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Convergence from Discrete- 
to Continuous-Time 
Contingent Claims Prices 

Hua He 
University of California, Berkeley 

This article generalizes the Cox, Ross, and Rub- 
instein (1979) binomial option-pricing model, and 
establishes a convergence from discrete-time mul- 
tivariate multinomial models to continuous-time 
multidimensional dzflusion models for contingent 
claims prices. The key to the approach is to 
approximate the N-dimensional dzflusion price 
process by a sequence of N-variate, (N + I)-nomial 
processes. It is shown that contingent claimsprices 
and dynamic replicating portfolio strategies 
derived from the discrete time models converge to 
their corresponding continuous-time limits. 

Over a decade ago, Cox, Ross, and Rubinstein (CRR) 
(1979) established a convergence of certain binomial 
processes to a lognormal process and showed that the 
Black-Scholes (1973) option-pricing formula is a limit 
of the discrete time binomial option-pricing formu1a.l 
The binomial approach provides an easy way of 
explaining (without using advanced mathematics) 
how uncertainties are resolved in the continuous-time 
model and how continuous trading in the stock and 
the bond can span infinitely many states of nature. 

This article is based on the second chapter of my Ph.D, dissertation at MIT. 
I thank Ayman Hindy, Neil Pearson, and Mark Rubinstein for commenrs, and 
Chi fu Huang and Robert Merron for helpful conversations and commenrs. 
I also thank Editors Michael Brennan and Philip Dybvig, and referee Kerry 
Back for comments that improved the exposition of this article. Address 
reprint requests to Hua He, Haas School of Business, Universityof California 
at Berkeley, Berkeley, CA 94720. 

' The binomial or two-stare variable approach was also developed indepen- 
dently in Sharpe (1978) and Rendleman and Bartrer (1979) .  
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More importantly, it provides an elegant numerical alternative to the 
partial differential equations (PDE) obtained in continuous-time 
models. The binomial option-pricing technique has now become an 
extremely powerful tool for valuing derivative securities that might 
be difficult to price under other alternative methods. 

Recently, Evnine (1983), Boyle (1988), Cheyette (1988), Hull and 
White (HW) (1988), Boyle, Evnine, and Gibbs (BEG) (1989), and 
Madan, Milne, and Shefrin (MMS) (1989) have attempted to gener- 
alize the CRR method to approximate a multidimensional lognormal 
process. Although their approximations are adequate for purposes of 
valuation, none of these have provided economically satisfactory solu- 
tions. The paper by Cheyette is an exception. The discrete-time pro- 
cesses proposed by these authors converge to the corresponding con- 
tinuous-time process under the risk-neutral probability measure. 
Although risk neutrality helps establish the convergence of contin- 
gent claims prices, the approximating discrete time models no longer 
have the usual Arrow-Debreu complete market property as is the case 
in the continuous-time counterpart. The model proposed by MMS 
has the complete market property but does not guarantee the con- 
vergence of multivariate contingent claims, such as options, on the 
maximum of two stocks. Cheyette's approximation does not rely on 
risk neutrality. However, his method applies only to lognormal pro- 
cesses. 

In this article, we present a convergence from discrete-time mul- 
tivariate multinomial models to a general continuous-time multidi- 
mensional diffusion model for contingent claims prices. The diffusion 
model consists of N risky stocks and one riskless bond, where the 
stocks and the bond form a dynamically complete securities market. 
We approximate the N-dimensional diffusion process for stock prices 
bya sequence of N-variate, ( N +  1) -nomial processes. Thus, the stocks 
and the bond in the discrete-time multinomial models also form a 
dynamically complete securities market. We show that the contingent 
claims prices and the replicating portfolio strategies derived from the 
discrete-time models converge to the corresponding contingent claims 
prices and replicating portfolio strategies of the limiting continuous- 
time model. 

The problem of approximating price processes when there are two 
stocks and one bond, where the stock prices follow two correlated 
lognormal processes, has long been of interest to financial econo- 
mists. Intuitively, one would think that if one lognormal process can 
be approximated by one binomial process, then two lognormal pro- 
cesses should be approximated by two binomial processes. This would 
lead to a multinomial process with four uncertain states following 
each trading date. However, with four uncertain states and only two 
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stocks and one bond available for trading, markets cannot be com- 
pleted by dynamic trading, and options cannot be priced by arbitrage. 
This is not the case in the continuous-time model, in which markets 
can be completed by continuous trading in the two stocks and the 
bond. 

Evnine (1983) has proposed a "multiple" binomial model, which 
approximates the increments of two lognormal processes by three 
sequential moves. The approach he takes is first to let the price of 
the first stock move stochastically, while letting the price of the other 
stock grow at the riskless rate. He then lets the price of the second 
stock move stochastically, while letting the price of the first grow at 
the riskless rate. Finally, the prices of both stocks move together in 
order to capture the correlation. While Evnine manages to show that 
the discrete-price process matches the continuous-price process in 
distribution in the limit, the dynamic portfolio trading strategy implied 
by his model is always indeterminate, because the return on one of 
the two stocks is correlated perfectly with the return on the riskless 
bond. MMS (1988) construct an (N + 1)-nomial process for Nstocks 
such that the distribution of the discrete-time price process for each 
individual stock converges to that of a one-dimensional lognormal 
process. Since they fail to specify the correlations among different 
assets and establish joint convergence for Nstock prices, their model 
does not imply convergence for general multivariate claims prices. 

In this article, we resolve this problem by showing that an N-di- 
mensional diffusion process for stock prices can be approximated by 
an N-variate, (N  + 1)-nomial p r o c e ~ s . ~  We utilize the fact that the 
increments of Nindependent Brownian motions can be approximated 
by N uncorrelated, not necessarily independent, random variables. 
Moreover, we construct N uncorrelated random variables, each of 
which takes only N + 1 possible values. As a result, an N-dimensional 
diffusion process can be approximated by an N-variate and ( N  + 1)-
nomial process. For example, two correlated lognormal processes can 
be approximated by a trinomial model. A crucial distinction between 
our approximation and that of MMS is that the implicit Arrow-Debreu 
state price processes derived from the discrete-time models in ours 
converge to the corresponding continuous-time limit. 

Computationally, our method may or may not perform better than 
those proposed by others. This is not surprising. It is well-known 
that, for numerical option prices, the trinomial approximation to a 
single lognormal process may perform better than the binomial 
approximation. In the case of two lognormal processes, although the 

The number N is the martingale multiplicity discussed in Duffie and Huang (1985). When an (N 
+ 1)-nomial process is used, the martingale multiplicities in both discrete- and continuous-time 
models are identical. 
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number of nodes in our models grows at a rate of n 2  ( n  is the number 
of time steps), which is significantly slower than the rate of growth 
reported in the models of HW and BEG, more time steps may be 
needed to reach the same level of approximation as in these articles. 

Other related work has been done by Cheyette (1988), in which 
he approximates the returns of Nassets by an (N + 1)-nomial process, 
where the asset prices follow an N-dimensional lognormal process. 
Similar to our model, the complete market property of the continuous- 
time model is preserved in the discrete-time models and the con- 
vergence of contingent claims prices is also achieved. While Chey- 
ette's approach is similar to that here, we emphasize that his method 
applies only to the lognormal processes. The approximation proce- 
dure as well as the proof of convergence presented here are more 
general. 

The rest of this article is organized as follows. In Section 1, the 
method is illustrated by some examples. In Section 2, a multivariate 
multinomial approximation to the multidimensional diffusion pro- 
cess is presented for stock prices and the bond price. In Section 3, 
the convergence of contingent claims prices and replicating portfolio 
strategies is dealt with. The article is concluded in Section 4. 

1. Examples 

In this section, we illustrate our method by some simple examples. 
Consider first the Black-Scholes economy with one stock and one 
bond. The movement of the stock price, S, and the bond price, B, 
can be described by the stochastic differential equations 

dB, = rB, dt, 

dS, = pS, dt  + US, dw,, 


where w is a one-dimensional Brownian motion. Suppose the time 
horizon is [O,1]. CRR (1979) proposed the following binomial approx- 
imation: 

where n denotes the number of time steps and S;S is the price of the 
stock at time k/n.  The probability that the stock price will go up in 
the next period is equal to i ( 1  + ( p / u ) m ) .  Although CRR's 
approximation serves our purposes well, we propose a more natural 
discretization scheme that focuses on approximating the increment 
of the Brownian motion. Intuitively, the increment of a Brownian 
motion can be approximated by the binomial random variable Z defined 
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by P[i = 11 = P[Z = -11 = i, which has the required properties that 
E(i) = 0 and Var(i) = 1.Therefore, we propose the following binomial 
approximation with equally probable states: 

More generally, we consider the Black-Scholes economy with two 
stocks and one bond. The stock prices follow two correlated lognor- 
mal processes satisfying the stochastic differential equation: 

where wl and w, are two independent Brownian motions, a: is the 
volatility of the instantaneous return on stock i, and p is the correlation 
coefficient between the instantaneous returns of the two stocks. 
Following the above argument, we approximate the increments of 
two independent Brownian motions by two random variables. We 
may use the two independent random variables, (i,, i,), defined by 

which have the required properties that E(Z,) = E(t,) = 0, Var(il) = 

Var(i,) = 1,and Cov(i,, i,) = 0.However, this approximation would 
result in an economically unsatisfactory multinomial process with 
four possible states following each trading date. If we allow ourselves 
to choose among uncorrelated random variables, then we can use the 
two random variables, (i,, Z,), defined by 

which also have the required properties E(i,) = E(i,) = 0,Var(il) = 

Var(t,) = 1, and Cov(Z,, &) = 0. Thus, we propose the triominal 
approximation with equally probable states: 
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We will show in the next section that the above trinomial processes 
converge weakly to the original lognormal processes. 

We point out that the choice of such a pair of random variables is 
not unique. Let there be three equally probable states, and let the 
values of 2, and Z2 be ( e  ,,,, e,,,, e3,,) and (e,,,, e,,,, e3,2), respectively, 
then the restrictions on 2, and Z2 are that the two variables should 
have zero means, unit variances, and zero covariance, i.e., 

For example, (l/fl) (2, -1 + fi,-1 - fi)and (I/*) (2, -1 
- fi,-1 + fi) form one such pair. In fact, there exist infinitely 
many such pairs satisfying the above equations. Also, it is important 
to note that by collapsing those states that have the same levels of 
stock prices, the number of states in the trinomial model grows at a 
rate ( n  + 1) ( n  + 2)/2, which is significantly slower than the rate of 
growth in the models proposed by HW and BEG. Of course, more 
time steps are needed in order to be able to reach the same level of 
precision for option prices as that reported by HW and BEG. If the 
drift and diffusion terms were not linear in S, then the number of the 
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states in the trinomial model would grow at a rate 3" [and ( N  + 1)" 
for (N  + 1)-nomial processes]. 

2. Multinomial Approximation 

In this section, we construct a sequence of N-variate, (N  + 1)-nomial 
processes that converge weakly to the N-dimensional diffusion pro- 
cess for stock price^.^ Moreover, we show that the sequence of the 
implicit Arrow-Debreu state price processes derived from the dis- 
crete-time model converges weakly to the corresponding continuous- 
time limit. This result plays an important role in establishing the weak 
convergence of contingent claims prices. 

We consider a securities market consisting of N risky stocks and 
one locally riskless bond. The N-dimensional vector of stock prices, 
S, and the bond price, B, are described by the stochastic differential 
equations 

dS, = b(S,) d t  + a(S,) dw,, (1) 
dB,=B,r(S,)dt, B , = l ,  ( 2 )  

where w is an N-dimensional standard Brownian motion defined on 
a complete probability space ( Q ,  % P) .  We assume that b: !RN -$ RN, 
a: !RN+ !RmN, and r: !RN-$ R are continuous and that a is nonsingular. 
We assume further that band a satisfy the uniform Lipschitz condition, 
that is, there exists a constant L > 0, such that, for all x,y E !RN, 

Ib(x) - b(y)I + l d x )  - d y ) I  5 L l x - y l .  (3) 

We assume that r is nonnegative and that there exists a constant K > 
0, such that, for all x E !RN, 

Finally, the time horizon is assumed to be [0, I]. It is easy to see that 
the regularity conditions imposed on the drift and the diffusion terms 
are readily satisfied for the Black-Scholes price system. 

As in the Black-Scholes economy, we assume that markets are 
dynamically complete.* That is, contingent claims, such as options 
written on the stocks, can be spanned by dynamic trading in the stocks 
and the bond. To rule out arbitrage opportunities, we assume that 
there exists a unique equivalent martingale measure or a risk-neutral 

Let X" and Xbe  the stochastic processes defined on the probability spaces (Q,, .Fn,P,,) and (Q, E 
P) with values in DM [0, I] ,  the space of functions from [0, I]  to RMwhich are right-continuous with 
left limits. The sequence of processes X* is said to converge weakly to X if, for any bounded 
continuous mapping, h, from DM [0, 11 to R, we have E,[b(Xn)] - E[h(X)]. See Billingsley (1968, 
chapter 1) for details. 

Rigorously speaking, dynamic completeness requires the existence of a unique equivalent martin- 
gale measure and a proper choice of the space of feasible trading strategies (Cox and Huang, 1989). 
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probability measure for the price system defined by (1) and (2) (i.e., 
the stock prices discounted by the bond price become martingale 
under this measure). Letting 

and 

then the equivalent martingale measure, denoted by Q, has the fol- 
lowing form: 

We assume throughout that K is continuous in x. One can easily verify 
that the stochastic process It,} satisfies the stochastic differential equa- 
tion: 

d t r=~(St) t rdwr,  (5) 

In the literature {(,(w)} is usually interpreted as the implicit system 
of Arrow-Debreu state prices for a security that pays off one dollar at 
time t, state w and nothing otherwise (Cox and Huang, 1989). More 
specifically, the price of a contingent claim that pays off X, dollars (in 
flow) at time t [0, 11 and Y dollars (in lump sum) at time 1 can be 
calculated as 

Hence, to be more precise, {(,I is the price of the discounted dollar 
payoff per unit of probability. With a minor abuse of terminology, we 
call t the implicit Arrow-Debreu state price process. 

We now proceed with the construction of a sequence of (N + 1)-
nomial processes for the N stock prices and the bond price. As we 
have illustrated earlier, the basic idea here is to approximte the incre- 
ments of Nindependent Brownian motions by Nuncorrelated random 
variables. 

We first construct Nuncorrelated random variables. Since we need 
to approximate the increments of the Brownian motions on all of the 
subintervals, we will in fact construct a sequence of independent, 
identically distributed, N-dimensional random vectors, ik= (i!, . . . , 
i%)T,k = 1, 2, . . . , n, where n is the number of time steps. Let A be 
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an (N + I ) ,  real, and orthogonal matrix, such that the last column of 
A is ( l / v ' M ,  . . . , 

For example, when N = 1,we can choose 

When N = 2, we can choose 

Define e,, = a , , v ' M ,  where a, is the sth element in jth column 
of A. Let Q = {w,, . . . , w,,,} be the sample space on which ikis 
defined. We assign an equal probability to each of the states w,, that 
is, P[w,]  = 1/(N + I ) ,  for s = 1, . . . , N + 1.We now define if(w,) = 

e,,, for s = 1, . . . , N + 1, where k is the time step. Thus e,, is the 
realization of the jth element of the random vector in state w,. Note 
also that ikis stationary, since e, is independent of k. It is easy to 
verify that, for a fixed k, if ,. . . , i; are uncorrelated with each other, 
and have mean 0 and variance 1.Now, let Q, = Q x . . . x Q ( n  times) 
be the natural product space and P, be the natural product measure 
on Q,, then {il,Z2, . . . , Zn} can be treated as a sequence of independent 
and identically distributed random vectors defined on (Q,, P,). We 
now define the N-variate, (N + 1)-nomial process for stock prices, 
S",as the solution to the stochastic difference equation: 

where S;denotes the vector of stock prices at time k / n  and S,"= So. 
More explicitly, we have 

Such a matrix always exists! In fact, let D be the linear subspace (in 3tN+')generated by the vector 
(1, . . . , then the first N columns of A can be formed by any orthonormal basis of DL,  the 
largest linear subspace that is orthogonal to D. A general procedure for finding an orthonormal 
basis for a subspace can be found in Anton (1981). 
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where Sg,] denotes the price of stock j at time k / n ,  bjand a,,are the 
jth elements of b and the ith column of a,respectively. From ( 6 ) , it 
is clear that the kth random vector, Z k ,  is used to approximate the 
random increments of the Brownian motions from time k / n  to time 
( k + l ) / n .Equation ( 6 )can be viewed as the finite difference approx- 
imation to the stochastic differential equation ( 1 ) .Similarly, we define 
the bond price process, B", by the following equation: 

with B," = 1. Note that the bond price is locally riskless. 
In order to define the discrete time stock and bond prices on the 

entire time horizon [0, I ] , we set h: = hFtland S: = SFtl, where [ I  
denotes the largest integer that is less than or equal to nt. The sample 
paths of inand hnare piecewise constant and have jumps only at t 
= k/n.(j  

Since there are N +  1 securities traded and N + 1possible uncertain 
states following each trading date, and since a and A are invertible, 
it can be verified that markets are dynamically complete.' The unique 
Arrow-Debreu state price w(w,; S t )  at time k / n ,  conditional on the 
stock price at time k / n being S,",for a security that pays off one dollar 
at time ( k  + l ) / n ,  state w, and nothing otherwise must satisfy the 
following c o n d i t i ~ n s : ~  

Solving (8) and ( 9 ) by substituting ( 6 ) and ( 7 ) into these equations, 
we obtain 

Let Fn= {F,, k 5 n ) ,where F, = a(;', . . . ,Z k ) ) .  Then (g", 6")is a process defined on the probability 
space (Q, ,  Tn, [O,I ] .P,) with values in P+' 
'	If u and A are invertible, the (N + 1) x (N + 1) matrix formed by the prices of the Nstocks and 

the bond at the N + 1 states for any subtree is also invertible. 

Rigorously speaking, we should write S;+,(w,; S;) for S;+,,since 5" is a Markov chain and its value 
at time ( k  + l ) / n depends upon its value at time k / n .  
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w(us; s;) = -(1 + F ; k ( u s )  X 1 +-
N +  1 r(:E))l 

Note that w( ; S,") is the one-period Arrow-Debreu state price [from 
time k /n  to time (k + l ) /n ] .  To obtain the Arrow-Debreu state price 
at time 0 for a security that pays off one dollar at time k/n,  we need 
to multiply together all of the one-period Arrow-Debreu state prices 
from period 1 to period k, where period i is from time ( i - l ) / n  to 
time i /n .  Let w; denote this state price. Then 

with w," = 1. Moreover, T,"satisfies the stochastic difference equa- 
tion: 

We assume that all of the r ' s  are nonnegative for sufficiently large n. 
A sufficient condition for this to be true is that K be bounded. 

In order to relate wn to t, we introduce a new process [", de-
fined by 

Using the fact that 

one can verify that E,[t :] = 1,where En denotes the expectation under 
the probability measure P, on Q,. Now defining 

then (8) and (9) imply that Q, is an equivalent martingale measure 
(i.e., the discounted stock price processes become martingales under 
this measure). Defining f: = [I",,,, for t c  [0, 11,we call the implicit 
Arrow-Debreu state price process, similar to the convention we 
adopted in the continuous-time case. Analogous to ( 5 ) ,  ["can be 
represented by the stochastic difference equation: 
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We have the following convergence theorem for the proposed ( N  + 
1)-nomial approximation. (All of the proofs can be found in the 
Appendix.) 

Theorem1. ~ e t5%= (in,in,k )and X =  (S, B, t). Then 5%converges 
weakly to X. 

Remark 1. (a) The proof of this theorem employs the Martingale 
Central Limit Theorem developed by Ethier and Kurtz (1986, p. 354). 
Theorem I shows that the local movements ofN-independent Brown- 
ian motions can be approximated by N uncorrelated but possibly 
dependent random variables {Cj,  j = I ,  . . . , N}. 

(b) N + I is the smallest number of the states one can allow in  
order to keep {C!}, j = I, . . . , N, mutually uncorrelated. 

3. Convergence of Contingent Claims Prices 

In this section, we demonstrate that contingent claims price pro- 
cesses, obtained from the discrete-time models based on a no-arbi- 
trage argument, converge weakly to their continuous-time counter- 
part. Moreover, the dynamic portfolio strategies that replicate the 
payoff on the underlying contingent claims also converge weakly. I t  
then follows that the contingent claims prices and the replicating 
portfolio strategies, computed at time 0, converge (numerically) to 
the corresponding continuous-time limits. 

We begin with a definition of a contingent claim. Let g be a mea- 
surable function mapping from RN to 8.A contingent claim on the 
stocks is defined to be a security that pays g(Sl) dollars at the final 
date (i.e., t = This formulation subsumes all of the usual exam- 
ples. For example, it includes as special cases an option on one stock, 
max(SS1) - K, O ) ,  and an option on the maximum of the two stocks, 
max(max(S['), SS2)) - K, 0), where SSi) denotes the price of the ith 
security at time 1. 

Following Harrison and Kreps (1979), the price of a contingent 
claim at time t can be evaluated by taking the conditional expectation 
of the discounted final payoff under the equivalent martingale mea- 
sure Q, that is, 

= E - exp - r(S,, 7 ) d ~g(S1) St = S . (11)[:: ( s1 1 1 I 
'We ignore the possibility of cash payout before the final date or path-dependent final payoffs, 

although conceptually these pose no difficulty at all. 

534 
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Alternatively, if Vis continuously differentiable with respect to t and 
twice continuously differentiable with respect to S, then V can be 
determined as a solution to the following partial differential equation 
[Cox, Ingersoll, and Ross ( 1 9 8 5 ) l :  

where 

Equation ( 1 2 )  is usually called the fundamentalpartial dzferential 
equation in the option-pricing literature. The dynamic portfolio strat- 
egy that replicates the final payoff of this claim is given by 

where fli, the ith element of 19,and a denote the number of shares 
held in the ith stock and in the bond, respectively. 

This valuation technique can easily be applied to the discrete-time 
model. The price of the contingent claim at any time k / n , denoted 
by v",can be evaluated by taking the conditional expectation under 
the equivalent martingale measure Q,, that is, 

V n(S, -9= E,,, [g ( ~ " , >I S z =  SI 
Alternately, Vncan be determined as a solution to the recurrent equa- 
tion: 

The dynamic portfolio strategy that replicates the final payoff of this 
claim is determined by the following system of linear equations: 
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for s = 1, . . . , N + 1. Since there are N + 1 equations and N + 1 
unknowns, and since a and A are invertible, the solution for ( a ; ,  
8 r) is uniquely determined. Morever, a ;and 8 ;are functions of the 
stock prices S; and time k / n .  The following theorem establishes the 
convergence of contingent claim prices from discrete-time models 
to the continuous-time diffusion model. We start with a definition. 

Definition 1. A function f(x, tj: BN x %+ -) 9IM is said to satisfy a 
polynomial growth condition if there exists a constant y > 0 and a 
positive integer q, such that 

If(x, t)I i ~ ( 1  v (x, t ) c B N x %+.+ IxI24), 

Theorem 2. Suppose that V is continuously dzfferentiable up to the 
third order and that V and all of its derivatives up to the third order 
satisfy a polynomial growth condition. Then, 

( I )  letting = V(S, tj ,  V," = Vn(S,", k/n), and fi: = V?,, we have 
that pn converges weakly to k. 

* 

(2) letting 6, = a(S,  tj ,  8 ,  = 8(S, tj ,  di := a g,, and 8 := 0 we 
have that din and 8"" converge weakly to 6 and 8, respectively. 
As a result, we have that p; Po, and (6;, 8;j as n - GO.+ + 

The basic technique of the proof is to write the discrete-time con- 
tingent claim price as follows: 

Since Vis continuous and Sn converges weakly to S, the stochastic 
process defined by the first term on the right-hand side of the above 
equation converges weakly to p by the Continuous Mapping Theorem 
(theorem 1.5.1 of Billingsley, 1968, p. 30). We show in the Appendix 
that the stochastic process defined by the second term on the right- 
hand side of the above equation converges weakly to zero. 

We emphasize that the convergence of contingent claims prices 
can be well-anticipated from Theorem 1 and Equations (11) and (13). 
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Clearly, convergence of the implicit Arrow-Debreu state price pro- 
cesses is crucial for Theorem 2 to be true. 

The smoothness condition for V and the polynomial growth con- 
dition for Vand its derivatives can be guaranteed if the following two 
conditions are satisfied: 

1.g(x) is piecewise and continuously differentiable up to the sixth 
order, with all of these derivatives satisfying a polynomial growth 
condition; 

2 ,  r(x) and xr(x) satisfy a uniform Lipschitz condition for x E RN, 
and r(x) and a(x) are continuously differentiable with respect to x 
up to the sixth order with all of these derivatives satisfying a poly- 
nomial growth condition. 

For example, g(x) =max(0, x -K) satisfies the first condition, although 
it is not differentiable at x = K. We refer the reader to He (1989, p. 
68) for details. The second condition is readily satisfied for a price 
system in which the stock prices follow a multidimensional lognormal 
process and the bond price grows at a constant rate of interest. 

4. Concluding Remarks 

We have generalized the Cox, Ross, and Rubinstein (1979) binomial 
option-pricing model, and developed a convergence from discrete- 
time multivariate multinomial models to continuous-time multidi- 
mensional diffusion models for contingent claims prices. We approx- 
imated the N-dimensional diffusion price process by a sequence of 
N-variate, (N + 1)-nomial processes. The contingent claims prices, 
as well as dynamic replicating portfolio strategies derived from the 
discrete-time models, converge to their corresponding continuous- 
time limits. 

Appendix: Proofs 

Proof of Theorem 1 
We need to apply the Martingale Central Limit Theorem (theorem 
7.4.1 of Ethier and Kurtz, 1986, p. 354) to prove Theorem 1. 

Lemma 1 (Martingale Central Limit Theorem). Let b(x) be a n  M 
x 1 vector a n d  a(x) be a n  M x N matrix for all x E RM.Assume that 
b a n d a  are continuous such that the stochastic dzfferential equation 

dXt = b(Xt) dt  + a(X,) dw, (A1) 
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admits a unique weak solution,1° where w is a n  N-dimensional 
Brownian motion. Let X be the weak solution to (AI)  with X, = x,. 
Suppose Xn is a sequence of Markov processes with sample paths in  
P [ O ,  I], where P ( 0 ,  I ]  is the space of functions from (0, I/ to 9IM 
that are right-continuous with left limits. Let Ln andAn be N x I and 
(symmetric) N x N matrix-valuedprocesses, respectively, such that 
each of their elements has sample path in  D1[O, I ]  and A: - A: is 
nonnegative dejinite for t > s L 0. Dejine74, = infit IT: I X:I L q 
or I X:_ I 2 q},  and suppose further that 

(a) X;  converges to x, in distribution; 

(bj Mn = Xn - Ln and MnMnT - An are martingales; 

(cj  for all q > 0, 


sup 1 x: - x:- 1 = 0,I 


in probability for all q > 0, as n - co, where a = ooT. Then Xn 

converges weakly to X. 


Proof of Theorem 1. Following remark 16.4 of Rogers and Williams 

(1987, p. 150), the uniform Lipschitz condition for band a guarantees 

that (1) has a unique weak solution. As a result, (2) and (5) also have 

unique solutions. Next, letting 


-_ _ 

lo Equation (Al )  is said to have a weak solution Xwith initial distribution p if there exists (Q,{g,}, 
P ) ,  such that w is an {F,}-Brownian motion, X, has distribution p, and Xsatisfies 

X. = X. b(XJ di + d X S )  dw.,+ 6' 1' 
where all o f the  stochastic integrals are well-defined. The weak solution to ( A l )  is said to be  unique 
if, whenever {X,, t 2 0) and {Xi, t e 0) are two solutions such that the distributions of X, and 
X; are the same, the distributions of X, and Xi are the same. See Rogers and Williams (19B7, 
chapter 5 ) .  
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then the matrix A: - A:' is nonnegative definite for t > s, and Mn = 
kn- Ln,  MnMnT- An are martingales. If we can verify that conditions 
(c) and (d) of Lemma 1 are satisfied, we can conclude that zncon-
verges weakly to X. 

To verify (c), we observe that with the control of the stopping time 
7~ and the continuity assumption on r, b, a, and K,  IX: - X:- I is of 
order n-%,  IL :  - L ( is of order n-I, and IA: - A,"_I is of order 
n-'.  Thus, (c) is satisfied. A similar argument applies to (d). This 
completes the proof. 

Proof of Theorem 2 
We need a lemma to proceed with the proof. 

Lemma 2. For any integers m, I, k 1 0, where 15 k 5 n,  there exists 
a constant A > 0, depending only upon m, L, and K,  such that 

where L and K are constants, such that the regularity conditions in 
(3) and (4) are satisjied for b ( d ,  a(4, and Y r ( x ) ,  and k, denotes 
the expectation under Q,. 

Proot We demonstrate this inequality for N = 1 (the proof for N > 
1 is analogous). Our proof follows closely the proof of theorem 2.3 
of Friedman (1975, p. 107), where he obtained this result for mul-
tidimensional diffusion processes. 

Given the regularity conditions on b, a, and r, we can find some 
K' > 0,  depending only upon L and K, such that, for any x E 3, 
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I b ( x ) I 5 K ' ( l + I x l ) ,  I b ( x ) I Z 5 K ' ( 1 + I x 1 2 ) ,  


I d x ) l 5 K'(1  + 1x11, 


I o ( x ) 1 2 5 K ' ( 1 + I x 1 2 ) ,  I x b ( x ) 1 5 K ' ( 1 + I x 1 2 > ,  


I b ( x ) u ( x ) I IK'(1  + 1x1 2 ) ,  1 x 2 r ( x )I 5 K'(1 + 1x1 2 > .  

Applying a Taylor expansion to the function xZm,we obtain 

[s;+,]zm= + 2 m [ ~ ; ] 2 ~ - ' ( ~ ; + ,s ; )[s2Trn -

+ m ( 2 m  - I ) [ S ; ] ~ ~ - ~ ( S ; + ,- S ; )  

where 

for some p E [ O ,  11. Taking expectation in(under Q,) on both sides 
and noticing that 1 3 2 15 I S;l + I bl + 1 0 1  and I Z k I  = 1 , we obtain 

i , [ s;+l]Zm 

where we have used the fact that I x 2 r ( x )1 5 ~ ' ( 1+ x 2 )  and 
hn[ik]= K ( s z ) / ~ ~ .  5 1 + xZmNoticing further that xZmPZ and ( x + 
y)" 5 z m ( x m+ y m ) when x, y > 0 , we obtain 
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Since hn[s;125 1 + kn[~ ; l z rn ,for m 2 1, and , ! ? , [ s ; ]~~-~5 1 + 
kn[s;lzrn,we can find a constant C > 0 ,  depending only upon m and 
K', such that 

This implies that 

where A = sup,(l + C / n ) n  < co. 

Proof of Theorem 2. We first prove this theorem for N = 1. We write 
the discrete-time contingent claim price as follows: 

Since .fnconverges weakly to S, and V is continuous, the stochastic 
process defined by the first term on the right-hand side of the above 
equation converges weakly to by the Continuous Mapping Theo-
rem, theorem 1.5.1 of Billingsley (1968,  p. 30). We show below that 
the stochastic process defined by the second term, the truncation 
errors, on the right-hand side of the above equation converges weakly 
to zero. 

The basic idea of the proof is to substitute the value function V 
into the recurrent equation that defines Vnto get an estimate for the 
truncation errors: 

Let us use + and - to denote the states { i k  = 1) and { Z k  = -11, 
respectively, and define 

where S;:, and S;;, denote the prices at time (k+ l ) / n  when ik = 1 
and Zk = -1 ,  respectively. Similarly, we define two functions f$* and 

as follows: 

f"+"(7) = v ( s ;  + 7(S;; ,  - S ; ) ,  t ;  + 7( t ;+ ,  - t ; ) ) ,  
= V ( S ;  + 7 ( s ; + ,  - s ; ) ,  t ;  + 7( t ;+ ,  - t ; ) ) ,  
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where t; = k / n . Since Vis differentiable up to the third order, fk4* 
and admit the following Taylor expansions (we omit the super- 
scripts for f ) :  

where 

We have 

where V and the partial derivatives of V are evaluated at (S;, t;). 
Now, to obtain an estimate for e;, we substitute the expressions for 
f in ( l )  andEn(l)  into the recurrent equation. Using the fact that V 
satisfies (12), we obtain 

where y; = - (T(+;  S;)R; + T(-; S;)Q;). Letting h = - i ~ , , ( b ~  
+ 2 b a ~ )- V,,rS - $v,,,we obtain the following recurrent equation 
for e 2: 
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We want to show that there exists a constant C > 0 and an integer q 
> 0, independent of k and n, such that 

le;l 5 ( ~ / f i > ( l+ IS21 '"1. (A21 
To prove that, we express e ;  as follows: 

e", 0, 

Since, by assumption, h satisfies a polynomial growth condition, we 
can find a constant C' > 0 and an integer q > 0, such that 

I h(x,t) I 5 C'(1 + IxI2q). 

Applying Lemma 2 ,  we obtain 

for all m 2 k. Since B ;  IB",,,, we can find a constant D > 0, such 
that 

For the second summation, we argue that it is of order l/V%. To see 
this, one can express R ;  and Q; explicitly by writing down 
fy)(s) and f?)(s), and argue that they are the sum of terms, of order 
n-3/2or higher. For example, a typical term of R ;  has the following 
form: 

Since Vssssatisfies a polynomial growth condition, so does the inte- 
gral. We can choose q to be larger enough so that all of the polynomial 
growth conditions have the same power 2q .  Now applying the same 

which is of order r 3 I 2 .  

Hence, we can find a constant D'  > 0, such that 
;,yprocedure, we can get an inequality for 
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Combining (A4) and (A5), we conclude that (A2) is true. Letting 
Z: = e",,, we have Zn converges weakly to 0.We conclude that 
converges weakly to 6 

We now substitutef- and f+into the equation that defines 6;. This 
yields f5n--f";"(1) - (1) - e;:, - e;;, 


SX, - s;;, SX, - s;;, 

26 2V,, 2 6 

= V s +  -Vss+ --+ -(R; - Q ; )  
n n u 

2 f i+ --- (e;:, - e;;,) . (A61
u 

Since R; and Q; are of order w 3 I 2or higher, we conclude that 

converges weakly to zero. We further argue that ( 2 6 , ' ~ )(e;:, -

e;;,) converges weakly to zero as well. For simplicity, we assume r 
= 0.Letting t = k/n, we have from (A3) that 

where the convergence follows from Aldous (1981, theorem 21.2 and 
lemma 16.2). Hence, {6(e;:, - e ; ~ , ) }converges we_aklyto zero, 
and 8" converges weakly to {Vs(S,, t )} .Finally, since V" converges 
weakly to c a n d  c: = & :B: + BFTe,we conclude that &" converges 
weakly to &. This proves part 2 .  The claims that ?; Po,&," - Go,+ 

and B," - & follow directly from the definition of the Skorokhod 
topology (Billingsley, 1968, p. 121) and from the fact that they are 
deterministic. 

We now consider the case when N > 1. For simplicity, we assume 
N = 2.  The proof can be carried out in exactly the same way as we 
did for N = 1. Using a similar procedure, we can get a recurrent 
equation for the truncation error e;: 
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This allows us to argue that 2' converges weakly to zero in the order 
of I/&. Next, we have 

for s = 1,2, 3. This implies that 

Applying Taylor expansion to f$, and then solving for 82, we o b -

tain 

Hence, 8 "converges weakly to { Vs(S,t)1. The proof is now completed. 
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