The author thanks the co-editor and three anonymous
referees for helpful and constructive comments. The author thanks Peter C. B. Phillips and Morten
Ø. Nielsen for helpful comments and the Cowles Foundation for hospitality during his stay from
January 2002 to August 2003. This research was supported by ESRC under Grant R000223629.

1



1 Introduction

Fractionally integrated (I(d)) processes have attracted growing attention among em-
pirical researchers in economics and finance. In part this is because I(d) processes
provide an extension to the classical dichotomy of I(0) and I(1) time series and equip
us with more general alternatives for modelling long-range dependence. Empirical
research continues to find evidence that I(d) processes can provide a suitable de-
scription of certain long range characteristics of economic and financial data (for a
survey, see Henry and Zaffaroni 2003). Because of their flexibility in modeling tempo-
ral dependence, I(d) processes can also help to reconcile implications from economic
models with observed data. Indeed, their use have provided solutions for many empir-
ical “puzzles” in economics and finance, e.g., consumption (Diebold and Rudebusch
1991, Haubrich 1993), term structure (Backus and Zin 1993), international finance
(Maynard and Phillips 2001), and economic growth (Michelacci and Zaffaroni 2000).

The memory parameter, d, plays a central role in the definition of fractional in-
tegration and is often the focus of empirical interest. Semiparametric estimation of
d is appealing in empirical work because it is agnostic about the short-run dynamics
of the process and hence is robust to its misspecification. Two common statistical
procedures in this class are log periodogram regression and local Whittle estimation
(Robinson 1995a, 1995b). Although these estimators are consistent for d ∈ (1

2 , 1] and
asymptotically normally distributed for d ∈ (1

2 ,
3
4), they are also known to exhibit

nonstandard behavior when d > 3
4 . For instance, they have a nonnormal limit distri-

bution for d ∈ [3
4 , 1], and they converge to unity in probability and are inconsistent

for d > 1 (Kim and Phillips 2006, Phillips 2007, Phillips and Shimotsu 2005). To
avoid inconsistency and an unreliable basis for inference when d may be larger than
3
4 , a simple and commonly used procedure is to estimate d by taking first differences
of the data, estimating d − 1, and adding one to the estimate d̂− 1. However, if
the data is trend stationary, i.e., I(d) with d ∈ [0, 1

2) around a linear time trend,
taking a first difference of a time series reduces it to I(d) with d ∈ [−1,−1

2). In this
case, the local Whittle estimator converges either to the true parameter value or to 0
depending on the number of frequencies used in estimation (Shimotsu and Phillips,
2006).

Data tapering has been suggested (Velasco, 1999, Hurvich and Chen, 2000) as
a solution to extend the range of consistent estimation of d. Tapered estimators
are invariant to a linear (and possibly higher order) time trend and asymptotically
normal for d ∈ (−1

2 ,
3
2) (and for larger values of d if higher-order tapers are used),

but they have a larger variance (1.5 times or more) than the untapered estimator.
As a result, there is currently no general purpose efficient estimation procedure when
the value of d may take on values in the nonstationary zone beyond 3

4 .
Many economists and econometricians took part in the debate on whether eco-

nomic time series are trend stationary or difference stationary. This debate remains
inconclusive partly because of the low power and discontinuity in the data-generating
model of the unit root tests. In the context of I(d) processes, these questions are
translated into whether d ≥ 1

2 or d < 1
2 , because I(d) processes become nonstationary
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when d ≥ 1
2 . Gil-Alaña and Robinson (1997) applied Robinson’s (1994) LM test to

macroeconomic data to test the null hypothesis that d = d0 for various values of
d0, including d = 1

2 , and found that the results depend on how the short-run dy-
namics of the data is specified. Therefore, it is of great interest to investigate this
issue using the semiparametric approach which is agnostic about short-run dynam-
ics. However, neither using the raw data, differenced data, or combining the two can
answer whether d ≥ 1

2 , because these procedures must assume either d < 3
4 or d > 1

2
prior to estimation.

Recently Shimotsu and Phillips (2005) developed a new semiparametric estima-
tor, the exact local Whittle (ELW) estimator, which seems to offer a good general
purpose estimation procedure for the memory parameter that applies throughout the
stationary and nonstationary regions of d. The ELW estimator is consistent and has
the same N(0, 1

4) limit distribution for all values of d if the optimization covers an
interval of width less than 9

2 and the mean (initial value) of the process is known. As
such, it provides a basis for constructing valid asymptotic confidence intervals for d
that are valid regardless of the true value of the memory parameter.

Economic time series are often modeled with an unknown mean and a polynomial
time trend. First, we examine the effect of an unknown mean (initial value) on ELW
estimation. It is shown that (i) if an unknown mean is replaced by the sample average,
then the ELW estimator is consistent for d ∈ (−1

2 , 1) and asymptotically normal for
d ∈ (−1

2 ,
3
4), but simulations suggest that the estimator is inconsistent for d > 1, and

(ii) if an unknown mean is replaced by the first observation, then the ELW estimator
is consistent for d > 0 and asymptotically normal for d ∈ (0, 2), but the consistency
and asymptotic normality for d ∈ (0, 1

2) requires a strong assumption on the number
of periodogram ordinates used in estimation, and simulations suggest the estimator
is inconsistent for d ≤ 0. An unknown mean needs to be estimated carefully in the
ELW estimation.

In light of the above undesirable effect of unknown mean on the ELW estimation,
we extend the ELW estimator so that it accommodates an unknown mean and a
polynomial time trend. We modify the ELW objective function to estimate the
mean by combining two estimators: the sample average, and the first observation,
depending on the value of d. The presence of a linear and/or quadratic time trend is
dealt with by first detrending of the data. We show that the two-step ELW estimator,
which is based on the modified ELW objective function and uses a tapered estimator
in the first stage, has the same N(0, 1

4) limit distribution for d ∈ (−1
2 , 2) (d ∈ (−1

2 ,
7
4)

when the data are detrended). The finite sample performance of the two-step ELW
estimator inherits the desirable properties of the ELW estimator, apart from a small
increase in bias and variance when the data are detrended. We also investigate the
properties of the estimator that minimizes the modified objective function. The
resulting feasible ELW estimator is shown to be consistent for d > −1

2 , provided we
exclude arbitrary small intervals around 0 and 1.

Abadir et al. (2007) propose a fully extended local Whittle (FELW) estimator
that uses a fully extended discrete Fourier transform. They show that the FELW
estimator is consistent, and has a N(0, 1

4) limit distribution for d ∈ (−3
2 ,∞). We
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view their estimator as being complementary to the one proposed in this paper for a
variety of reasons. The FELW estimator has the advantage over the two-step ELW
estimator in that it covers a wider range of d, and it does not require estimating
the mean.1 However, the FELW estimator excludes the values of d = 1

2 ,
3
2 , · · · , which

results in holes in confidence intervals at these points, whereas our two-step approach
does not. Furthermore, the two estimators are based on different models of I(d)
process. The FELW estimator is based on Type I processes, while the two-step ELW
estimator is based on Type II processes. Type I and II processes have their relative
advantages and disadvantages; for example, Type I processes are stationary for d < 1

2
and more amenable to standard statistical analysis, while Type II processes can use
a single model for all d and do not impose model discontinuity at d = 1

2 ,
3
2 , . . .

2

The remainder of the paper is organized as follows. Section 2 briefly reviews
ELW estimation. Section 3 analyzes the effect of an unknown mean and compares
two estimator of the mean. Section 4 demonstrates the asymptotic properties of
the two-step ELW estimator. Section 5 reports some simulation results, and gives
an empirical application using the extended Nelson-Plosser data. Proofs and some
technical results are collected in Appendices A and B.

2 A model of fractional integration and ELW estimation

First we briefly review the exact local Whittle (ELW) estimation developed by Shi-
motsu and Phillips (2005) as it serves as the basis for the following analysis. Consider
the fractionally integrated process Xt generated by the model

∆dXt = (1− L)dXt = ut1 {t ≥ 1} , t = 0,±1, . . . (1)

where 1 {·} denotes the indicator function. ut is assumed to be stationary with zero
mean and spectral density fu (λ) satisfying fu(λ) ∼ G for λ ∼ 0. Inverting and
expanding the binomial in (1) gives a representation of Xt in terms of u1, . . . , un,
which is valid for all values of d :

Xt = ∆−dut1 {t ≥ 1} = (1− L)−d ut1 {t ≥ 1} =
t−1∑
k=0

(d)k
k!

ut−k, t = 0,±1, . . .

where (d)k = Γ(d+ k)/Γ(d) and Γ (·) is the gamma function.
Define the discrete Fourier transform (dft) and the periodogram of a time series

at evaluated at the fundamental frequencies as

wa (λj) = (2πn)−1/2
n∑
t=1

ate
itλj , λj =

2πj
n
, j = 1, . . . , n, (2)

Ia (λj) = |wa (λj) |2.
1The two-step ELW estimator also assumes that the spectral density has no poles outside the

origin. This restriction excludes, for example, seasonal long memory.
2Section 7 of Shimotsu and Phillips (2006) discusses the difference between Type I and II processes

in more detail.
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Shimotsu and Phillips (2005) propose to estimate (d,G) by minimizing the objective
function

Qm (G, d) =
1
m

m∑
j=1

[
log
(
Gλ−2d

j

)
+

1
G
I∆dx (λj)

]
. (3)

Concentrating Qm(G, d) with respect to G, Shimotsu and Phillips (2005) define the
ELW estimator as

d̃ = arg min
d∈[∆1,∆2]

R (d) , (4)

where ∆1 and ∆2 are the lower and upper bounds of the admissible values of d and

R (d) = log Ĝ (d)− 2d
1
m

m∑
j=1

log λj , Ĝ (d) =
1
m

m∑
j=1

I∆dx (λj) .

In what follows, we distinguish the true value of d and G by d0 and G0. The ELW
estimator has been shown to be consistent and asymptotically normally distributed
for any d0 ∈ (∆1,∆2) if ∆2 −∆1 ≤ 9

2 and under fairly mild assumptions on m and
the stationary component ut:

Assumption 1 fu (λ) ∼ G0 ∈ (0,∞) as λ→ 0 + .

Assumption 2 In a neighborhood (0, δ) of the origin, fu(λ) is differentiable and
d
dλ log fu(λ) = O(λ−1) as λ→ 0 + .

Assumption 3 ut = C (L) εt =
∑∞

j=0 cjεt−j with
∑∞

j=0 c
2
j <∞, where E(εt|Ft−1) =

0, E(ε2
t |Ft−1) = 1 a.s., t = 0,±1,. . . , in which Ft is the σ-field generated by εs, s ≤ t,

and there exists a random variable ε such that Eε2 <∞ and for all η > 0 and some
K > 0, Pr(|εt| > η) ≤ K Pr(|ε| > η).

Assumption 4 m−1 +m(logm)1/2n−1 +m−γ log n→ 0 for any γ > 0.

Assumption 5 ∆2 −∆1 ≤ 9
2 .

See Shimotsu and Phillips (2005) for comparison of the above assumptions with
those in Robinson (1995b).

Lemma 1 (Shimotsu and Phillips 2005, Theorem 2.1). Suppose Xt is generated by
(1) with d0 ∈ [∆1,∆2] and Assumptions 1-5 hold. Then d̃→p d0 as n→∞.

Assumption 1′ Assumption 1 holds and also for some β ∈ (0, 2], fu (λ) = G0(1 +
O(λβ)), as λ→ 0+.

Assumption 2′ In a neighborhood (0, δ) of the origin, C(eiλ) is differentiable and
d
dλC(eiλ) = O(λ−1) as λ→ 0+.
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Assumption 3′ Assumption 3 holds and also E(ε3
t |Ft−1) = µ3, E(ε4

t |Ft−1) = µ4,
a.s., t = 0,±1, . . ., for finite constants µ3 and µ4.

Assumption 4′ As n → ∞, m−1 + m1+2β(logm)2n−2β + m−γ log n → 0 for any
γ > 0.

Assumption 5′ Assumption 5 holds.

Lemma 2 (Shimotsu and Phillips 2005, Theorem 2.2). Suppose Xt is generated by
(1) with d0 ∈ (∆1,∆2) and Assumptions 1′-5′ hold. Then m1/2(d̃ − d0) →d N(0, 1

4)
as n→∞.

3 ELW estimation with unknown mean

The asymptotic properties of the ELW estimator in Section 2 are derived under the
assumption that Xt is generated by (1). However, when a researcher models an
economic time series, typically its mean/initial condition is assumed to be unknown
and it is often accompanied by a linear time trend. In this section, we analyze the
effect of an unknown mean/initial condition on the ELW estimation.

We consider estimating d when the data Xt are generated by

Xt = µ0 +X0
t ; X0

t = (1− L)−d0 ut1 {t ≥ 1} , (5)

where µ0 is a non-random unknown finite number. Because Eut = 0, the initial
condition µ0 is also the mean of the process Xt in the sense EXt = µ0. Consider
estimating µ0 by µ̂. One candidate for µ̂ is the sample average X = n−1

∑n
t=1Xt.

For d0 > −1
2 , the error in estimating µ0 by X is

µ̂− µ0 = X − µ0 = n−1 (1− L)−d0−1 un1 {t ≥ 1} = Op(nd0−1/2). (6)

Because the magnitude of the error increases as d0 increases, the sample average is
not a good estimate of µ0 for large d0. As shown by Adenstedt (1974), for a stationary
process whose spectral density behaves like λ−2d around the origin that includes a
type-I I(d) process with d < 1

2 , the best linear unbiased estimator (BLUE) of the
mean is more efficient than the sample average.3 When d0 < −1

2 , the BLUE has a
variance that is O(n2d0−1). Samarov and Taqqu (1988) compares the variance of the
BLUE with that of the sample average.

Note that, when d0 ≥ 1
2 , the variance of X0

t tends to infinity as t → ∞, and the
magnitude of X0

t dominates that of µ0. Consequently, if d0 ≥ 1
2 , the signal on the

value of d from X0
t dominates the noise from µ0, and one can estimate d consistently

from Xt without correcting for µ0. In other words, there is no need to estimate µ0.
In a finite sample, however, it would be sensible to reduce the adverse effect of large

3We thank a referee for bringing this to our attention.
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µ0 (10,000, say) by using the first observation X1 as a proxy of µ0. This leads to
µ̂ = X1, whose error in estimating µ0 is4

µ̂− µ0 = X1 − µ0 = (1− L)−d0 u11 {t ≥ 1} = u1 = Op (1) . (7)

Therefore, X1 serves as another estimator of µ0 for large d0 and complements X.
We state the results formally. Estimate µ0 by µ̂, and define the resulting estimator

as
d̂ = arg min

d∈Θ
R�(d), (8)

where Θ is the space of the admissible values of d and

R�(d) = log Ĝ�(d)− 2d
1
m

m∑
j=1

log λj , Ĝ�(d) =
1
m

m∑
j=1

I∆d(x−bµ) (λj) ,

and I∆d(x−bµ)(λj) is the periodogram of ∆d(Xt − µ̂). Define vt = 1 {t ≥ 1}, then

w∆d(x−bµ)(λj) = w∆d(x−µ0)(λj) + (µ0 − µ̂)w∆dv(λj).

The asymptotics of the estimator depend on the relative magnitude of w∆d(x−µ0)(λj)
and (µ0− µ̂)w∆dv(λj). The ELW estimator with µ̂ = X is consistent for d0 ∈ (−1

2 , 1)
and asymptotically normally distributed for d0 ∈ (−1

2 ,
3
4), while the ELW estimator

with µ̂ = X1 is consistent and asymptotically normally distributed for d0 > 0. The
following theorems establish these results. Assumptions 6a and 6b nest Assumption
5.

Assumption 6a Θ = [∆1,∆2] with −1
2 < ∆1 < ∆2 < 1.

Theorem 1a. Suppose Xt is generated by (5) with d0 ∈ [∆1,∆2], Assumptions 1-4
and 6a hold, and µ̂ = X. Then d̂→p d0 as n→∞.

Theorem 1b. Suppose Xt is generated by (5) with d0 ∈ (∆1,∆2) and ∆2 ≤ 3
4 ,

Assumptions 1′-4′ and 6a hold, and µ̂ = X. Then m1/2(d̂ − d0) →d N(0, 1
4) as

n→∞.

Assumption 6b Θ = [∆1,∆2] with 0 < ∆1 < ∆2 <∞ and ∆2 −∆1 ≤ 9
2 .

Theorem 2a. Suppose Xt is generated by (5) with d0 ∈ [∆1,∆2], Assumptions 1-4
and 6b hold, n1−2d0m−1+η logm→ 0 for some η > 0, and µ̂ = X1. Then d̂→p d0 as
n→∞.

Theorem 2b. Suppose Xt is generated by (5) with d0 ∈ (∆1,min{∆2, 2}), Assump-
tions 1′-4′ and 6b hold, n1−2d0m−1/2 log n→ 0, and µ̂ = X1. Then m1/2(d̂− d0)→d

N(0, 1
4) as n→∞.

4Using an arbitrary random variable Z as bµ results in the same order of the error.
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Remark 1. We assume ∆1 > −1
2 in Theorems 1a and 1b, because the order of

X − µ0 is not given by (6) (indeed, it becomes Op(n−1 log n)) if d0 ≤ −1
2 . For

practical applications this assumption is innocuous because the ELW estimation does
not require prior differencing of the data and the cases with d0 < 0 do not occur in
practice. It may be possible to relax the restriction ∆1 > −0.5 if we use a BLUE in
place of the sample average. The resulting estimator may suffer from complications,
however, because the derivatives of the objective function involve the derivative of the
BLUE with respect to d.

Remark 2. For Theorems 2a and 2b, any Op(1) variable will work as an estimator
of µ0. We choose X1 in order to avoid (possibly) large error in estimating µ0 in
the worst case. As shown in (7), using X1 as µ̂ gives µ̂ − µ0 = u1, whose order of
magnitude will be smaller than that of Xn for moderately large n. On the other hand,
if we use a constant (or an Op(1) random variable) c as µ̂, then the error associated
with it is µ̂− µ0 = c− µ0, which may take a very large absolute value if c is chosen
inappropriately. Then, the magnitude of c − µ0 may become as large as that of Xn

for moderately large n, which has an adverse effect on the finite sample performance
of the estimator. Further, Xt −X1 is shift-invariant, which would be desirable from
an applied researcher’s point of view.5

Remark 3. Theorems 1a-2b hold even if µ0 is assumed to be an Op(1) random
variable. The irrelevance of the initial condition for large d0 can be highlighted through
the unit root model. Suppose the data generating process (dgp) is Xt = µ0 + X0

t ,
t = 1, . . . , n, with µ0 6= 0, (1 − ρL)X0

t = εt1{t ≥ 1}, and εt ∼ iidN(0, 1). Consider
estimating ρ by regressing Xt on Xt−1 without an intercept. When |ρ| < 1, the
estimator ρ̂ = (

∑n
t=2X

2
t−1)−1

∑n
t=2Xt−1Xt converges to [(1 − ρ2)−1 + µ2

0]−1[ρ(1 −
ρ2)−1 + µ2

0] 6= ρ and is not consistent for ρ. When ρ = 1, however, ρ̂ converges to 1
because Xt dominates X0 as t → ∞. In our context, when d0 ≥ 1

2 , the variance of
X0
t tends to infinity as t→∞, and X0

t dominates µ0.

Remark 4. The additional assumptions on m in Theorems 2a and 2b are automat-
ically satisfied when d0 ≥ 1

2 . When d0 ∈ (0, 1
2), these conditions require m to grow

fast, and they become stronger for smaller d0. This phenomenon occurs because, when
d0 ∈ [0, 1

2), both X0
t and µ̂−µ0 are Op(1), but the leakage from the dft of ∆d(µ̂−µ0)

has a nonnegligible effect to the behavior of the periodogram ordinates for extremely
small λj’s. Trimming the first ` = δm periodogram ordinates for arbitrary small
δ > 0 will relax the condition to n1−2d0m2d0−2 → 0 for consistency.

Shimotsu and Phillips (2006) report a similar phenomenon with untapered local
Whittle estimation; when the local Whittle estimator is applied to an I(d0) process
with d0 ∈ [−1,−1

2), the consistency of the estimator requires m to grow fast. They
report that Monte Carlo simulation bias can be as large as 0.25 when d0 = −1,
n = 200, and m = 10. The magnitude of the bias of the ELW estimator for d0 = 0 in
Table 1 is smaller, but the bias does manifest itself in some cases; for example, the
bias is 0.148 when d0 = 0, n = 4096, and m = 30.

5We thank a referee for bringing this to our attention.
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Remark 5. In the model (5), the process is initialized at t = 0, however alternate
initializations may be considered. Both versions of the ELW estimator are invariant
to the initial condition when it does not depend on t, because both demeaning and
subtracting X1 annihilate it. When the initial condition depends on t, it may affect
the asymptotics of the estimator. One example of such an initial condition is a
distant past initialization (see Phillips and Lee, 1996; Canjels and Watson, 1997)
that initializes the process at [κn] for a positive constant κ. This gives

Xt =
t+[nκ]∑
k=0

(d)k
k!

ut−k =
t∑

k=0

(d)k
k!

ut−k +
[κn]∑
k=t+1

(d)k
k!

ut−k = X0
t +Xκ

t .

When d ∈ (−1
2 ,

1
2), this initialization locates Xt between Type I and Type II processes.

Through an analogy with a Type I process discussed in section 4.3 below, we conjecture
that this initialization does not affect the asymptotic property of the ELW estimator,
but proving it rigorously is beyond the scope of this paper. When d ≥ 1/2, this type of
initialization will affect the asymptotics, because X0

t and Xκ
t have the same order of

magnitude. Phillips and Lee (1996) and Canjels and Watson (1997) derive its effect
on the asymptotics of various estimators in the context of unit root models.

Remark 6. Heuristically, the lack of consistency for d0 = 0 in Theorem 2a is ex-
plained as follows. When µ0 is estimated by X1, it follows from (7) that we estimate
d of the series X0

t − u1. We can then view u1 as a persistent Op(1) noise added to
X0
t , because it is common for all t. When d0 ∈ (0, 1

2), X0
t is Op(1), but is a per-

sistent process, and the estimator picks up the signal about d0 from X0
t correctly for

some choices of m. When d0 = 0, the persistence of u1 prevents the estimator from
detecting the signal about d0 from X0

t .

Remark 7. The semiparametric estimators that use the dft of the original (not frac-
tionally differenced) data are invariant to the initial condition, because the dft of a
constant term is zero at nonzero Fourier frequencies. Omitting a linear trend in a
stationary I(d) process affects these estimators, however, because periodograms are
not invariant to a linear trend. For example, Phillips and Shimotsu (2004) show the
inconsistency of the local Whittle estimator when the data has a linear time trend.

Intriguingly, when d0 ∈ [1
2 , 1), d̂ with µ̂ = X is still consistent, although X is not a

consistent estimate of µ0. Table 1 shows the finite sample performance of the above
two estimators. We generate the data according to (5) with ut ∼ iidN (0, 1) and
µ0 = 0. ∆1 and ∆2 are set to −1 and 3. Sample size and m are chosen to be n = 256
and m = n0.65 = 36, and 10,000 replications are used. The ELW estimator with
µ̂ = X becomes negatively biased for large d0, whereas the estimator with µ̂ = X1

appears to be inconsistent when d0 is negative. Consequently, the ELW estimator
can become inconsistent if the error in estimating X0 is not controlled properly.
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4 Two-step ELW estimation

4.1 Two-step ELW estimator

The results in Section 3 indicate that

1. X is an acceptable estimator of µ0 for small d0;

2. X1 is an acceptable estimator of µ0 for large d0;

3. for d0 ∈ [1
2 ,

3
4 ], both X and X1 are acceptable estimators of µ0.

Therefore, to estimate d when it has a wide range, we propose to estimate µ0

with the following linear combination of X and X1:

µ̃ (d) = w(d)X + (1− w(d))X1,

where w(d) is a twice continuously differentiable weight function such that w(d) = 1
for d ≤ 1

2 , and w(d) = 0 for d ≥ 3
4 . With this estimate of µ0, consider the following

modified ELW objective function:

RF (d) = log ĜF (d)− 2d
1
m

m∑
j=1

log λj , ĜF (d) =
1
m

m∑
j=1

I∆d(x−eµ(d)) (λj) , (9)

One may consider estimating d by minimizing this objective function. Analyzing the
resulting estimator encounters, however, the difficulty in proving its global consis-
tency, as discussed in Section 4.4. We apply two-step estimation to circumvent this
difficulty.6

Two-step estimation has a long history, dating back to the work by Fisher (1925).
It has been analyzed by many authors, including LeCam (1956), Pfanzagl (1974),
Janssen et al. (1985), and Robinson (1988). In the context of long-memory processes,
Lobato (1999) and Lobato and Velasco (2000) use the two-step estimation method
to simplify inference and avoid the problems associated with proving the consistency
of the considered estimators for certain values of d.

Two-step estimation requires a
√
m-consistent first step estimator. We propose

to use the tapered local Whittle estimators of Velasco (1999) and Hurvich and Chen
(2000) in the first stage. The asymptotic theory of these estimators are derived under
Type I long-range dependent processes that are defined as an infinite order moving
average of short-memory innovations for d ∈ [−1

2 ,
1
2) and as its partial sums for larger

values of d. In Propositions B.1 and B.2 in Appendix B, we extend their theory to
the case where Xt is generated by (11) (Type II processes) using the results in Robin-
son (2005). This result may be of interest itself, since the asymptotic properties of
these estimators have not been studied under Type II processes. Phillips and Shi-
motsu (2004) and Shimotsu and Phillips (2006) analyze the untapered local Whittle
estimator under Type II processes.

In order to analyze the tapered estimators under Type II processes, we need to
impose an additional assumption on fu(λ).

6The idea of two-step estimation was originally suggested by an anonymous reader of Shimotsu
and Phillips (2005), albeit in a different context.
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Assumption 7′ fu(λ) is bounded for λ ∈ [0, π].

Assumption 7′ is used in Robinson (2005), who derives the stochastic order of the
difference of the tapered dfts of Type I and Type II processes. Not allowing fu(λ)
to have poles outside the origin certainly restricts the class of the spectral density.
However, it imposes no additional restrictions with respect to the smoothness of fu(λ)
beyond Assumptions 1′-5′. Propositions B.1 and B.2 in Appendix B show that the
tapered estimators are asymptotically normally distributed and

√
m-consistent.

With the
√
m-consistency of the tapered estimators in hand, we are now ready to

derive the limiting distribution of the two-step estimator. We focus on the tapered
estimator by Velasco (1999) with a third order taper as the first stage estimator
because it allows for d0 ∈ (−1

2 ,
5
2), is invariant to a linear and quadratic time trend,

and requires a weaker assumption on fu(λ) than Hurvich and Chen (2000). Let d̂T
denote this first stage estimator, and define the two-step ELW estimator, d̂2ELW , as

d̂2ELW = d̂T −R′F (d̂T )/R′′F (d̂T ), (10)

where RF (d) is the modified objective function defined in (9). Iterating the above
procedure and updating the estimator by d̂(2)

2ELW = d̂2ELW−R′F (d̂2ELW )/R′′F (d̂2ELW )
and similarly for d̂(3)

2ELW does not change the asymptotic distribution of the estima-
tor, but we find that iterating procedure can substantially improve its finite sample
properties.

Theorem 3. Suppose Xt is generated by (5) with d0 ∈ (∆1,∆2) and −1
2 < ∆1 <

∆2 < 2, and Assumptions 1′-5′ and 7′ hold. Then m1/2(d̂2ELW − d0)→d N(0, 1
4) as

n→∞.

Theorem 3 holds if the Hessian is replaced with 4 because R′′F (d̂T ) →p 4. In
the simulations reported below, we replaced R′′F (d̂T ) with max{R′′F (d̂T ), 2} and found
that it improves the finite sample performance of the estimator. The lower bound on
R′′F (d̂T ) prevents the occurrence of extremely large values of d̂2ELW .

One can also determine the range of d in the first step using a tapered estimator,
and then apply the non-tapered estimator to properly differenced data. This pre-test
approach is a viable option, but its practical applicability depends on the significance
level at which one can reject d < 1

2 (or d > 1
2) in the first step. The two important

factors in determining significance are the sample size, and the distance between 1
2

and d of the data. With economic data, a priori, it is unclear whether these factors
work favorably.

It might be possible to remove the restriction d 6= 1
2 ,

3
2 , . . . of the FELW estimator

by applying a similar strategy. For example, one may consider the following FELW
counterpart of our approach: use (i) the ordinary dft when d ≤ 1/2, (ii) the extended
dft when d ≥ 3/4, and (iii) their linear combination when d ∈ [1/2, 3/4]. It is not
clear, however, what the asymptotic distribution of the resulting estimator would be.
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4.2 Two-step ELW estimation with unknown mean and time trend

In this subsection, we extend the two-step ELW estimation to cases where the data
have a polynomial time trend, as well as an unknown mean:

Xt = µ0 + β10t+ β20t
2 + · · ·+ βk0t

k +X0
t ; X0

t = (1− L)−d0 ut1 {t ≥ 1} . (11)

We propose to estimate d by regressing Xt on (1, t, · · · , tk), and then applying the
two-step estimation to the residuals X̂t. As shown in the proof of Theorem 4, the
residuals can be expressed as

X̂t = X0
t + Ξ0n(d0) + Ξ1n(d0)t+ · · ·+ Ξkn(d0)tk,

where Ξkn(d0) are random variables. Because
∑n

t=1 X̂t = 0 by construction, the
estimate of µ0 from the residuals takes the form

ϕ(d) = (1− w(d))X̂1.

The following theorem establishes the asymptotics. Note that asymptotic normality
now requires d0 to be smaller than 7

4 , because the order of magnitude of the initial
condition of X̂t, Ξ0n(d0), depends on d0. Ξ1n(d0)t, . . . ,Ξkn(d0)tk have the same order
of magnitude as Ξ0n(d0).

Theorem 4. Suppose Xt is generated by (11) with d0 ∈ (∆1,∆2) and −1
2 < ∆1 <

∆2 ≤ 7
4 , Assumptions 1′-5′ and 7′ hold, and X̂t − ϕ(d) is used in place of Xt − µ̃(d)

in defining RF (d) in (9). Then m1/2(d̂2ELW − d0)→d N(0, 1
4) as n→∞.

A simulation result (available upon request) indicates that the two-step ELW
estimator loses its consistency if one underspecifies the order of the polynomial k.
Overspecifying the order of the polynomial does not change the asymptotic properties
of the estimator but increases its finite sample MSEs.

4.3 Two-step ELW estimation under Type I processes

In this subsection, we discuss the effect of the specification of I(d) processes on the
asymptotics of the ELW estimators. Suppose Yt is generated by a Type I I(d0)
process plus an initial condition:

Yt = Y 0
t + µ0, Y 0

t = (1− L)−sU (s)
t 1{t ≥ 1}, U

(s)
t = (1− L)−d0+sut,

where ut satisfies Assumptions 1′-3′, d0 > −1
2 , and s = [d0 + 1

2 ].
Consider the case where µ0 = 0 first. We conjecture that the 2-step ELW esti-

mator has the same asymptotic properties under Type I processes, albeit a rigorous
proof is beyond the scope of this paper. First, it is known that Type I and Type
II processes with |d| < 1

2 are asymptotically equivalent (Marinucci and Robinson,
1999) and that the effect of their difference in their initialization becomes negligible
as t→∞. Second, the untapered LW estimator has N(0, 1

4) asymptotic distribution
both under Type I (Robinson, 1995b) and Type II (Shimotsu and Phillips, 2006)
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processes. Therefore, we conjecture that the asymptotic equivalence between these
processes will also apply to the asymptotic distribution of the semiparametric esti-
mators.

Note that the ELW estimator uses the periodograms of the dth difference of the
data with truncation at t = 0. In the following, we show the dth difference of Type
I and Type II I(d0) processes truncated at t = 0 are asymptotically equivalent for
d ∈ [d0 − ε, d0 + ε] and small ε > 0. It suffices to consider this range of d because
we use a two-step method. For illustration, focus on the case when d0 ∈ (−1

2 ,
1
2) and

Yt = (1− L)−d0ut. Taking the dth difference of Yt with truncation gives

(1− L)dYt1{t ≥ 1} =
t−1∑
k=0

(−d)k
k!

Yt−k =
∞∑
k=0

(−d)k
k!

Yt−k −
∞∑
k=t

(−d)k
k!

Yt−k. (12)

The first term on the right is (1− L)d(1− L)−d0ut = (1− L)d−d0ut, which is a Type
I I(d0− d) process and asymptotically equivalent to a Type II I(d0− d) process. For
the second term, let γk denote the kth autocovariance of Yt and assume it satisfies
γk = O(k2d0−1) for d0 6= 0 and

∑∞
−∞ |γk| < ∞ for d0 = 0. Then, a tedious but

routine calculation gives

E

[ ∞∑
k=t

(−d)k
k!

Yt−k

]2

= O

( ∞∑
k=t

k−d−1
∞∑
l=t

l−d−1|γl−k|

)
= O

(
t−2d−1 + t2d0−2d−1

)
.

Since d0 ∈ (−1
2 ,

1
2) and |d − d0| ≤ ε, this is o(1) as t → ∞, and the asymptotic

equivalence of the two dth differenced processes follows.
When µ0 6= 0, the two-step ELW estimation estimates µ0 by a linear combination

of the sample average and the first observation. Using Type I specification does not
affect the asymptotic behavior of the two-step ELW estimator, because Type I and
Type II processes have the same stochastic order, and the basic intuition used in
Type II specification carries through. Specifically, if we estimate µ0 by the sample
average of Yt, then the estimation error is n−1

∑n
t=1 Y

0
t , which is n−1 times a Type I

I(d0 + 1) process and is Op(nd0−1/2) under weak regularity conditions; see Marinucci
and Robinson (1999) and the references therein. Therefore, the order of the error is
the same as in (6). If we estimate µ0 by Y1, then Y1−µ0 = Y 0

1 = U
(s)
1 = Op(1), and the

order of the error is the same as in (7). Similarly, the effect of detrending polynomial
trends is the same, because the partial sums of Type I and Type II processes have
the same stochastic order.

4.4 Feasible ELW estimator

We may consider estimating d by directly minimizing the objective function of the
two-step ELW estimator. Define the resulting feasible ELW estimator as

d̂F = arg min
d∈Θ

RF (d), (13)

where Θ is the space of the admissible values of d. This estimator is consistent and
asymptotic normal for d0 > −1

2 , although we need to exclude a small interval around
0 and 1.
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Assumption 6c For arbitrary small ν > 0, Θ = [∆1,∆2]\ ((−ν, ν) ∪ (1− ν, 1 + ν))
with −1

2 < ∆1 < ∆2 < 2.

Theorem 5a. Suppose Xt is generated by (5) with d0 ∈ Θ and Assumptions 1-5 and
6c hold. Then d̂F →p d0 as n→∞.

Theorem 5b. Suppose Xt is generated by (5) with d0 ∈Int(Θ) and Assumptions
1′-5′ and 6c hold. Then m1/2(d̂F − d0)→d N(0, 1

4) as n→∞.

The exclusion of (−ν, ν) ∪ (1 − ν, 1 + ν) is necessary because of the difficulty in
proving the global consistency of the estimator. The consistency is proven by showing
RF (d)−RF (d0) is uniformly bounded away from 0 when d 6= d0. When d is close to
d0, RF (d)−RF (d0) converges to a non-random function whose minimum is achieved
at d0. When d is not close to d0, in particular when |d − d0| ≥ 1

2 , RF (d) − RF (d0)
does not converge to a non-random function, and we need an alternate way to bound
it away from zero.7 One of the necessary steps in proving the lower bound is to show,
for some ζ > 0,

m−1∑m
j=[κm] |Aj −Bj |2 ≥ ζ{m−1

∑m
j=[κm](|Aj |2 + |Bj |2)}, (14)

where κ is a fixed number between 0 and 1, Aj is a function of ∆dX0
t , and Bj is a

function of w∆dv(λj). Their explicit formula is given by (49). Note that (14) does
not hold if Aj = Bj 6= 0. For (14) to hold, Aj and/or Bj must vary sufficiently as
j changes, so that Aj − Bj is bounded away from 0 for sufficiently many j′s. When
d is close to 0, the two leading terms of w∆dv(λj), (1 − eiλj )d and −n−d/Γ(1 − d)
(see Lemma B.2 (a)), are both close to 1, which makes it very hard to establish that
w∆dv(λj) has sufficient variation. A similar difficulty arises when d is close to 1.
Shimotsu and Phillips (2005) also needed to use a non-standard approach to show
infdR(d)−R(d0) > 0 for |d− d0| ≥ 1

2 but were able to show it for 1
2 ≤ |d− d0| ≤ 9

2 .
In a way, the presence of w∆dv(λj) aggravates the difficulty in showing the global
consistency in Shimotsu and Phillips (2005). Note that Theorems 1 and 2 do not
suffer the same problem as Theorem 5. This is because the error in estimating µ0

is small and dominated by X0
t for the combinations of d and d0 considered in the

previous theorems, which makes showing (14) less difficult.

5 Simulations and an empirical application

This section reports some simulation results. Xt is generated by (5) with µ0 = 0. ∆1

and ∆2 are set to −1 and 3. The form of the weight function w(d) for d ∈ [1
2 ,

3
4 ] is

chosen to be (1/2)[1 + cos(4πd)]. We use 10,000 replications. In two-step estimation,
analytic derivatives are used to compute R′F (d) and R′′F (d). The terms involving
∂µ̃(d)/∂d are omitted from the derivatives, because they are negligible in the limit.
The procedure (10) is iterated (with updating) 10 times.

7In the proof of Theorem 3a, we use the fact d /∈ (−ν, ν)∪ (1− ν, 1 + ν) in showing the necessary
results for Θa

1 , even though |θ| may be smaller than 1
2

in Θa
1 . We can prove the necessary results for

Θa
1 without using d /∈ (−ν, ν) ∪ (1− ν, 1 + ν), although the derivation is more tedious.
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We compare the two-step ELW estimator with the tapered estimator by Hurvich
and Chen (2000), which has the smallest limiting variance (1.5/(4m) for d ∈ (−1

2 ,
3
2))

among the tapered estimators. We focus on d ∈ (−1
2 ,

3
2) in most of our simulations,

because this is the range of d that is relevant for many economic applications.
Table 2 compares two-step estimator with the tapered estimator for value of

d ∈ (−1
2 ,

3
2) and with varying short-run dynamics of ut. The sample size and m are

chosen to be n = 512 and m = n0.65 = 57, and ut is modeled as an AR(1) with the
parameter ρ. This table corresponds to Table 1 of Hurvich and Chen (2000). The
bias of the two estimators is very similar and not affected by the changes in d for a
given value of ρ. For a given value of d, the bias of both estimators increases as ρ
increases. The variance of the two-step estimator is smaller than that of the tapered
estimator for any parameter combination, corroborating the theoretical result.

Tables 3 and 4 compare the ELW estimator, two-step ELW estimator with and
without linear detrending, and the tapered estimator.8 The estimation of the mean
has little negative effect on the bias and standard deviation of the ELW estimator.
Also, the MSE of the ELW estimator and the two-step estimator are virtually the
same for n = 512. If the data are detrended prior to estimation, the two-step esti-
mator suffers from a mild increase in standard deviation and a small negative bias
for d = 0.0 ∼ 0.8. Overall, the finite sample performance of the two-step estimator
is very close to that of the ELW estimator except for a few cases. On the other
hand, the tapered estimator has substantially larger standard deviations and MSE
compared with the ELW estimator for all values of d.

As explained after Theorem 3, the simulations in Tables 1-4 are conducted using
max{R′′F (d), 2} instead of R′′F (d) to avoid the undesirable effects of very small values
of R′′F (d), which result in extremely large values of the updated d. Table 5 compares
the two-step estimator with four different choices of the denominator in the updat-
ing formula (10): R′′F (d), max{R′′F (d), 2}, max{R′′F (d), 3}, and 4.9 The results for
max{R′′F (d), 2}, max{R′′F (d), 3}, and 4 are almost identical for all n. When n = 128,
using R′′F (d) suffers from a relatively larger standard deviation and MSE than the
other variants. When n = 512, the performance of the four versions are identical.

Table 6 reports the simulation results for the fully-extended ELW estimator of
Abadir et al. (2007), with and without detrending to compare it with the two-step
estimator. The first panel of Table 6 uses the same dgp as Table 3, and the second
panel of Table 6 uses the same dgp as Table 4. Comparing Table 6 with Tables 3
and 4, it can be seen that detrending increases the MSE of both the two-step and
fully-extended estimator by an increase in their variance. The MSE of the two-step
and fully-extended estimator is similar, with neither dominates the other.

Table 7 shows the performance of the ELW estimator and the two-step ELW
estimator under Type I processes with n = 128 and 512 to examine the conjecture

8For the tapered estimator, the results for d = 1.6 is only for reference, because the tapered
estimator with taper of order 1 is asymptotically normal only for d < 2

3
.

9When n = 128, iterating the procedure (10) with R′′F (d) failed to work in a small number of
(less than 0.3%) simulation draws. These instances arose when the updated d took extreme large
values (> 500), resulting in numerical error in the evaluation of R′′F (d). The statistics are computed
excluding such trials.
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in Section 4.2. When n = 128, the variance of both estimators appears to be slightly
larger than their variance under Type II processes reported in Table 3. The results
with n = 512 are very similar to the corresponding ones in Tables 4.

As an empirical illustration, the two-step ELW estimator with detrending was
applied to the historical economic times series considered in Nelson and Plosser (1982)
and extended by Schotman and van Dijk (1991). For comparison, we also estimate
d by first taking the difference of the data, estimating d − 1 by the local Whittle
estimator, and adding unity to the estimate d̂− 1. This procedure is invariant to the
linear trend. For the two-step ELW estimates, 95% asymptotic confidence intervals
are constructed by adding and subtracting 1.96 × 1/

√
4m to the estimates. Table

8 shows the results based on m = n0.7. The two estimates are fairly close to each
other. For real measures such as real GNP, real per capita GNP, and employment,
the estimates are close to 1. For price variables such as the GNP deflator, CPI, and
nominal wage, the estimates are substantially larger than 1. This confirms previous
empirical results (Hassler and Wolters, 1995) that inflations are I(d) with d ∈ (0, 1).
Interestingly, the null of trend stationarity H0 : d = 0 is accepted in none of the
series. Crato and Rothman (1994) obtained a similar result using the ARFIMA
model, therefore it appears that the case for trend stationarity is weaker than has
been suggested from the KPSS test by Kwiatkowski et al. (1992).

Appendix A: proofs

In this and the following section, x∗ denotes the complex conjugate of x. C and ε de-
note generic constants such that C ∈ (1,∞) and ε ∈ (0, 1) unless specified otherwise,
and they may take different values in different places. ξn denotes a generic random
variable that does not depend on j, and satisfies E|ξn|2 < ∞. Henceforth, let I∆xj

denote I∆x(λj), wuj denote wu(λj), and similarly for other dft’s and periodograms.

A.1 Proof of Theorem 1a

Assume µ0 = 0 without loss of generality. We follow the approach developed by
Shimotsu and Phillips (2005), hereafter simply SP. Define S�(d) = R�(d) − R�(d0).
For arbitrary small 0 < ∆ < 1

8 , define Θ1 = {d0 − 1
2 + ∆ ≤ d ≤ d0 + 1

2} and
Θ2 = {d ∈ [∆1, d0 − 1

2 + ∆] ∪ [d0 + 1
2 ,∆2]}, Θ2 being possibly empty. For 1

2 > ρ > 0,
define Nρ = {d : |d− d0| < ρ}. From SP pages 1900-01, we have

Pr
(
|d̂− d0| ≥ ρ

)
≤ Pr

(
inf

d∈Θ1\Nρ
S�(d) ≤ 0

)
+ Pr

(
inf
Θ2

S�(d) ≤ 0
)
. (15)

As in SP (page 1902, between equations (13) and (14)), define θ = d− d0 and

Yt(θ) = (1− L)dXt = (1− L)d−d0(1− L)d0Xt = (1− L)θut1{t ≥ 1}.

Note that R�(d) is constructed by replacing I∆dxj in the objective function of SP,
R(d), with I∆d(x−bµ)j . Since w∆d(x−bµ)j = w∆dxj−µ̂w∆dvj = wyj−µ̂w∆dvj , the theorem
is proven by replacing wyj in SP with wyj − µ̂w∆dvj and showing the results in SP
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carry through. We only state the main steps and refer the readers to SP for further
details.

As in equation (15) of SP, define A(d) = (2(d−d0)+1)m−1
∑m

j=1(j/m)2θ[λ−2θ
j Iyj−

G0]. In order to show the first probability on the right of (15) tends to 0, we need
to replace Iyj in A(d) with |wyj − µ̂w∆dvj |2 and show supΘ1

|A(d)| → 0 still holds.
Because

Iyj − |wyj − µ̂w∆dvj |2 = 2µ̂Re
[
wyjw

∗
∆dvj

]
− µ̂2I∆dvj , (16)

it suffices to show, for any finite k,

sup
θ∈Θ1

∣∣∣∣∣∣µ̂ 1
m

m∑
j=1

(
j

m

)2θ

λ−2θ
j wyjw

∗
∆dvj

∣∣∣∣∣∣ = op((log n)−k), (17)

sup
θ∈Θ1

∣∣∣∣∣∣µ̂2 1
m

m∑
j=1

(
j

m

)2θ

λ−2θ
j I∆dvj

∣∣∣∣∣∣ = op((log n)−k). (18)

We proceed to derive the order of µ̂w∆dvj and show (17) and (18). Since w∆dvj =
O(jd−1n1/2−d) for d ≥ 0 and O(j−1n1/2−d) for d ≤ 0 from Lemma B.2, we obtain

λ−θj w∆dvj =
{
O
(
n1/2−d0jd0−1

)
, d ∈ [0,∆2] ,

O
(
n1/2−d0j−θ−1

)
, d ∈ [−1 + ε, 0] ,

(19)

uniformly in d and j = 1, . . . ,m. Observe that µ̂ = n−1
∑n

t=1Xt = n−1 (1− L)−d0−1 ut1{t ≥
1} with d0 > −1

2 . We can show E[(1−L)−d0−1ut1{t ≥ 1}]2 = O(n2d0+1) easily from
Lemma A.5 (a2) of Phillips and Shimotsu (2004), and it follows that Eµ̂2 = O(n2d0−1)
and

µ̂ · λ−θj w∆dvj =
{
ξn ·O

(
jd0−1

)
, d ≥ 0,

ξn ·O
(
j−θ−1

)
, d ≤ 0,

(20)

where O(·) terms are uniform in d and in j = 1, . . . ,m. We also have, uniformly in
α ∈ [−C,C], (note that Θ1 = {−1

2 + ∆ ≤ θ ≤ 1
2})

sup
θ∈Θ1

∣∣∣∣∣∣ 1
m

m∑
j=1

(
j

m

)2θ

jα

∣∣∣∣∣∣ ≤ mα 1
m

m∑
j=1

(
j

m

)2∆−1+α

= O(mα logm+m−2∆ logm),

(21)
where the order of magnitude follows from considering the cases where 2∆−1+α ≥ −1
and 2∆ − 1 + α ≤ −1 separately. Therefore, (18) follows from (20), (21), and the
fact that d0 < 1 and |θ| ≤ 1

2 in Θ1. For (17), its left hand side is bounded by
(supθ∈Θ1

m−1
∑m

j=1(j/m)2θλ−2θ
j Iyj)1/2×(supθ∈Θ1

µ̂2m−1
∑m

j=1(j/m)2θλ−2θ
j I∆dvj)1/2.

The first term is Op(1) uniformly in θ ∈ Θ1 because supΘ1
|A(d)| = op(1) and

supΘ1
|(2θ + 1)m−1

∑m
j=1(j/m)2θ − 1| = o(1) as shown in SP page 1903. Hence

(17) follows from (18).
We now show that the second probability on the right of (15) tends to 0. As in SP,

let κ ∈ (0, 1) and let
∑′ denote the sum over j = [κm], . . . ,m. From the argument
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on pages 1904–05 of SP that leads to their equation (23), the second probability on
the right of (15) tends to zero if there exists δ > 0 such that

Pr
(

infΘ2

(
m−1∑′(j/p)2θ

(
λ−2θ
j |wyj − µ̂w∆dvj |2 −G0

))
≤ −3δG0

)
→ 0, (22)

where p = exp(m−1
∑m

j=1 log j) ∼ m/e as m→∞.
We show (22) for subsets of Θ2. Define η = 1 − d0 > 0 and split Θ2 into two,

Θa
2 = {θ ≥ −1 + η/2}∩Θ2 and Θb

2 = {θ ≤ −1 + η/2}∩Θ2. First, SP show (equation
(23) on page 1905) that (22) holds if |wyj − µ̂w∆dvj |2 is replaced by Iy(λj). Second,
if θ ∈ Θa

2 or d > 0, we have

supΘ2

∣∣∣µ̂m−1∑′(j/p)2θλ−2θ
j wyjw

∗
∆dvj

∣∣∣+ supΘ2

∣∣∣µ̂2m−1∑′(j/p)2θλ−2θ
j I∆dvj

∣∣∣ = op(1),

from using the bound in (20) with d0 ≤ 1− η and −θ− 1 ≤ −η/2 and proceeding as
in the proof of (17) and (18) with Lemma 5.4 of SP. Thus, (22) holds for θ ∈ Θa

2 or
d > 0.

If θ ∈ Θb
2 and d < 0, we cannot use (20) because −θ−1 may take a positive value

and its left hand side is not op(1). Note that |θ| = |d−d0| ≤ 3
2 because d, d0 ∈ (−1

2 , 1).
Define Θ3

2 = {−3
2 ≤ θ ≤ −1

2} as in SP page 1909, then Θb
2 is a subset of Θ3

2. We
show the required result by replacing λ−θj wyj in the corresponding proof for Θ3

2 in SP
(equation (45) on page 1909) with λ−θj wyj − λ−θj µ̂w∆dvj and showing their argument
carries through. Replacing λ−θj (2πn)−1/2eiλj (1− eiλj )−1Yn(θ) on the right of (45) of
SP with

λ−θj (2πn)−1/2eiλj (1− eiλj )−1Yn(θ)− λ−θj µ̂w∆dvj , (23)

we find that (47) in SP needs to be replaced with

m−1∑′(j/p)2θλ−2θ
j | (2πn)−1/2 eiλj (1− eiλj )−1Yn(θ)− µ̂w∆dvj |2, (24)

and their equations (49) and (50) have additional terms

+2Re[m−1∑′(j/p)2θUnj(θ)λ−θj µ̂w∆dvj ], (25)

−2Re[m−1∑′(j/p)2θDnj(θ)∗w∗ujλ
−θ
j µ̂w∆dvj ], (26)

where Dnj(θ) and Unj(θ) are defined on page 1909 of SP. Then, in view of the bounds
of (48)-(50) in SP provided in page 1910 of SP, (22) holds by Lemma B.1 if

(24) ≥ ζm−2θ−2n2θ+1Yn(θ)2 + ζn1−2d+2θm−2−2θµ̂2, (27)

for some ζ > 0 and

(25) + (26) = n1/2−d+θm−1−θµ̂ ·Op(m−η/2 log n+mn−1). (28)

Loosely speaking, if (27) and (28) hold, then (25) and (26) are dominated by (24).
It remains to show (27) and (28). Note that d ≤ −ν. For (27), applying Lemma B.3
(b) with Q2 = Yn(θ), Q1 = 0, and Q0 = −µ̂ gives

(24) = p−2θ(2π)−2θn2θm−1∑′ | (2πn)−1/2 eiλj (1− eiλj )−1Yn(θ)− µ̂w∆dvj |2

≥ ζm−2θn2θ[nm−2Yn(θ)2 + n1−2dm−2µ̂2],
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giving (27). (28) follows from applying Lemma B.4 with α = d to (25) and (26),
because Unj(θ) and Dnj (θ) satisfy the assumptions of Lemma B.4 from equation
(39) and (31) of SP, respectively. Thus (22) holds, and we complete the proof. �

A.2 Proof of Theorem 1b

Assume µ0 = 0 without loss of generality. Theorem 1a holds under the current
conditions and implies that with probability approaching 1, as n→∞, d̂ satisfies

0 = R�′(d̂) = R�′(d0) +R�′′(d)(d̂− d0), (29)

where |d − d0| ≤ |d̂ − d0|. Again the theorem is proven by replacing wyj in SP
with wyj − µ̂w∆dvj and showing the results in SP carry through. Fix ρ > 0 and
let M = {d : (log n)4|d − d0| < ρ}. Note that supΘ1

|A(d)| = op((log n)−10) still
holds even if we replace Iy(λj) in A(d) with |wyj − µ̂w∆dvj |2, because the order of
the additional terms shown in (17) and (18) are smaller than (log n)−10. Therefore,
Pr(d /∈M) tends to zero in view of equation (55) of SP and the argument surrounding
it. Thus we assume d ∈M in the following.

First we show R�′′(d) →p 4. Define Ĝ(d) = m−1
∑m

j=1 I∆dxj = m−1
∑m

j=1 Iyj as
in SP, and define

an(d) =
1
m

m∑
j=1

{
−2µ̂Re

[
wyjw

∗
∆dvj

]
+ µ̂2I∆dvj

}
, (30)

so that G�(d) = Ĝ(d) + an(d). Then G̃0(d), G̃1(d) and G̃2(d) defined in page 1913 of
SP have additional terms (2π/n)−2θan (d) , (2π/n)−2θ∂an(d)/∂d, and (2π/n)−2θ∂2an(d)/∂d2,
respectively. In view of the results in SP pages 1915–16 leading to their equation (60),
R�(d)′′ →p 4 holds if we show these three terms are all op((log n)−2) uniformly in
d ∈ M . First, supM |(2π/n)−2θan(d)| = op((log n)−10) follows from (17), (18), and
supθ∈M m2|θ| <∞. For (2π/n)−2θ ∂an(d)/∂d, note that

∂

∂d
an(d) =

1
m

m∑
j=1

{
−2µ̂

∂

∂d
Re
[
wyjw

∗
∆dvj

]
+ µ̂2 ∂

∂d
I∆dvj

}
. (31)

From Lemma B.2 (a) and (b), the order of ∂w∆dvj/∂d = −wlog(1−L)∆dvj is no larger
than log n times the order of w∆dvj . Furthermore, from Lemma 5.9 (a) of SP, the
order of ∂wyj/∂d is no larger than (log n)2 times the order of wyj . Therefore, the
order of (2π/n)−2θ∂an(d)/∂d is no larger than (log n)2 times that of (2π/n)−2θ an(d).
Similarly, the order of (2π/n)−2θ ∂2an(d)/∂d2 is no larger than (log n)4 times that
of (2π/n)−2θan(d) in view of Lemma 5.9 (c) of SP and Lemma B.2 (c). Therefore,
the three additional terms are all op((log n)−2) uniformly in d ∈M , and we establish
R�′′(d)→p 4.

The proof is completed by showing m1/2R�′ (d0) →d N(0, 4). Since G� (d) =
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Ĝ (d) + an(d), we have

m1/2R�′ (d0) = m1/2

 ∂G�(d)/∂d|d0
G� (d0)

− 2
1
m

m∑
j=1

log λj

 ,
= m1/2

 ∂G(d)/∂d|d0 + ∂an(d)/∂d|d0
Ĝ(d0) + an(d0)

− 2
1
m

m∑
j=1

log λj

 .
Because SP shows Ĝ(d0)→p G0, m1/2{∂G(d)/∂d|d0/Ĝ(d0)− 2m−1

∑m
j=1 log λj} →d

N(0, 4), and m−1
∑m

j=1 log λj = O(log n), the required result follows if

an(d0) = op(m−1/2(log n)−1), ∂an(d)/∂d|d0 = op(m−1/2). (32)

Note that an(d0) = m−1
∑m

j=1{−2µ̂Re[wujw∗∆d0vj
] + µ̂2I∆d0vj}, and from (20) we can

write
µ̂ · w∆d0vj = ξn ·O(j−α), (33)

with α > 1
4 . Using (33) and wuj = C(eiλj )wεj + rnj with E|rnj |2 = O(j−1 log n)

uniformly in j = 1, . . . ,m (Robinson, 1995b), we have

∣∣∣∣an(d0)
2

∣∣∣∣ ≤
∣∣∣∣∣∣µ̂ 1
m

m∑
j=1

C(eiλj )wεjw∗∆d0vj

∣∣∣∣∣∣+

∣∣∣∣∣∣µ̂ 1
m

m∑
j=1

rnjw
∗
∆d0vj

∣∣∣∣∣∣+ µ̂2 1
m

m∑
j=1

I∆d0vj

= Op


 1
m2

m∑
j=1

j−2α

1/2

+
1
m

m∑
j=1

j−α−1/2 log n+
1
m

m∑
j=1

j−2α


= Op((m−α−1/2 +m−2α +m−1) logm log n) = op(m−1/2(log n)−1),

where the last line follows from α > 1
4 . For ∂an(d)/∂d|d0 , we have

∂

∂d
an(d)

∣∣∣∣
d0

= 2µ̂
1
m

m∑
j=1

Re
[
wlog(1−L)ujw

∗
∆d0vj

]
+2µ̂

1
m

m∑
j=1

Re
[
wujw

∗
log(1−L)∆d0vj

]
+ µ̂2 1

m

m∑
j=1

∂

∂d
I∆dvj

∣∣∣∣
d0

.

It follows easily from Lemma B.2 that the order of w∗
log(1−L)∆d0vj

and ∂I∆dvj/∂d|d0
are log n times the order of w∗

∆d0vj
and I∆d0vj , respectively. Therefore, the second

and third terms on the right are op(m−1/2) in view of the order of an(d0). For the first
term on the right, SP Lemma 5.9 (a) shows that wlog(1−L)uj = −J(eiλj )wuj + Rnj
with J(eiλj ) = O(log n) and E|Rnj |2 = O(j−1(log n)4) uniformly in j = 1, . . . ,m.
Therefore, it follows from a similar argument as above that the first term on the
right is op(m−1/2), thus ∂an(d)/∂d|d0 = op(m−1/2) and we complete the proof. �
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A.3 Proof of Theorems 2a and 2b

From (19) and the fact that d ≥ 0, we have λ−θj w∆dvj = O(n1/2−d0jd0−1). Combining
it with Eµ̂2 = E |u1|2 <∞, we have, in place of (20),

µ̂ · λ−θj w∆dvj = ξn ·O(n1/2−d0jd0−1), (34)

uniformly in d. If d0 ≥ 1
2 , then µ̂λ−θj w∆dvj = ξn ·O((j/n)d0−1/2j−1/2) = ξn ·O(j−1/2),

whose order is no larger than that of λ−θj (2πn)−1/2 Ũλjn (θ) in equation between (20)
and (21) of SP and that of Unj(θ) in (30) and (39) of SP. Therefore, if we replace wyj
in SP with wyj − µ̂λw∆dvj , the proof of the consistency of SP carries through. For
the asymptotic normality for d0 ≥ 1

2 , we can use the proof of Theorem 1b without
changes, because O(j−1/2) is no larger than the maximum of the right hand side of
(20).

To show the consistency for d0 ∈ (0, 1
2), we need to modify the proof of Theorem

1a. Split Θ1 into two, Θa
1 = Θ1 ∩ {d : |θ| ≤ η} and Θb

1 = Θ1\Θa
1, where η is the

constant specified in the statement of the theorem. Then the consistency of d̂ follows
if we show

Pr
(
infΘa1

S�(d) ≤ 0
)

+ Pr
(

infΘb1∪Θ2
S�(d) ≤ 0

)
→ 0, as n→∞. (35)

For the set Θa
1, we can strengthen the bound in (21) to

supθ∈Θa1
|m−1∑m

j=1(j/m)2θjα| = O(mα logm+m−1+2η logm), (36)

uniformly in α ∈ [−C,C]. Then, it follows from (34), (36) and d0 <
1
2 that

supθ∈Θa1

∣∣∣µ̂2m−1∑m
j=1(j/m)2θλ−2θ

j I∆dvj

∣∣∣ = Op(n1−2d0m−1+2η logm). (37)

Therefore, the first probability in (35) tends to zero by applying the argument of the
proof of Theorem 1a for Θ1.

The second probability of (35) tends to zero if there exists δ > 0 such that

Pr
(

infΘb1∪Θ2

(
m−1∑′(j/p)2θ(λ−2θ

j |wyj − µ̂w∆dvj |2 −G0)
)
≤ −3δG0

)
→ 0. (38)

This is because the algebra on pages 1904–05 of SP leading to (22) remains unchanged
even if Θ2 is replaced with Θb

1 ∪ Θ2 and we can replace the equation between (22)
and (23) in SP with infΘb1∪Θ2

G0(m−1
∑′(j/p)2θ − 1) > 4δG0 using Lemma B.5.

We proceed to show (38) for subsets of Θb
1 ∪Θ2. First, note that, it follows from

(34) and Lemma 5.4 of SP that

supΘb1∪Θ2

∣∣∣µ̂2m−1∑′(j/p)2θλ−2θ
j I∆dvj

∣∣∣ = Op(n1−2d0m2d0−2) = Op(m−2η). (39)

Consequently, we can show (38) holds for Θ2 by applying the proof of Theorem 1a
for Θ2.
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It remains to show (38) for Θb
1. Write

m−1∑′(j/p)2θ(λ−2θ
j |wyj − µ̂w∆dvj |2 −G0) = L1n(d) + L2n(d) + L3n(d), (40)

where L1n(d) = m−1
∑′(j/p)2θ(λ−2θ

j Iyj−G0), L2n(d) = −2µ̂m−1
∑′(j/p)2θλ−2θ

j Re[wyjw∗∆dvj
],

and L3n(d) = µ̂2m−1
∑′(j/p)2θλ−2θ

j I∆dvj . For L1n(d), we can apply the argument
from line 7, page 1905 of SP without change to conclude supΘb1

|L1n(d)| = op(1). We
have supΘb1

|L3n(d)| = op(1) from (39), and the bound of L2n(d) follows from the
bound of L1n(d), L3n(d) and Cauchy-Schwartz inequality. This completes the proof
of consistency for d0 ∈ (0, 1

2).
Proof of the asymptotic normality for d0 ∈ (0, 1

2) follows the proof of Theorem
1b. We use the bound (37) in place of (18) to show the R�′′(d) →p 4. To show
m1/2R�′(d0) →d N(0, 4), we simply repeat the proof of Theorem 1b with replacing
(20) with (34), then the stated result follows by n1−2d0m−1 = o(m−1/2(log n)−1). �

A.4 Proof of Theorem 3

From the standard proof of the two-step estimator, the stated result follows if (i)
R′′F (d)→p 4 for any d such that |d− d0| ≤ |d̂T − d0| and (ii) m1/2R′F (d0)→d N(0, 4).
Define M = {d : |d− d0| ≤ (log n)−4}, then Pr(d̂T /∈M)→ 0 from Proposition B.1.

We proceed to analyze the limit of R′F (d0) and R′′F (d̄), where d̄ ∈ M . First,
observe that w∆d(x−eµ(d))j = w∆dxj − µ̃(d)w∆dvj , hence

(∂/∂d)w∆d(x−eµ(d))j

= (∂/∂d)w∆dxj − µ̃(d)(∂/∂d)w∆dvj − [(∂/∂d)µ̃(d)]w∆dvj

= (∂/∂d)w∆dxj − µ̃(d)(∂/∂d)w∆dvj − (∂/∂d)w(d)(X −X1)w∆dvj . (41)

The second term on the right of (41) does not affect the asymptotics of R′F (d0)
and R′′F (d̄), because we simply need to replace µ̃(d) with X (if d0 < 1/2) or X1

(if d0 ≥ 3/4) or their linear combination (if d0 ∈ [1/2, 3/4)) and apply the proof
of Theorems 1b (specifically, the argument following (31) and (32)) and 2b. The
third term on the right of (41) is zero for d /∈ (1

2 ,
3
4) because (∂/∂d)w(d) = 0. For

d ∈ (1
2 ,

3
4), the order of the third term on the right of (41) is bounded by that of

the second term on the right of (41), because µ̃(d) is a linear combination of X and
X1, (∂/∂d)w(d) is uniformly bounded, and the order of w∆dvj is bounded by that
of (∂/∂d)w∆dvj = wlog(1−L)∆dvj from Lemma B.2 (a) and (b). Therefore, this term
does not affect the limit of R′F (d0) and R′′F (d̄) either. A similar argument applies to
the second derivatives of µ̃(d), and the proof of Theorems 1b and 2b carries through.
Consequently,

m1/2R′F (d0)→d N(0, 4), sup
d∈M
|R′′F (d)− 4| →p 0, (42)

and the required result follows. �
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A.5 Proof of Theorem 4

Since the tapered estimators are invariant to polynomial trends, it suffices to show
that the limit of R′F (d0) and R′′F (d̄), where d̄ ∈ M , is not affected by detrending. In
light of the proof of Theorems 1b and 2b, recalling equation (33) from the latter, this
is the case if

λ−θj w∆d(bx−ϕ(d))j = λ−θj w∆dx0j + rn, (43)

where

rn = ξn ·O(j−α), where O(j−α) is uniformly in d ∈M with α > 1/4, (44)

and the derivatives of w∆d(bx−ϕ(d))j admit an analogous expression with the same
order of the reminder term.

We proceed to show (43). To simplify the notation, let Ξ·n denote Ξ·n(d0), sup-
pressing their dependence on d0. We give the proof only for k = 2. The proof for
larger k follows the same argument, apart from more tedious algebra. A routine
calculation gives

X̂t = X0
t − TknM−1

kn Xkn,

where Tkn = (1, (t/n), (t/n)2) and

Mkn =

 1 n−2
∑n

1 t n−3
∑n

1 t
2

n−2
∑n

1 t n−3
∑n

1 t
2 n−4

∑n
1 t

3

n−3
∑n

1 t
2 n−4

∑n
1 t

3 n−5
∑n

1 t
4

 , Xkn =

 n−1
∑n

1 X
0
t

n−2
∑n

1 tX
0
t

n−3
∑n

1 t
2X0

t

 .

First we show E||Xkn||2 = O(n2d0−1). Recall
∑n

t=1X
0
t = (1 − L)−d0−1un1 {t ≥ 1}.

Since d0 > −1
2 , clearly E[n−1

∑n
1 X

0
t ]2 = O(n2d0−1). Summation by parts gives∑n

t=1 tX
0
t = −

∑n−1
k=1

∑k
t=1X

0
t + n

∑n
t=1X

0
t , and it follows that E[

∑n
t=1 tX

0
t ]2 =

O(n2d0+3). Similarly, we can derive E[
∑n

t=1 t
αX0

t ]2 = O(n2d0+2α+1) for any positive
integer α, and E||Xkn||2 = O(n2d0−1) follows.

Since Mn converges to a finite and invertible matrix, we can write X̂t as

X̂t = X0
t + Ξ0n + Ξ1nt+ Ξ2nt

2,

where E|Ξ0n|2 = O(n2d0−1), E|Ξ1n|2 = O(n2d0−3), and E|Ξ2n|2 = O(n2d0−5). Taking
the dft of ∆d(X̂t − ϕ(d)) and multiplying it by λ−θj , we obtain

λ−θj w∆d(bx−ϕ(d))j = λ−θj w∆dx0j+[Ξ0n−ϕ(d)]λ−θj w∆dvj+Ξ1nλ
−θ
j w∆dtj+Ξ2nλ

−θ
j w∆dt2j .

(45)
We proceed to check that the second to fourth terms on the right of (45) satisfy

the condition (44). First, we derive the order of the second term. When d0 <
1
2 , we

have ϕ(d) = 0 for d ∈ M . Thus, in view of the order of λ−θj w∆dvj given by (19), it
follows that

[Ξ0n − ϕ(d)]λ−θj w∆dvj = Ξ0nO(n1/2−d0(jd0−1 + j−1)) = ξn ·O(jd0−1 + j−1). (46)
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When d0 >
3
4 , we have ϕ(d) = X̂1 for d ∈M , and hence Ξ0n − ϕ(d) = −X0

1 − Ξ1n −
Ξ2n = Op(1 + nd0−3/2). Thus, for d ∈M ,

[Ξ0n−ϕ(d)]λ−θj w∆dvj = ξn·O((1+nd0−3/2)n1/2−d0jd0−1) = ξn·O(j−1/2+jd0−2), (47)

where the last line follows because d0 >
1
2 . When d0 ∈ (1

2 ,
3
4), the order of the O(·)

term is given by the sum of the above two, which is O(j−α) with α > 1
4 because

d0 < 7
4 . From (46) and (47), the second term on the right of (45) satisfies the

condition (44).
Now we derive the order of the third and fourth term on the right of (45). Observe

that tα = (1− L)−α vt for any positive integer α. Hence w∆dtj = w∆d−1vj and
w∆dt2j = w∆d−2vj . Applying Lemma B.2 (a) gives (recall d ≤ 2− ν)

w∆dtj =

{
O(n

3
2
−djd−2), d ≥ 1 + ν,

−eiλj (1− eiλj )−1(2πn)−1/2Γ(2− d)−1n1−d[1 +O(j−ν)], d ≤ 1− ν,

w∆dt2j = −eiλj (1− eiλj )−1(2πn)−1/2Γ(3− d)−1n2−d[1 +O(j−ν)].

Therefore, in view of the order of Ξ1n and Ξ2n, we obtain

Ξ1nλ
−θ
j w∆dtj = ξn ·O(jd0−2) if d ≥ 1 + ν, ξn ·O(j−θ−1) if d ≤ 1− ν,

Ξ2nλ
−θ
j w∆dt2j = ξn ·O(j−θ−1).

Hence, the third and fourth terms on the right of (45) satisfy the condition (44). For
the derivatives of w∆d(bx−ϕ(d))j , we can obtain a similar approximation in which the
reminder term is multiplied by (log n)2, which satisfy the condition (44). Therefore,
the required result follows. �

A.6 Proof of Theorem 5a

Take ν to be smaller than 2−∆2 > 0 without the loss of generality. We need to treat
the cases for different values of d0 and d separately. When d0 ∈ [1

2 , 1), the required
result follows from the proof of Theorems 1a and 2a, because d̂ is consistent both
under µ̂ = X1 and µ̂ = X. When d0 <

1
2 and d ∈ [∆1,

1
2 ], the proof of Theorem 1a

applies because µ̃(d) = X. When d0 ≥ 1 and d ∈ [3
4 ,∆2], the proof of Theorem 2a

applies because µ̃(d) = X1. It leaves us with the consideration of the two cases:

(i) d0 <
1
2 and d ∈ [1

2 ,∆2], (ii) d0 ≥ 1 and d ∈ [∆1,
3
4 ]. (48)

Note that (i) implies θ = d − d0 ≥ 1
2 − d0 > 0 and (ii) implies θ ≤ 3

4 − 1 ≤ −1
4 .

With a slight abuse of notation, define η = min{1
2 − d0,

1
4} > 0 and define Θb

1 =
Θ1 ∩ {|θ| > η} as in the proof of Theorem 2a for d0 <

1
2 . Because θ ∈ Θb

1 ∪Θ2 if (i)
or (ii) is true, Pr(infΘb1∪Θ2

SF (d) ≤ 0)→ 0 suffices for the consistency of d̂F .
Consider Θb

1 first. We show Pr(infΘb1
SF (d) ≤ 0) → 0 by using the proof of

Theorem 2a for Θb
1 and showing that (38) holds for Θb

1 if |wyj − µ̂w∆dvj |2 in (38)
is replaced by |wyj − µ̃(d)w∆dvj |2. We obtain a decomposition similar to (40) with
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µ̃(d) replacing µ̂ and supΘb1
|L1n(d)| = op(1). For L2n(d), it follows from equation

(14) of SP, Lemma 5.2 (b) of SP, and the equation between (20) and (21) of SP that
λ−θj wyj = Dnj(θ)wuj + Unj(θ), where Dnj(θ) and Unj(θ) satisfy the assumptions of
Lemma B.4. Therefore, applying Lemma B.4 with α = d gives

L2n(d) = µ̃(d) ·
{
n1/2−d0md0−1 ·Op(n−1m+m−ν log n), d ≥ ν,
n1/2−d0m−θ−1 ·Op(n−1m+m−ν log n), d ≤ −ν.

Define D− = [∆1,−ν] and D+ = [ν, 1 − ν] ∪ [1 + ν,∆2], so that Θ ⊂ D− ∪ D+.
Applying Lemma B.3 (a) to L3n(d) with Q2 = Q1 = 0 and Q0 = µ̃(d), we find
L3n(d) is bounded from below by, for some η > 0,

ηµ̃(d)2n1−2d0m2d0−2 for d ∈ D+, ηµ̃(d)2n1−2d0m−2θ−2 for d ∈ D−.

Hence, Pr(infΘa1
[L2n(d) +L3n(d)] ≤ ξ)→ 0 for any ξ > 0 from Lemma B.1, and (38)

follows.
For Θ3

2 = {−3
2 ≤ θ ≤ −1

2}, we show Pr(infΘ3
2
SF (d) ≤ 0) → 0 by using the

argument of the proof of Theorem 1a in pages 17–18 and showing that (22) holds for
Θ3

2 if |wyj − µ̂w∆dvj |2 in (22) is replaced by |wyj − µ̃(d)w∆dvj |2. The algebra leading
to (24)–(26) still holds with µ̃(d) in place of µ̂. Thus (22) holds for Θ3

2 if we can
replace (27) with

m−1∑′(j/p)2θλ−2θ
j | (2πn)−1/2 eiλj (1− eiλj )−1Yn(θ)− µ̃(d)w∆dvj |2

≥
{
ζm−2θ−2n2θ+1Yn(θ)2 + ζn1−2d+2θm2d−2−2θµ̃(d)2, d ∈ D+,
ζm−2θ−2n2θ+1Yn(θ)2 + ζn1−2d+2θm−2−2θµ̃(d)2, d ∈ D−. (49)

and replace (28) with

|m−1∑′(j/p)2θUnj(θ)λ−θj µ̃(d)w∆dvj |+ |m−1
∑′(j/p)2θDnj (θ)∗w∗ujλ

−θ
j µ̃(d)w∆dvj |

=
{
n1/2−d+θmd−1−θµ̃(d) ·Op(m−ν log n+mn−1), d ∈ D+,

n1/2−d+θm−1−θµ̃(d) ·Op(m−ν log n+mn−1), d ∈ D−. (50)

Since d is bounded away from 0, 1, and 2 by ν > 0, applying Lemma B.3 (b) with
Q2 = Yn(θ), Q1 = 0, and Q0 = −µ̃(d) gives (49). (50) follows from Lemma B.4.

For the other subsets of Θ2, Pr(infθ SF (d) ≤ 0) → 0 is shown by showing that
(23) in the consistency proof of SP holds for those subsets if Iyj in (23) is replaced
with |wyj − µ̃(d)w∆dvj |2. For example, for Θ5

2 = {3
2 ≤ θ ≤

5
2}, the proof in SP begins

from page 1910. If we replace λ−θj wyj in line 9, page 1910 of SP with λ−θj wyj −
λ−θj µ̃(d)w∆dvj , then, in place of (52) of SP, we have

m−1∑′(j/p)2θλ−2θ
j | (2πn)−1/2 eiλj (1−eiλj )

∑n
1 Zt(θ)+(2πn)−1/2 eiλjZn(θ)+µ̃(d)w∆dvj |2.

(51)
Applying Lemma B.3 (b) with Q2 =

∑n
1 Zt(θ), Q1 = Zn(θ), and Q0 = −µ̃(d) gives

the lower bound of (51). The terms involving the cross products of wuj , Unj(θ)
and µ̃(d)w∆dvj are dominated by (51) from Lemma B.4. For the other terms in
m−1

∑′(j/p)2θλ−2θ
j Iyj , the result in pages 1910–11 of SP holds without change, and

(23) of SP holds. �
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A.7 Proof of Theorem 5b

Assume µ0 = 0 without loss of generality. Define Nε = {d : |d − d0| < ε}. From
Theorem 3a, d̂F ∈ Nε with probability approaching one for arbitrary small ε > 0. As
in the proof of Theorem 1b, define M = {d : (log n)4|d − d0| < ρ} for a fixed ρ > 0.
Then, because µ̃(d) is a weighted average of X and X, Pr(d̂F /∈M)→ 0 follows from
the proof of Theorem 1b (the argument following equation (29)) if d0 < 1/2 , from
the proof of Theorem 2b (the argument following equation (34))) if d0 ≥ 3/4, and
from combining both if d0 ∈ [1/2, 3/4).

The asymptotic distribution of d̂F follows from supd∈M |R′′F (d) − 4| →p 0 and
m1/2R′F (d0)→d N(0, 4), which are shown in the proof of Theorem 3. �

Appendix B: technical lemmas

Lemma B.1 is a generalized restatement of equation (40) in SP and stated as a lemma
because it is repeatedly used in the proofs. Lemma B.2 gives the approximation
formula for the dft of the deterministic process vt = 1 {t ≥ 1}. Lemmas B.3 and
B.5 extend Lemmas 5.10 and 5.5 o SP, respectively. Lemma B.3 is used in the
proof of consistency for establishing the lower bound of the objective function when
|d − d0| ≥ 1

2 . Lemma B.5 is used in the proof of Theorem 2a. Propositions B.1 and
B.2 show the asymptotic properties of the tapered estimator under Type II processes.

Lemma B.1. Let θ ∈ Θ be a parameter and assume m→∞ as n→∞. Suppose two
random variables An(θ) and Bn(θ) satisfy (i) An(θ) ≥ ηXn(θ)2 uniformly in θ ∈ Θ
for some η > 0, and (ii) Bn(θ) = Xn(θ)Rn(θ), where supθ |Rn(θ)| = Op(kn) with
k2
n logm→ 0. Then, for any ζ > 0,

Pr
(

inf
θ∈Θ

[An(θ) +Bn(θ)] ≤ −ζ
)
→ 0 as n→∞.

Proof This result is a generalized restatement of equation (40) in SP. An(θ) and
Xn(θ) correspond to (35) and m−θnθ−1/2Zn(θ) in SP, respectively. Bn(θ) corresponds
to (37)+(38) in SP. The proof follows from repeating the argument in pages 1908-1909
of SP. �

Lemma B.2. Let vt = 1 {t ≥ 1}. Then the following holds uniformly in j = 1, . . . ,m
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with m = o(n) and in d :

(a) w∆dvj

=
{
eiλj (1− eiλj )−1(2πn)−1/2[(1− eiλj )d − n−d/Γ(1− d) +O(n−dj−1)], d ∈

[
−1

2 , C
]
,

−eiλj (1− eiλj )−1(2πn)−1/2Γ(1− d)−1n−d[1 +O(j−1/2)], d ∈ [−C,−1
2 ],

(b) −wlog(1−L)∆dvj

=
{
Jn(eiλj )w∆dvj +O

(
j−1n1/2−d log n

)
, d ∈ [−C, 1] ,

Jn(eiλj )w∆dvj +O
(
n1/2−d log n

)
, d ∈ [1, 2],

(c) w(log(1−L))2∆dvj

=
{
Jn(eiλj )2w∆dvj +O

(
j−1n1/2−d(log n)2

)
, d ∈ [−C, 1] ,

Jn(eiλj )2w∆dvj +O
(
n1/2−d(log n)2

)
, d ∈ [1, 2],

where Jn(eiλj ) =
∑n

k=1 k
−1eiλj = O(log n).

Proof For part (a), first, from Lemma 5.1 (b) of SP, we have

w∆dvj = (1− eiλj )−1
[
w∆d+1vj − eiλj (2πn)−1/2∆dvn

]
. (52)

From the proof of Lemma A.7 of Phillips and Shimotsu (2004, page 676, line 10), we
have

∆d+1vt = (1− L)d+1vt = (−d)t−1/ (t− 1)!. (53)

Therefore, the first term in the bracket in (52) can be expressed as

w∆d+1vj =
1√
2πn

n∑
t=1

(−d)t−1

(t− 1)!
eitλj =

eiλj√
2πn

n−1∑
k=0

(−d)k
k!

eikλj .

Define Dn(eiλ; d) =
∑n

k=0[(−d)k/k!]eikλ as defined in Lemma 5.1 of SP, then it follows
from (52) that

w∆dvj =
eiλj

1− eiλj
(2πn)−1/2

[
Dn−1

(
eiλj ; d

)
−∆dvn

]
.

The stated result for d ∈ [−1
2 , C] follows from the approximation of Dn(eiλj ; d) shown

by Lemma A.2 of Phillips and Shimotsu (2004) and the fact that (see (53))

∆dvn =
(1− d)n−1

(n− 1)!
=

Γ (n− d)
Γ (n) Γ (1− d)

=
1

Γ (1− d)
n−d

(
1 +O

(
n−1

))
. (54)

For d ∈ [−3
2 ,−

1
2 ], it follows from (52), the result for d ∈ [−1

2 , C] and (54) that

w∆dvj =
1

1− eiλj

[
O
(
jdn−d−1/2

)
+O

(
j−1n−d−1/2

)
− eiλj√

2πn
∆dvn

]
= − eiλj

1− eiλj
1√
2πn

n−d

Γ(1− d)

[
1 +O(j−1/2)

]
.
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The results for smaller d follow from (52) and induction.
For part (b), first we find a uniform bound for d ∈ [−C, 1] . Define Jn(L) =∑n
k=1

1
kL

k. Lemma 5.7 (a) of SP gives

− log(1− L)∆dvt = Jn (L) ∆dvt = Jn(eiλj )∆dvt + J̃nλj (e
−iλjL)(e−iλjL− 1)∆dvt,

where J̃nλj (e
−iλL) =

∑n−1
p=0 j̃λpe

−ipλLp and j̃λp =
∑n

p+1
1
ke
ikλ. Taking its dft leaves

us with

−wlog(1−L)∆dvj = Jn(eiλj )w∆dvj − (2πn)−1/2 J̃nλj (e
−iλjL)∆dvn. (55)

Define |x|+ = max{x, 1}. Since ∆dvn−p = O((n − p)−d) from (54) and j̃λp =
O(|p|−1

+ nj−1) from Lemma 5.8 (b) of SP, the second term on the right of (55) is

− (2πn)−1/2
n−1∑
p=0

j̃λjpe
−ipλj∆dvn−p

= O
(
n−1/2∑n−1

p=0 |p|
−1
+ nj−1 (n− p)−d

)
= O

(
j−1n1/2∑n−1

p=0 |p|
−1
+ (n− p)−d

)
.

Uniformly in d ∈ [−C, 1], we have∑n−1
p=0 |p|

−1
+ (n− p)−d ≤

∑n/2
p=0 |p|

−1
+ (n− p)−d +

∑n−1
p=n/2 |p|

−1
+ (n− p)−d

≤ Cn−d
∑n/2

p=0 |p|
−1
+ + (n/2)−1

∑n−1
p=n/2 (n− p)−d

= O(n−d log n). (56)

Therefore, the second term on the right of (55) is O(j−1n1/2−d log n), and the stated
result follows. The order of Jn(eiλj ) is shown in Lemma 5.8 (a) of SP.

For d ∈ [1, 2], Lemma 5.1 (b) of SP gives

−w∆dvj = −(1− eiλj )w∆d−1vj − eiλj (2πn)−1/2∆d−1vn. (57)

Differentiating it with respect to d, we find

−wlog(1−L)∆dvj = −(1−eiλj )wlog(1−L)∆d−1vj−eiλj (2πn)−1/2 log (1− L) ∆d−1vn. (58)

From (54), (56) and the fact that d − 1 ≤ 1, the second term on the right of (58) is
bounded by

n−1/2
n−1∑
p=1

p−1∆d−1vn−p = O
(
n−1/2∑n−1

p=1 p
−1 (n− p)1−d

)
= O

(
n1/2−d log n

)
.

Substituting the result for d ∈ [−C, 1] to wlog(1−L)∆d−1vj on the right of (58) and
then applying (57) gives the stated result.

For part (c), first, for d ∈ [−C, 1], we have from Lemma 5.7 (a) of SP

Jn (L)2 =
[
Jn(eiλ) + J̃nλ(e−iλL)(e−iλL− 1)

]2

= Jn(eiλ)2 + Jn(eiλ)J̃nλ(e−iλL)(e−iλL− 1) + Jn (L) J̃nλ(e−iλL)(e−iλL− 1).
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It follows that

w(log(1−L))2∆dvj = wJn(L)2∆dvj

= Jn(eiλ)2w∆dvj − Jn(eiλ) (2πn)−1/2 J̃nλj (e
−iλjL)∆dvn

−Jn (L) (2πn)−1/2 J̃nλj (e
−iλjL)∆dvn.

The second term is Jn(eiλ) times the second term on the right of (55), hence it is
O(j−1n1/2−d(log n)2). The third term is

− (2πn)−1/2
n∑
q=1

q−1
n−q−1∑
p=0

j̃λjpe
−ipλj∆dvn−p−q

= O

j−1n1/2
n∑
q=1

q−1
n−q−1∑
p=0

|p|−1
+ (n− q − p)−d


= O

j−1n1/2
n∑
q=1

q−1 (n− q)−d log n

 = O
(
j−1n1/2−d(log n)2

)
. (59)

For d ∈ [1, 2], taking the second derivative of (−(57)) with respect to d gives

w(log(1−L))2∆dvj = (1− eiλj )w(log(1−L))2∆d−1vj − eiλj (2πn)−1/2(log (1− L))2∆d−1vn.
(60)

The second term on the right of (60) is

O

n−1/2
n−1∑
p=1

p−1
n−p−1∑
q=1

q−1 (n− p− q)1−d

 = O
(
n1/2−d(log n)2

)
,

and the first term on the right of (60) is, from the result for d ∈ [−C, 1],

Jn(eiλ)2(1− eiλj )w∆d−1vj +O(n1/2−d(log n)2) = Jn(eiλ)2w∆dvj +O(n1/2−d(log n)2),

giving the stated result. �

Lemma B.3. Let Qk, k = 0, 1, 2, be any real numbers, vt = 1 {t ≥ 1}, κ ∈ (0, 1/8),
and m = o(n). Then, there exists η > 0 not depending on Qk such that, uniformly
in d ∈ {[−1

2 ,−ε] ∪ [ε, 1− ε] ∪ [1 + ε, 2− ε]} and for sufficiently large n,

(a) m−1∑m
j=[κm] |(2πn)−1/2eiλj (1− eiλj )Q2 + (2πn)−1/2eiλjQ1 + w∆dvjQ0|2

≥
{
η(n−3m2Q2

2 + n−1Q2
1 + n1−2dm2d−2Q2

0), d ∈ {[ε, 1− ε] ∪ [1 + ε, 2− ε]},
η(n−3m2Q2

2 + n−1Q2
1 + n1−2dm−2Q2

0), d ∈ {[−1
2 ,−ε]}.

(b) m−1∑m
j=[κm] |(2πn)−1/2eiλj (1− eiλj )−1Q2 + (2πn)−1/2eiλj (1− eiλj )−2Q1 + w∆dvjQ0|2

≥
{
η(nm−2Q2

2 + n3m−4Q2
1 + n1−2dm2d−2Q2

0), d ∈ {[ε, 1− ε] ∪ [1 + ε, 2− ε]},
η(nm−2Q2

2 + n3m−4Q2
1 + n1−2dm−2Q2

0), d ∈ {[−1
2 ,−ε]}.
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Proof The proof follows the approach of the proof of Lemma 5.10 of SP. For part
(a), first define

A(λj) = (1− eiλj )Q2 +Q1 + (2πn)1/2e−iλjw∆dvjQ0,

so the right hand side of (a) is m−1
∑m

j=[κm](2πn)−1/2eiλjA(λj). Then part (a) for
d ≥ ε follows if, for sufficiently large n,

m−1∑m
j=[κm] |A(λj)|2 ≥ η(n−2m2Q2

2 +Q2
1 + n2−2dm2d−2Q2

0). (61)

We consider the case with d ∈ [1 + ε, 2 − ε] in details. The other cases follow the
same line of argument. Because d ≥ ε implies that j−d = o(1) as m→∞ uniformly
in j ≥ [κm], we can refine the approximation of w∆dvj in Lemma B.2 (a) as

w∆dvj = eiλj (2πn)−1/2(1−eiλj )d−1(1+o(1)) = eiλj (2πn)−1/2e−
π
2

(d−1)iλd−1
j (1+o(1)),

(62)
uniformly in j = [κm], . . . ,m, where the second equality follows from Lemma 5.2 of
SP. Define c̃(d) = cos(−π(d− 1)/2) and s̃(d) = sin(−π(d− 1)/2), then it follows that

A(λj) = −iλjQ2 + o(λj)Q2 +Q1 + c̃(d)λd−1
j Q0 + is̃(d)λd−1

j Q0 + o(λd−1
j )Q0,

|A(λj)|2 =
[
Q1 + c̃(d)λd−1

j Q0

]2
+
[
λjQ2 − s̃(d)λd−1

j Q0

]2
+ rnj ,

where rnj = o(λ2
j )Q

2
2 + o(λj)Q1Q2 + o(λdj )Q2Q0 + o(λd−1

j )Q1Q0 + o(λ2d−2
j )Q2

0. Note
that m−1

∑m
j=[κm] rnj = o(m2n−2Q2

2 +Q2
1 +m2d−2n2−2dQ2

0). Therefore, (61) follows
if we show that, either for j = [κm], . . . , [m/4] or j = [3m/4], . . . ,m,[

Q1 + c̃(d)λd−1
j Q0

]2
≥ η

[
Q2

1 + c̃(d)2λ2d−2
m/2 Q

2
0

]
, (63)

and either for j = [κm], . . . , [m/4] or j = [3m/4], . . . ,m,[
λjQ2 − s̃(d)λd−1

j Q0

]2
≥ η

[
λ2
m/2Q

2
2 + s̃(d)2λ2d−2

m/2 Q
2
0

]
. (64)

We proceed to show (63). Assume c̃(d) ≥ 0 without the loss of generality. When
sgn(Q1) = sgn(Q0), the result follows immediately, so assume Q1 < 0 and Q0 > 0
without the loss of generality. Now suppose Q1 + c̃(d)λd−1

m/2Q0 ≥ 0 and consider

j ≥ [3m/4]. Since d− 1 ≥ ε, we have λd−1
3m/4 = (3/2)d−1λd−1

m/2 ≥ (1 + 2ξ)λd−1
m/2 for some

ξ > 0 uniformly in d, thus Q1 + c̃(d)λd−1
3m/4Q0 ≥ 2ξc̃(d)λd−1

m/2Q0 ≥ −2ξQ1 > 0. Since

λd−1
j is an increasing function of j, we have, for j = [3m/4], . . . ,m,

Q1 + c̃(d)λd−1
j Q0 ≥ ξ

(
−Q1 + c̃(d)λd−1

m/2Q0

)
,

and (63) follows because both −Q1 and c̃(d)λd−1
m/2Q0 are positive. Now suppose

Q1 + c̃(d)λd−1
m/2Q0 < 0 and consider j ≤ [m/4]. Then λd−1

m/4 = (1/2)d−1λd−1
m/2 ≤ (1 −
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2ξ)λd−1
m/2 for some ξ ∈ (0, 1/4) uniformly in d, and it follows that Q1 + c̃(d)λd−1

m/4Q0 ≤
Q1 + (1 − 2ξ)c̃(d)λd−1

m/2Q0 ≤ ξ(Q1 − c̃(d)λd−1
m/2Q0) < 0. Therefore, we have, for

j = [κm], . . . , [m/4],

Q1 + c̃(d)λd−1
j Q0 ≤ ξ

(
Q1 − c̃(d)λd−1

m/2Q0

)
,

and (63) follows. Since Q1 + c̃(d)λd−1
m/2Q0 can be only ≥ 0 or < 0, we established (63).

(64) is obtained by writing down [λjQ2 − s̃(d)λd−1
j Q0]2 = λ2

j [Q2 − s̃(d)λd−2
j Q0]2 and

proceeding in the same manner with d− 2 ≤ ε.
The other cases in part (a) follow the same argument. The essential element is

that there is sufficient variation in Q1+c̃(d)λd−1
j Q0 and Q2−s̃(d)λd−2

j Q0 as j changes,
which is guaranteed by bounding away |d − 1| and |d − 2| from 0. Part (b) follows
from the same argument, because there is sufficient variation in λ−1

j , λ−2
j , and λd−1

j

if |d− 2| ≥ ε, |d− 1| ≥ ε and |d| ≥ ε. �

Lemma B.4. Suppose Dnj(θ) and Unj(θ) satisfy{
Dnj (θ) = e−(π/2)θi +O(λj) +O(j−1/2), uniformly in θ ∈ [−1

2 ,
1
2 ],

E supθ∈[− 1
2
, 1
2

] |Unj(θ)|2 = O(j−1(log n)2). (65)

Let κ ∈ (0, 1/8) and m = o(n). Then, uniformly in θ ∈ [−1
2 ,

1
2 ] and α ∈ [−C,−ε] ∪

[ε, 1− ε] ∪ [1 + ε, 2− ε] with ε < 1
2 ,∣∣∣∣∣∣ 1

m

m∑
j=[κm]

(
j

m

)2θ

Dnj(θ)wujλ−θj w∆αvj

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1
m

m∑
j=[κm]

(
j

m

)2θ

Unj(θ)λ−θj w∆αvj

∣∣∣∣∣∣
=

{
n1/2−α+θmα−1−θ ·Op(n−1m+m−ε log n), α ≥ ε,
n1/2−α+θm−1−θ ·Op(n−1m+m−ε log n), α ≤ −ε. (66)

Proof Define A+ = [ε, 1 − ε] ∪ [1 + ε, 2 − ε] and A− = [−C,−ε], so that A+ ∪ A−
covers the admissible value of α. For the first term on the left of (66), from (65) and
Lemma B.2, we obtain

Dnj (θ)w∆αvj =
{
Cn(θ)n1/2−αjα−1[1 +O(λj) +O(j−ε)], α ∈ A+,

Cn(θ)n1/2−αj−1[1 +O(λj) +O(j−ε)], α ∈ A−, (67)

where Cn(θ) is a non-random function of θ such that 0 < |Cn(θ)| <∞ uniformly in θ.
The required result follows from Lemmas 5.4 and 5.6 of SP, (67), and E|wu(λj)|2 <∞
(e.g., equation (19) in SP). For the second term on the left of (66), the stated bound
follows straightforwardly from Lemma B.2, (65), and Lemma 5.4 of SP. �

Lemma B.5. Let η > 0 be a fixed number and p ∼ m/e as m → ∞. There exist
ε ∈ (0, 0.1) and κ̄ ∈ (0, 1/4) such that, for all fixed κ ∈ (0, κ̄] and sufficiently large m,

inf
γ∈[−C,−η]∪[η,C]

1
m

m∑
j=[κm]

(
j

p

)γ
≥ 1 + 2ε.
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Proof Lemma 5.5 of SP establishes the stated result for γ ∈ [−C,−1 + 2∆]∪ [1, C]
with ∆ ∈ (0, 1/(2e)). Hence, we only need to show the stated result for γ ∈ [−1 +
2∆,−η] ∪ [η, 1]. From Lemma 5.4 of SP, we have, uniformly in γ ∈ [−1 + 2∆, 1],

1
m

m∑
j=[κm]

(
j

p

)γ
=

(
m

p

)γ 1
m

m∑
j=[κm]

(
j

m

)γ
= (e+ o(1))γ

(∫ 1

κ
xγdx+ o(1)

)
= (γ + 1)−1 eγ(1− κγ) + o(1), as m→∞. (68)

Note that g(γ) = (γ + 1)−1eγ takes the value 1 when γ = 0, g′(γ) > 0 when γ ≥ η,
and g′(γ) < 0 when γ ∈ [−1+2∆,−η]. Therefore, choosing κ sufficiently small makes
(68) larger than 1 + 2ε for γ ∈ [−1 + 2∆,−η] ∪ [η, 1] and sufficiently large m. �

The rest of this Appendix discusses the asymptotic properties of the tapered
estimator under Type II processes.

First we discuss the taper used by Velasco (1999). Let ht denote a taper of order
p generated by Kolmogorov’s proposal. Then ht satisfies the regularity conditions
in Velasco (1999) and Robinson (2005), and the tapered estimator is invariant to a
polynomial time trend of order p − 1. Define the tapered dft and periodogram as
wTxp(λj) = (2πn)−1/2

∑n
t=1 htXte

itλj and ITxp(λj) = |wTxp(λj)|2. As in Velasco (1999,
page 99), define the tapered local Whittle estimator as d̂p = arg mind∈[∆1,∆2]Rp(d),
where −1

2 < ∆1 < ∆2 < ∞, Rp(d) = log Ĝp(d) − 2dpm−1
∑

j=p,2p,...,m log λj , and
Ĝp(d) = pm−1

∑
j=p,2p,...,m λ

2d
j I

T
xp(λj).

Proposition B.1. Suppose Xt is generated by (11) with d0 ∈ (∆1,∆2) and βp0 =
· · · = βk0 = 0. Suppose p ≥ max{[∆2 + 1

2 ] + 1, 2} and Assumption 1′-5′ and 7′ hold.
Then m1/2(d̂p − d0) →d N(0, pΦ/4) as n → ∞, where Φ is defined in equation (10)
in Velasco (1999, p.101).

Proof Let s be the integer part of d0 + 1
2 and Yt be a Type I I(d0) process with

the sth order polynomial time trend:

Yt = (1− L)−sU (s)
t 1{t ≥ 1}+ µ

(0)
0 + µ

(1)
0 t+ · · ·+ µ

(s)
0 ts, U

(s)
t = (1− L)s−d0ut,

where ut satisfies Assumptions 1′ –3′. The proof consists of two steps. First, we show
d̂p is consistent and has the stated limiting distribution if the objective function is
constructed using Yt. Second, we show that replacing Yt with Xt in the objective
function does not change the limiting behavior of d̂p.

The first part is proven by checking Yt satisfies the assumptions of Theorems 5
and 6 of Velasco (1999) (hereafter Vel for short). As discussed in Lobato and Velasco
(2000, page 414), the asymptotic normality of the tapered estimator still holds even
if Assumption 8 of Vel is weakened to

fU(s)(λ)−Gλ−2(d−s) = O(λ−2(d−s)+β) for β ∈ (0, 2]. (69)

U
(s)
t satisfies (69) by Assumption 1′ and |1− eiλ|2s−2d0 = λ−2(d0−s) +O(λ−2(d0−s)+2).

Therefore, it suffices to check Yt and U (s)
t satisfy Assumptions 5, 7, 9, and 10 of Vel.
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For Assumption 5 of Vel, define d(λ) =
∑∞

k=0 dke
ikλ = (1 − eiλ)−d0 and α(λ) =∑∞

k=0 αke
ikλ, then we have α(λ) = c(λ)d(λ). Now ∂α(λ)/∂λ = O(|α(λ)|/λ) follows

from Assumption 2′, and Assumption 5 is satisfied. Assumption 7 of Vel follows from
(69). Assumption 9 is satisfied because ∂|1 − eiλ|2s−2d0/∂λ = O(λ−1−2(d0−s)) and
∂fu(λ)/∂λ = O(λ−1) from Assumption 2 and fu(λ) > 0 for λ sufficiently small. For
Assumption 10 of Vel, note that we can rewrite U (s)

t as a linear process as U (s)
t =∑∞

l=0 αlεt−l, then Assumption 10 is satisfied because
∑∞

k=0 α
2
k = E(U (s)

t )2 < ∞.
Thus, we complete the first part of the proof.

Second, we use the results on the difference between wTxp(λj) and wTyp(λj) by
Robinson (2005) to show that d̂p has the stated limit distribution when the objective
function is constructed with Xt. Note that (d+ q, d) in Robinson corresponds to our
(d0, d0−s) and the statement of Theorem in Robinson has a typo: d ∈ (−1

2 ,
1
2 ] should

be replaced with d ∈ [−1
2 ,

1
2). From Theorem of Robinson (2005), we have

E
{
λ2d0
j

∣∣wTxp(λj)− wTyp(λj)∣∣2} ≤ Cj−2η−1 log n,

where 2η = 2(d0−s)−1 < 0. It follows from the triangle inequality, Cauchy-Schwartz
inequality, and Eλ2d0

j ITyp(λj) = O(1) for j = p, 2p, . . . ,m (Vel, Theorem 4) that

Eλ2d0
j

∣∣ITx,p(λj)− ITy,p(λj)∣∣
≤ Eλ2d0

j

∣∣wTx,p(λj)− wTy,p(λj)∣∣2 + 2Eλ2d0
j

∣∣wTx,p(λj)− wTy,p(λj)∣∣ ∣∣wTy,p(λj)∣∣
= O(j−η−1/2 log n), for j = p, 2p, . . . ,m.

Note that the periodogram Ij in Vel is equal to Iyp(λj) in our notation. Therefore,
if we replace Ij in Ap(d) in line 3, page 112 of Vel with ITxp(λj), then the right hand
side of (A14) in Vel has an additional term whose order is Op(m−ξ logm log n) for
some ξ > 0, and the proof of consistency is not affected.

For the asymptotic normality (Theorem 6 in Vel), if we replace Ij in (A23) on
page 116 of Vel with Ixp(λj), then the right hand side of (A23) has an additional term
Op(r−η+1/2 log n). Consequently, the left hand side of the equation in line 14, page
117 of Vel has an additional term Op(m−η−1/2 log n). Since this is op(1), the right
hand side of that equation remains unchanged and their argument carries through.
Finally, the equation in line 18, page 117 of Vel has an additional term Op(m−η log n),
which is op(1), and the asymptotic normality follows. �

The tapered estimator by Hurvich and Chen (2000) takes the difference of the
data and applies a complex-valued taper hHCt = 0.5[1− exp(2πi(t−1/2)/n)] to ∆Xt.
The objective function is defined in terms of ∆Xt, and the estimator is defined as
d̂HC = arg mind∈[∆′1,∆

′
2]RHC(d), where −3

2 < ∆′1 < ∆′2 <
1
2 , RHC(d) = log ĜHC(d)−

2(d − 1)m−1
∑m

j=1 log λ(j+1/2), and ĜHC(d) = m−1
∑m

j=1 λ
2(d−1)
(j+1/2)I

HC
∆x (λj). Hurvich

and Chen (2000) propose to use the powers of hHCt as a taper with the higher-order
differences of Xt to allow for larger values of d. To save space, we restrict the range
of d to be (−1

2 ,
3
2) and allow only a linear trend. In Proposition B.2, additional
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assumptions on fu(λ) are necessary in order to satisfy Assumption A1 in Hurvich
and Chen (2000).

Proposition B.2. Suppose Xt is generated by (11) with d0 ∈ (∆′1,∆
′
2) and β20 =

· · · = βk0 = 0. Suppose Assumption 1′-5′ and 7′ hold and fu(λ) = G0 +Eβλ
β + o(λβ)

with β ∈ (1, 2] and Eβ <∞. Then m1/2(d̂HC − d0)→d N(0, (1.5)/4) as n→∞.

Proof Applying the first part of the proof of Proposition B.1, we can easily show
that our Assumptions 1-5 and 1′-5′ imply that m and ∆Yt = (1 − L)−d0+1ut satisfy
Assumptions A1′-A4′ of Hurvich and Chen (2000). Therefore, both the consistency
and asymptotic normality of d̂HC follow if we show

E{λ2(d0−1)
j |wHC∆y (λj)− wHC∆x (λj)|2} ≤ Cj−2η−1 log n, j = 1, . . . ,m (70)

for some η > 0, because then the proof of Theorems 1 and 2 of Hurvich and Chen
(2000) (hereafter HC) carries through if we replace their ITj (that corresponds to our
IHC∆y (λj)) with IHC∆x (λj). Specifically, Lemma 1 and equation (8) of HC still holds,
and Lemma 6 of HC has an additional Op(r−η+1/2) term that does not affect the
validity of their Theorem 2.

We proceed to show (70). First, observe that Hurvich-Chen taper satisfies the
bounds (2.1)-(2.3) in page 286 of Robinson (2005) with p = 1. The other two
conditions on h(t) in page 286 do not matter for Theorem of Robinson (2005) to
hold. Therefore, for d0 ∈ [1

2 ,
3
2), applying (2.6) in Theorem of Robinson (2005) to

(∆Xt,∆Yt) gives

E{λ2(d0−1)|wHC∆y (λ)− wHC∆x (λ)|2} ≤ C| log λ|1{d0=1/2}(nλ)2(d0−1)−2, 0 < λ ≤ π.

Hence, (70) holds with η = 3
2 − d0 > 0.

For d0 ∈ [−1
2 ,

1
2), summation by parts gives

n∑
t=1

hHCt (∆Yt−∆Xt)eitλ =
n−1∑
t=1

(hHCt eitλ−hHCt+1e
i(t+1)λ)(Yt−Xt)+hHCn einλ(Yn−Xn).

(71)
Because hHCt+1 = hHCt e2πi/n+0.5(1−e2πi/n), routine algebra gives hHCt eitλ−hHCt+1e

i(t+1)λ =
hHCt eitλ(1− ei(λ+2π/n)) + 0.5(e2πi/n − 1)ei(t+1)λ. It follows that wHC∆y (λ)−wHC∆x (λ) =
Aλ +Bλ +Rλ, where

Aλ = (1− ei(λ+2π/n))[wHCy (λ)− wHCx (λ)],

Bλ = 0.5(e2πi/n − 1)eiλ[wy(λ)− wx(λ)],

and Rλ = (2πn)−1/2hHCn einλ(Yn−Xn)ei(λ+2π/n)−(2πn)−1/20.5(e2πi/n−1)eiλeinλ(Yn−
Xn). For Aλj , it follows from (2.7) in Theorem of Robinson (2005) and λ−2

j |1 −
ei(λj+2π/n)|2 < C that, for 1/n ≤ λj ≤ π,

E{λ2(d0−1)
j |Aλj |

2} ≤ C(nλj)2d0−2 log n ≤ Cj−2(1/2−d0)−1 log n,
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with 1
2−d0 > 0. For Bλj , using (2.6) of Theorem of Robinson (2005) and e2πi/n−1 =

O(n−1), we have E{λ2(d0−1)
j |Bλj |2} ≤ C(nλj)−3 log n = Cj−3 log n for 1/n ≤ λj ≤ π.

Finally, for Rλj , it follows from |hHCn | ≤ Cn−1 and E(Yn −Xn)2 = O(n2d0−1) (Mar-

inucci and Robinson, 1999, page 119) that E{λ2(d0−1)
j |Rλj |2} ≤ C(nλj)2d0−2n−2 ≤

Cj−2(1/2−d0)−1n−2 for 1/n ≤ λj ≤ π. Therefore, (70) holds with 1
2 − d0 > 0 and the

proof is completed. �
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Table 1. Monte Carlo simulation bias: n = 256, m = n0.65 = 36
d0 -0.4 0.0 0.4 0.8 1.2 1.6 2.0

µ̂ = X -0.0047 -0.0034 0.0000 0.0144 -0.0639 -0.3926 -0.8021
µ̂ = X1 0.3066 0.0048 -0.0064 -0.0001 -0.0025 -0.0029 0.0000

Table 2. Simulation results: n = 512, m = n0.65 = 57
2ELW Tapered estimator

d ρ bias var bias var
0.0 0.0 -0.0022 0.0058 0.0020 0.0094
0.0 0.5 0.0994 0.0061 0.1130 0.0098
0.0 0.8 0.4133 0.0072 0.4404 0.0114
0.4 0.0 0.0001 0.0058 -0.0030 0.0097
0.4 0.5 0.1003 0.0060 0.1055 0.0099
0.4 0.8 0.4160 0.0072 0.4381 0.0113
0.8 0.0 -0.0003 0.0058 -0.0066 0.0095
0.8 0.5 0.0988 0.0060 0.1014 0.0098
0.8 0.8 0.4125 0.0073 0.4325 0.0113
1.2 0.0 -0.0006 0.0057 -0.0057 0.0093
1.2 0.5 0.0990 0.0061 0.1022 0.0099
1.2 0.8 0.4117 0.0070 0.4302 0.0108

Table 3. Simulation results: n = 128, m = n0.65 = 23
ELW 2ELW

d bias s.d. MSE bias s.d. MSE
-0.4 0.0043 0.1369 0.0188 -0.0004 0.1383 0.0191
0.0 -0.0007 0.1397 0.0195 0.0001 0.1385 0.0192
0.4 0.0004 0.1404 0.0197 0.0052 0.1381 0.0191
0.8 -0.0008 0.1395 0.0195 0.0031 0.1338 0.0179
1.0 0.0006 0.1405 0.0197 0.0015 0.1377 0.0190
1.2 -0.0004 0.1390 0.0193 -0.0003 0.1386 0.0192
1.6 0.0023 0.1381 0.0191 0.0031 0.1380 0.0191

2ELW with detrending Tapered estimator
d bias s.d. MSE bias s.d. MSE

-0.4 -0.0108 0.1340 0.0181 0.0434 0.1740 0.0322
0.0 -0.0444 0.1481 0.0239 0.0115 0.1757 0.0310
0.4 -0.0426 0.1550 0.0258 -0.0042 0.1783 0.0318
0.8 -0.0168 0.1536 0.0239 -0.0164 0.1787 0.0322
1.0 -0.0034 0.1442 0.0208 -0.0163 0.1783 0.0321
1.2 -0.0002 0.1398 0.0195 -0.0193 0.1757 0.0312
1.6 0.0132 0.1342 0.0182 -0.0074 0.1732 0.0301

39



Table 4. Simulation results: n = 512, m = n0.65 = 57
ELW 2ELW

d bias s.d. MSE bias s.d. MSE
-0.4 -0.0023 0.0765 0.0059 -0.0039 0.0764 0.0059
0.0 -0.0021 0.0774 0.0060 -0.0020 0.0774 0.0060
0.4 -0.0022 0.0772 0.0060 -0.0003 0.0765 0.0059
0.8 -0.0016 0.0771 0.0059 -0.0008 0.0762 0.0058
1.0 -0.0024 0.0768 0.0059 -0.0024 0.0767 0.0059
1.2 -0.0005 0.0768 0.0059 -0.0004 0.0769 0.0059
1.6 -0.0008 0.0772 0.0060 -0.0007 0.0772 0.0060

2ELW with detrending Tapered estimator
d bias s.d. MSE bias s.d. MSE

-0.4 -0.0078 0.0759 0.0058 0.0131 0.0962 0.0094
0.0 -0.0214 0.0815 0.0071 0.0037 0.0977 0.0096
0.4 -0.0190 0.0818 0.0071 -0.0049 0.0984 0.0097
0.8 -0.0059 0.0802 0.0065 -0.0069 0.0985 0.0097
1.0 -0.0035 0.0774 0.0060 -0.0086 0.0973 0.0095
1.2 0.0001 0.0769 0.0059 -0.0058 0.0966 0.0094
1.6 0.0060 0.0770 0.0060 -0.0011 0.0957 0.0092
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Table 5. Simulation results with different Hessians
n = 128, m = n0.65 = 23

R′′F(d) max{R′′F(d),2}
d bias s.d. MSE bias s.d. MSE

0.0 -0.6832 9.6644 93.8666 0.0046 0.1363 0.0186
0.4 -0.9285 12.6518 160.9299 0.0042 0.1370 0.0188
0.8 -1.6182 14.5551 214.4700 0.0035 0.1343 0.0181
1.2 -1.4070 14.6224 215.7950 -0.0001 0.1385 0.0192

max{R′′F(d),3} 4
d bias s.d. MSE bias s.d. MSE

0.0 0.0047 0.1363 0.0186 0.0051 0.1363 0.0186
0.4 0.0043 0.1370 0.0188 0.0047 0.1371 0.0188
0.8 0.0037 0.1340 0.0180 0.0043 0.1338 0.0179
1.2 -0.0001 0.1385 0.0192 0.0004 0.1384 0.0192

n = 512, m = n0.65 = 57
R′′F(d) max{R′′F(d),2}

d bias s.d. MSE bias s.d. MSE
0.0 -0.0022 0.0764 0.0058 -0.0022 0.0764 0.0058
0.4 -0.0002 0.0769 0.0059 -0.0002 0.0769 0.0059
0.8 -0.0015 0.0761 0.0058 -0.0015 0.0761 0.0058
1.2 -0.0014 0.0771 0.0059 -0.0014 0.0771 0.0059

max{R′′F(d),3} 4
d bias s.d. MSE bias s.d. MSE

0.0 -0.0022 0.0764 0.0058 -0.0022 0.0764 0.0058
0.4 -0.0002 0.0769 0.0059 -0.0002 0.0769 0.0059
0.8 -0.0015 0.0761 0.0058 -0.0015 0.0761 0.0058
1.2 -0.0014 0.0771 0.0059 -0.0014 0.0771 0.0059
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Table 6. Simulation results of the FELW estimator
n = 128, m = n0.65 = 23

FELW FELW with detrending
d bias s.d. MSE bias s.d. MSE

-0.4 0.0068 0.1351 0.0183 -0.0046 0.1407 0.0198
0.0 -0.0167 0.1356 0.0187 -0.0485 0.1417 0.0224
0.4 -0.0099 0.1469 0.0217 -0.0616 0.1595 0.0292
0.8 -0.0272 0.1354 0.0191 -0.0329 0.1467 0.0226
1.0 -0.0329 0.1367 0.0198 -0.0332 0.1376 0.0200
1.2 -0.0375 0.1371 0.0202 -0.0374 0.1376 0.0203
1.6 -0.0443 0.1325 0.0195 -0.0397 0.1325 0.0191

n = 512, m = n0.65 = 57
FELW FELW with detrending

d bias s.d. MSE bias s.d. MSE
-0.4 0.0014 0.0799 0.0064 -0.0020 0.0816 0.0067
0.0 -0.0066 0.0773 0.0060 -0.0219 0.0800 0.0069
0.4 0.0005 0.0853 0.0073 -0.0243 0.0884 0.0084
0.8 -0.0090 0.0775 0.0061 -0.0091 0.0777 0.0061
1.0 -0.0127 0.0765 0.0060 -0.0127 0.0765 0.0060
1.2 -0.0109 0.0770 0.0060 -0.0109 0.0770 0.0060
1.6 -0.0150 0.0822 0.0070 -0.0102 0.0808 0.0066

Table 7. Simulation results with Type I processes
n = 128, m = n0.65 = 23

ELW 2ELW
d bias s.d. MSE bias s.d. MSE

-0.4 0.0023 0.1473 0.0217 0.0129 0.1405 0.0199
0.0 -0.0004 0.1391 0.0193 0.0003 0.1386 0.0192
0.4 0.0050 0.1559 0.0243 0.0110 0.1379 0.0191
0.8 0.0008 0.1418 0.0201 0.0048 0.1349 0.0182
1.0 -0.0004 0.1393 0.0194 0.0003 0.1375 0.0189
1.2 0.0014 0.1401 0.0196 0.0016 0.1385 0.0192
1.6 -0.0013 0.1482 0.0220 -0.0010 0.1477 0.0218

n = 512, m = n0.65 = 57
ELW 2ELW

d bias s.d. MSE bias s.d. MSE
-0.4 0.0010 0.0794 0.0063 0.0057 0.0785 0.0062
0.0 -0.0025 0.0781 0.0061 -0.0024 0.0781 0.0061
0.4 0.0022 0.0797 0.0064 0.0011 0.0756 0.0057
0.8 -0.0016 0.0775 0.0060 -0.0013 0.0766 0.0059
1.0 -0.0019 0.0765 0.0059 -0.0020 0.0766 0.0059
1.2 -0.0008 0.0774 0.0060 -0.0007 0.0774 0.0060
1.6 0.0001 0.0796 0.0063 0.0002 0.0795 0.0063
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Table 8: Estimates of d for US Economic Data: m = n0.7

n LW 2ELW 95% asy. CI
Real GNP 80 1.077 1.126 [0.912, 1.340]
Nominal GNP 80 1.273 1.303 [1.089, 1.517]
Real per capita GNP 80 1.077 1.128 [0.914, 1.342]
Industrial production 129 0.821 0.850 [0.671, 1.029]
Employment 99 0.968 1.000 [0.800, 1.200]
Unemployment rate 129 0.951 0.980 [0.801, 1.159]
GNP deflator 100 1.374 1.398 [1.202, 1.594]
CPI 129 1.273 1.287 [1.109, 1.466]
Nominal wage 89 1.300 1.351 [1.147, 1.555]
Real wage 89 1.047 1.089 [0.885, 1.293]
Money stock 100 1.460 1.501 [1.305, 1.697]
Velocity of money 120 0.953 0.993 [0.808, 1.179]
Bond yield 89 1.091 1.108 [0.903, 1.312]
Stock prices 118 0.900 0.958 [0.772, 1.143]
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