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Evidence that the distributions of many common economic variables are non-normal has been
widely reported. When faced with such empirical evidence two problems arise: the ¯rst is proposing
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no longer su±cient to describe the dependence structure. In this paper we use the theory of copulas
to address these problems. Sklar's theorem (1959) shows that an n-dimensional joint distribution
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conditional dependence between these exchange rates is asymmetric: dependence is higher during
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1 Introduction

Evidence that the distributions of many common economic variables are non-normal has been
widely reported, as far back as Mills (1927). Common examples of deviations from normality
are excess kurtosis (or fat tails) and skewness in univariate distributions. Recent studies have
also reported deviations from multivariate normality, in the form of asymmetric dependence. One
example of asymmetric dependence is where two asset returns exhibit greater correlation during
market downturns than market upturns, as reported in Erb, et al. (1994), Longin and Solnik
(2001) and Ang and Chen (2002). When faced with such empirical evidence two problems arise:
the ¯rst is proposing alternative, more palatable, density speci¯cations. The second is ¯nding
measures of the dependence between two (or more) variables that more informative than linear
correlation, as when the joint distribution of the variables of interest is non-elliptical the usual
correlation coe±cient is no longer su±cient to describe the dependence structure.

In this paper we make use of a theorem due to Sklar (1959), which shows that any n -dimensional
joint distribution function may be decomposed into its n marginal distributions, and a copula, which
completely describes the dependence between the n variables1. By using an extension of Sklar's
theorem we are able to exploit the success we have had in the modelling of univariate densities
by ¯rst specifying models for the marginal distributions of a multivariate distribution of interest,
and then specifying a copula. As an example, consider the modelling of the joint distribution of
two exchange rates: the Student's t distribution has been found to provide a reasonable ¯t to the
conditional univariate distribution of daily exchange rate returns, see Bollerslev (1987) amongst
others. A natural starting point in the modelling of the joint distribution of two exchange rates
might then be a bivariate t distribution. However, the standard bivariate Student's t distribution
has the restrictive property that both marginal distributions have the same degrees of freedom
parameter. Studies such as Bollerslev (1987) have shown that di®erent exchange rates have di®erent
degrees of freedom parameters. In our empirical section we show that even the °exible BEKK model
for the conditional variance-covariance matrix, due to Engle and Kroner (1995), estimated assuming
a bivariate t density fails goodness-of-¯t tests when estimated on the Deutsche mark - U.S. dollar
and the Yen - U.S. dollar exchange rates. The condition that both exchange rate returns have the
same degrees of freedom parameter is simply too restrictive. Note also that this is possibly the most
ideal situation: where both assets turn out to have univariate distributions from the same family,
the Student's t, and very similar degrees of freedom, 5:9 for the mark and 4:3 for the yen. We could
imagine situations where the two variables of interest have quite di®erent marginal distributions,
a stock return and an exchange rate for example, where no obvious choice for the bivariate density

1The word copula comes from Latin for a `link' or `bond', and was coined by Sklar (1959), who ¯rst proved the

theorem that a collection of marginal distributions can be `coupled' together via a copula to form a multivariate
distribution. It has been given various names, such as dependence function (Galambos, 1978 and Deheuvels, 1978),
uniform representation (Kimeldorf and Sampson, 1975, and Hutchinson and Lai, 1990) or standard form (Cook and
Johnson, 1981).
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exists. Decomposing the multivariate distribution into the marginal distributions and the copula
allows for the construction of better models of the individual variables than would be possible if
we constrained ourselves to look only at existing multivariate distributions.

An alternative to a parametric speci¯cation of the multivariate distribution would of course be
a non-parametric estimate, which can accommodate all possible distributional forms. The main
drawback with the non-parametric approach is the lack of precision that occurs when the dimension
of the distribution of interest is moderately large (say over four), or when we consider multivariate
distributions conditioned on a state vector (as is the case in this paper). The trade-o® for this lack
of precision is the fact that a parametric speci¯cation may be mis-speci¯ed. It is for this reason
that we devote a great deal of attention to tests of goodness-of-¯t of the proposed speci¯cations.

This paper makes two main contributions. Firstly, we show in Section 2 that the existing theory
of (unconditional) copulas may be extended to the conditional case, thus allowing us to use copula
theory in the modelling of time-varying conditional dependence. Time variation in the conditional
¯rst and second moments of economic time series has been widely reported, and so allowing for
time variation in the conditional dependence between economic time series seems natural. The
second contribution of this paper is to show how we may use the theory of conditional copulas
for multivariate density modelling. We examine daily Deutsche mark - U.S. dollar (DM-USD) and
Japanese yen - U.S. dollar (Yen-USD) exchange rates over the period January 1991 to December
2001. The modelling of the entire conditional joint distribution of these exchange rates, rather
than just, say, the conditional means, variances and linear correlation, has a number of attractive
features: given the conditional joint distribution we can, of course, obtain the conditional means,
variances and correlation, so this type of modelling nests solely modelling conditional moments.
Also, we can obtain the time-paths of any other dependence measure of interest, such as rank
correlation, which can capture non-linear dependence, or measures of dependence in the extremes,
such as tail dependence2. Further, there are economic situations where the entire conditional
joint density is required, such as the pricing of ¯nancial options with multiple underlying assets,
see Rosenberg (1999) or in the calculation of portfolio Value-at-Risk (VaR), see Hull and White
(1998), or in a forecast situation where the loss function of the forecast's end-user is unknown.

In our empirical application we report two main ¯ndings. We ¯nd signi¯cant evidence that the
conditional dependence between the DM-USD and Yen-USD exchange rates is asymmetric, in that
they are more dependent during appreciations of the U.S. dollar (or alternatively, during deprecia-
tions of the mark and the yen) than during depreciations of the U.S. dollar. We also ¯nd very strong
evidence of a structural break in the conditional copula following the introduction of the euro in
January 1999: the level of dependence drops substantially, the dynamics of conditional dependence
change, and the dependence structure goes from asymmetric to approximately symmetric.

Despite the fact that copulas were introduced as a means of isolating the dependence structure of
2This measure will be discussed in more detail in Section 4. Dependence during extreme events has been the

subject of much analysis in the ¯nancial contagion literature, see Hartmann, et al. (2001) amongst others.
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a multivariate distribution over forty years ago, it is only recently that they attracted the attention
of economists. In the last few years numerous papers have appeared, using copulas to analyse such
topics as multivariate option pricing, portfolio Value-at-Risk, models of default risk, selectivity
bias, nonlinear autoregressive dependence and contagion3. To our knowledge, this paper is the
¯rst to consider copulas for time-varying conditional distributions, emphasize the importance of
formal goodness-of-¯t testing for copulas and marginal distributions, and to employ statistical tests
comparing the goodness-of-¯t of competing non-nested copulas.

The structure of the remainder of this paper is as follows. Section 2 introduces the theory of
the conditional copula, and Section 3 discusses some of the issues regarding the evaluation and
comparison of copula models. In Section 4 we apply the theory of conditional copulas to a model of
the time-varying joint distribution of the Deutsche mark - U.S. dollar and Yen - U.S. dollar exchange
rates. In that section we discuss the construction and evaluation of time-varying conditional copula
models. Finally, in Section 5 we summarise our results, and discuss possible extensions. All proofs
are contained in Appendix A.

2 The Theory of the Conditional Copula

In this section we introduce the theory of copulas, and discuss its usefulness for multivariate density
modelling and forecasting. We ¯rstly review the existing theory on copulas for unconditional
random variables, and then extend the analysis to allow for conditioning variables. We derive the
properties of conditional distributions and conditional copulas from the properties of the underlying
unconditional distributions. Firstly we must de¯ne the notation and some technical details.

Let (X; Y; W) be random variables on a complete probability space (;F; H¤), where  ´
R£R£Rj , j is some ¯nite integer, F ´ B

¡
R £R £ Rj

¢
is the Borel ¾-¯eld generated by R£R£Rj ,

and H¤ is a probability measure. The variables of interest are X and Y and the conditioning variable
is W . Though in this paper we focus on bivariate distributions, it should be noted that the theory
of copulas is applicable to the more general multivariate case. Let the conditional distribution of
(X; Y ) given W , (that is, (X;Y ) jW ) be denoted H, and let the conditional marginal distributions of
XjW and Y jW be denoted F and G respectively. We will assume in this paper that the distribution
function, H¤ is su±ciently smooth for all required derivatives to exist, and that F , G and H are
continuous. The latter assumptions are not necessary, but making them allows us to introduce
copula theory in a more intuitive manner. Throughout this paper we will denote the distribution
(or c:d:f:) of a random variable using an upper case letter, and the corresponding density (or p:d:f:)
using the lower case letter. We will denote the extended real line as ¹R ´ R [ f§1g. We adopt

3In statistics see Clayton (1978), Cook and Johnson (1981), Oakes (1982, 1989), Genest and Rivest (1993), Genest,
et al., (1995), Cap¶eraµa, et al., (1997), Denuit and Genest (1999) and Fine and Jiang (2000). In economics and ¯nance

see Frees, et al. (1996), Frees and Valdez (1998), Rosenberg (1999, 2000), Bouy¶e et al. (2000a), Cherubini and Luciano
(2000, 2001), Costinot et al. (2000), Li (2000), Scaillet (2000), Embrechts, et al. (2001), Frey and McNeil (2001),
Rockinger and Jondeau (2001), Sancetta and Satchell (2001), Smith (2001) and Patton (2002a).
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the usual convention of denoting random variables in upper case, Xt, and realisations of random
variables in lower case, xt.

2.1 The unconditional copula

Let us assume in this section that j = 0 and so we have no conditioning variables, thus X s F ,
Y s G and (X;Y ) s H. We de¯ne the (two-dimensional) unconditional copula of (X;Y ) below.

De¯nition 1 (Unconditional copula) The unconditional copula of (X;Y ), where X s F and
Y s G, and F and G are continuous, is the joint distribution function of U ´ F (X) and V ´
G (Y ).

The two variables U and V are known as the `probability integral transforms' of X and Y . Fisher
(1932) showed that the random variable U = F (X) has the Unif (0; 1) distribution, regardless of
the original distribution, F .4 This is replicated in Theorem 1 below. Firstly we will de¯ne a
distribution function, and the `quasi-inverse' of a distribution function. The second condition
below refers to the `H-volume' of a box in ¹Rk, denoted by VH . This is simply the probability
of observing a point in the box, and in the case that the probability density function exists this
condition reduces to the function H always implying a non-negative density.

De¯nition 2 (Multivariate distribution function) A k-dimensional distribution function is a
function H with domain ¹Rk such that

1. H (x) = 0 for all x 2 ¹Rk such that at least one element of x = ¡1, and H (1;1; :::; 1) = 1;

2. VH (B) ´ P2k
i=1 sgn (c)H (c) ¸ 0 for B =[a1; b1] £ [a2; b2] £ ::: £ [ak; bk], the \k-box" with

vertices c, where ci is either equal to ai or bi for i = 1; 2; :::; k, and

sgn (c) =
1;

¡1;
if ck = ak for an even number of k0s
if ck = ak for an odd number of k0s

Remark 1 (Univariate distribution function) In the univariate case these conditions simplify
to:

1. F (¡1) = 0 and F (1) = 1;

2. F (x2) ¡ F (x1) ¸ 0 for all x1; x2 2 ¹R such that x1 · x2:

.
4The probability integral transform has also been used in the context of goodness-of-¯t tests as far back as the

1930s, see K. Pearson (1933) for example. More recently Diebold, et al. (1998) extended the probability integral
transform theory to the time series case, and proposed using it in the evaluation of density forecasts. We will discuss
this further in Section 3.
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Remark 2 (Bivariate distribution function) In the bivariate case these conditions simplify
to:

1. H(x;¡1) = H(¡1; y) = 0 for all (x; y) 2 ¹R £ ¹R, and H(1; 1) = 1;

2. VH ([x1; x2] £ [y1; y2]) ´ H (x2; y2)¡H (x1; y2)¡H (x2; y1)+H (x1; y1) ¸ 0 for all x1;x2; y1; y2 2
¹R such that x1 · x2 and y1 · y2.

Remark 3 (Trivariate distribution function) In the trivariate case these conditions simplify
to:

1. H (x;y; ¡1) = H (x; ¡1;w) = H (¡1; y; w) = 0 for all (x;y;w) 2 ¹R £ ¹R£ ¹R and H (1;1;1) =
1;

2. VH ([x1; x2] £ [y1; y2] £ [w1; w2]) ´ H (x2; y2; w2)¡H (x2; y2; w1)¡H (x2; y1; w2) ¡H (x1; y2; w2)+
H (x2; y1; w1) +H (x1; y2;w1)+H (x1; y1;w2)¡H (x1; y1; w1) for all x1; x2; y1; y2;w1; w2 2 ¹R
such that x1 · x2, y1 · y2 and w1 · w2.

Note that the marginal distributions are extracted from the bivariate distribution (for example)
as follows:

F (x) ´ H (x;1) for all x 2 ¹R (1)

G (y) ´ H (1; y) for all y 2 ¹R (2)

With the formal de¯nition of a distribution function in hand, we now de¯ne the `quasi-inverse'
of a distribution function.

De¯nition 3 (Quasi-inverse of a distribution function) The quasi-inverse, F (¡1), of a dis-
tribution function F is de¯ned as:

F(¡1)(u) = inffx : F(x) ¸ ug, for u 2 [0;1]: (3)

We are now ready to present Fisher's result on the probability integral transform of a random
variable with a continuous distribution function. This result can be found in Casella and Berger
(1990), for example.

Theorem 1 (Fisher, 1932) Let X have a continuous cdf F . Then U = F (X) has the Unif (0; 1)
distribution, regardless of the original distribution, F .

All proofs are in Appendix 1. If (U;V ) s C , then Theorem 1 and De¯nition 1 show that
the marginal distributions of C must be Unif (0;1). Thus a copula is a joint distribution of two
Unif (0; 1) random variables. With this result we can show that a copula must have the following
properties. We focus on the bivariate case; the corresponding k-dimension case is derived in a
similar fashion.
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Proposition 1 (Properties of an unconditional copula) A two-dimensional copula has the
following properties:

1. It is a function C : [0; 1] £ [0; 1] ! [0;1]

2. C (u; 0) = C (0; v) = 0 for all u;v 2 [0;1]

3. C (u; 1) = u and C (1; v) = v for all u;v 2 [0;1]

4. VC ([u1; u2] £ [v1; v2]) ´ C (u2; v2)¡C (u1; v2)¡C (u2; v1)+C (u1; v1) ¸ 0 for all u1; u2; v1; v2 2
[0;1] such that u1 · u2 and v1 · v2.

One motivation for analysing the copula of two random variables is that it allows us to focus on
the dependence between random variables in a general way. The copula contains information from
the joint distribution that is not contained in the marginal distributions. By transforming X and Y
to U and V we ¯lter out the information in the marginal distributions, because these variables will
be Unif (0;1) regardless of F and G: The information in H that is not in the marginal distributions
is all of the dependence information. Thus C contains all of the information on the dependence
between X and Y , but no information on the univariate characteristics of X or Y . It is for this
reason that the copula of (X;Y ) is alternatively known as the `dependence function' of (X;Y ), see
Galambos (1978) and Deheuvels (1978) for example.

A further motivation, and the one driving our interest in copulas for multivariate density mod-
elling and forecasting, is given by Sklar (1959). Sklar's theorem is the main result in copula theory,
and we provide it below.

Theorem 2 (Sklar's theorem for continuous distributions) Let F be the distribution of X,
G be the distribution of Y , and H be the joint distribution of (X;Y ). Assume that F and G are
continuous. Then there exists a unique copula C such that

H(x;y) = C(F(x);G(y)); 8 (x;y) 2 ¹R £ ¹R (4)

Conversely, if we let F and G be distribution functions and C be a copula, then the function H
de¯ned by equation (4) is a bivariate distribution function with marginal distributions F and G.

It is the converse of the Sklar's theorem that is the most interesting for multivariate density
modelling. It implies that we may link together any two univariate distributions, of any type
(not necessarily from the same family), with any copula and we will have de¯ned a valid bivariate
distribution. The usefulness of this result stems from the fact that while in the economics and
statistics literatures we have a vast selection of °exible parametric univariate distributions, the
set of parametric multivariate distributions available is much smaller. This is possibly due to the
increased complexity of these functions, or possibly due to lack of demand for °exible parametric
multivariate distributions in the past. There are a great deal of parametric copulas for us to use in
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multivariate density modelling, see Hutchinson and Lai (1990), Chapter 5 of Joe (1997) and Chapter
4 of Nelsen (1999) for example, and so the set of possible parametric multivariate distributions is
increased dramatically by Sklar's theorem, using only functions that have already been reported.
For example, let M; N and P be the number of parametric multivariate distributions, univariate
distributions and copulas previously reported in the literature, and note that N >> M . With
Sklar's theorem the set of possible parametric multivariate distributions is increased from M to
N2 ¢ P >> M. Of course not all of these distributions will be useful empirically, but increasing
the set of possible models clearly improves our chances of ¯nding density models that provide an
adequate ¯t to the data under analysis.

With the following corollary to Sklar's theorem, given in Nelsen (1999) for example, the set of
possible parametric multivariate distributions increases even further, as we are able to extract the
copula from any given multivariate distribution and use it independently of the marginal distribu-
tions of the original distribution.

Corollary 1 Let H be any bivariate distribution with continuous marginal distributions F and G.
Let F(¡1) and G(¡1) denote the (quasi-) inverses of the marginal distributions. Then there exists a
unique copula C : [0;1] £ [0;1] ! [0; 1] such that

C (u;v) = H
³
F(¡1) (u) ;G(¡1) (v)

´
; 8(u; v) 2 [0; 1] £ [0; 1] (5)

From the converse of Sklar's theorem we know that given any two marginal distributions and
any copula we have a joint distribution. From the above corollary we know that from any given joint
distribution we can extract the implied copula and marginal distributions. This corollary allows us
to extract, for example, the `normal copula' from a standard bivariate normal distribution.

2.2 The conditional copula

In economics, and particularly in economic time series analysis, the case that the random variables
of interest are conditioned on some pre-determined variables is an important one. In this section
we show how the existing results in copula theory may be extended to allow for conditioning
variables. We derive the properties of conditional joint distributions and the conditional copula
from the properties of unconditional distributions and copulas. For the purposes of exposition we
will assume below that the dimension of the conditioning variable, W , is 1.

Proposition 2 (Properties of a univariate conditional distribution function) Let the joint
distribution of (X;W ) be Fxw, the marginal distribution of W be Fw , and the support of W be W.
The conditional univariate distribution of XjW , denoted F; is de¯ned as

F (xjw) ´ fw (w)¡1 ¢ @Fxw (x; w)
@w

(6)

and satis¯es the following properties:
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1. F (¡1jw) = 0 and F (1jw) = 1 for each w 2 W

2. F (x2jw) ¡ F (x1jw) ¸ 0 for all x1 · x2 2 ¹R and each w 2 W.

We can obtain in a similar fashion the properties of conditional bivariate distribution functions.

Proposition 3 (Properties of a bivariate conditional distribution function) Let the joint
distribution of (X;Y;W ) be Hxyw, the marginal distribution of W be Fw, and the support of W be
W. The conditional bivariate distribution of (X; Y ) jW , denoted H, is de¯ned as

H (x; yjw) ´ fw (w)¡1 ¢ @Hxyw (x; y;w)
@w

(7)

and satis¯es the following properties:

1. H(x;¡1jw) = H(¡1; yjw) = 0; and H(1; 1jw) = 1 for all (x;y) 2 ¹R £ ¹R and each
w 2 W,

2. VH ([x1; x2] £ [y1; y2] jw) ´ H (x2; y2jw) ¡H (x1; y2jw) ¡ H (x2; y1jw) + H (x1; y1jw) ¸ 0 for
all x1;x2; y1; y2 2 ¹R, such that x1 · x2, y1 · y2 and each w 2 W.

The conditional marginal distributions of X and Y are de¯ned as F (xjw) ´ H (x; 1jw), and
G (yjw) ´ H (1; yjw). Unlike the conditional bivariate distribution function, we cannot obtain the
conditional copula of (X;Y ) jW from the copula of (X;Y; W ). The `conditional copula of (X;Y ) jW '
is de¯ned below.

De¯nition 4 (Conditional copula) The conditional copula of (X;Y ) jW , where XjW s F and
Y jW s G, is the conditional joint distribution function of U ´ F (XjW ) and V ´ G (Y jW ) given
W .

A two-dimensional conditional copula is derived from any distribution function C¤ (the joint
distribution of U;V and W ) such that the conditional joint distribution of the ¯rst two variables
given the remaining variables is a copula for all values of the conditioning variables.

Proposition 4 (Properties of a conditional copula) A two-dimensional conditional copula is
a function C : [0;1] £ [0;1] £W ! [0;1] with the following properties:

1. C(u;0jw) = C(0; vjw) = 0, and C(u; 1jw) = u and C(1; vjw) = v, for every u;v in [0; 1] and
each w 2 W,

2. VC ([u1; u2] £ [v1; v2] jw) ´ C (u2; v2jw)¡C (u1; v2jw)¡C (u2; v1jw) +C (u1; v1jw) ¸ 0 for all
u1;u2; v1; v2 2 [0;1], such that u1 · u2 and v1 · v2 and each w 2 W.
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The ¯rst property in Proposition 4 provides the lower bound on the distribution function, and
ensures that the conditional marginal distributions, C (u;1jw) and C (1; vjw), are uniform. The
condition that VC is non-negative has the same interpretation as for distribution functions: it
simply ensures that the conditional probability of observing a point in the region [u1;u2] £ [v1; v2]
is non-negative. A two-dimensional conditional copula, then, is the conditional joint distribution
of two conditionally Uniform(0; 1) random variables.

We now move on to an extension of the key result in the theory of copulas: Sklar's (1959)
theorem for conditional distributions:

Theorem 3 (Sklar's theorem for continuous conditional distributions) Let F be the con-
ditional distribution of XjW , G be the conditional distribution of Y jW , and H be the joint con-
ditional distribution of (X;Y ) jW . Assume that F and G are continuous in x and y. Then there
exists a unique conditional copula C such that

H(x;yjw) = C(F(xjw);G(yjw)jw); 8 (x;y) 2 ¹R £ ¹R and each w 2 W (8)

Conversely, if we let F be the conditional distribution of XjW , G be the conditional distribution of
Y jW, and C be a conditional copula, then the function H de¯ned by equation (8) is a conditional
bivariate distribution function with conditional marginal distributions F and G.

The only complication introduced when extending Sklar's theorem to conditional distributions
is that the conditioning variable(s), W , must be the same for both marginal distributions and the
copula. This is important in the construction of conditional density models using copula theory.
Failure to use the same conditioning variable for F , G and C will, in general, lead to a failure of
the function H to satisfy the conditions for it to be a joint distribution function.

The density function equivalent of (8) is useful for maximum likelihood analysis, and is easily
obtained, provided that F and G are di®erentiable, and H and C are twice di®erentiable.

h(x; yjw) ´ @2H (x; yjw)
@x@y

=
@F (xjw)

@x
¢ @G(yjw)

@y
¢ @2C (F (xjw) ;G (yjw) jw)

@u@v
h(x; yjw) ´ f (xjw) ¢ g (yjw) ¢ c (u;vjw) ; 8 (x;y;w) 2 ¹R £ ¹R£W, so (9)

LXY = LX + LY +LC (10)

where u ´ F (xjw), and v ´ G(yjw), LXY ´ log h (x;yjw) ; LX ´ log f (xjw), LY ´ logg (yjw) ;
and LC ´ log c (u; vjw).

We can also obtain an equivalent to Corollary 1 for the conditional case.

De¯nition 5 If F is a conditional distribution function then the inverse with respect to its ¯rst
argument is de¯ned as:

F(¡1) (ujw) = inf fx : F (xjw) ¸ ug , for u 2 [0; 1] and each w 2 W (11)
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Corollary 2 Let H be any conditional bivariate distribution with marginal distributions F and G
that are continuous in their ¯rst arguments. Let F(¡1) and G(¡1) denote the (quasi-) inverses of the
conditional marginal distributions with respect to their ¯rst arguments. Then there exists a unique
conditional copula C : [0;1] £ [0; 1] £ W ! [0; 1] such that

C (u; vjw) = H
³
F(¡1) (ujw) ; G(¡1) (vjw) jw

´
; 8(u;v) 2 [0;1] £ [0;1] and each w 2 W (12)

And so from any bivariate conditional distribution we may extract the implied conditional
copula.

2.3 Examples of some copulas

To provide some idea as to the °exibility that copula theory gives us, we now consider various joint
distributions, all with standard normal marginal distributions and all implying a linear correlation
coe±cient, ½, of 0:5. The contour plots of these distributions are presented in Figure 1. In the
upper left corner of this ¯gure is the standard bivariate normal distribution with ½ = 0:5. The other
elements of this ¯gure show the dependence structures implied by other copulas, with each copula
calibrated so as to also yield ½ = 0:5. It is quite clear that knowing the marginal distributions and
linear correlation is not su±cient to describe a joint distribution: Clayton's copula, for example,
has contours that are quite peaked in the negative quadrant, implying greater dependence for joint
negative events than for joint positive events. Gumbel's copula implies just the opposite. The
functional form of the symmetrised Joe-Clayton will be given in Section 4; the remaining copula
functional forms may be found in Joe (1997).

[ INSERT FIGURE 1 HERE ]

3 Evaluation of time series density models

Before moving on to developing models for the conditional copula, we must ¯rst establish a means
of evaluating and comparing their goodness-of-¯t. Measures of goodness-of-¯t are not only of im-
portance for evaluating the ¯t of a proposed copula, but for testing the speci¯cation of the marginal
distributions. Modelling of the conditional copula requires that the models for the marginal distri-
butions to be indistinguishable from the true marginal distributions. Say we use ~F and ~G rather
than F and G in the marginal distribution modelling stage. This will lead to ~U ´ ~F (XjW ) and
~V ´ ~G (Y jW ) being non-Uniform(0; 1), and so any copula model applied to the joint distribution
of

³
~U; ~V

´
jW will automatically be mis-speci¯ed, by Proposition 4. Thus testing for marginal dis-

tribution mis-speci¯cation is a critical step in constructing multivariate distribution models using
copulas.
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3.1 Evaluation

As discussed above, a copula may be viewed as the joint distribution of two uniform random
variables, and so the evaluation of copula models is a special case of the more general problem
of evaluating multivariate density models. The density model (or forecast) evaluation literature is
relatively young, and no single method has emerged as best. Studies by Diebold, et al. (1998) and
Diebold, et al. (1999) focus on the probability integral transforms of the data in the evaluation
of the density model, and so are clearly relevant in evaluating copula models. We use the tests of
Diebold, et al. (1998, 1999) and propose and employ a new test, described below.

Let us denote the two transformed series as futgTt=1 and fvtgTt=1, where ut ´ Ft (xtjFt¡1) and
vt ´ Gt (ytjFt¡1), for t = 1;2; :::; T. Diebold, et al. (1998) showed that for a time series of
probability integral transforms will be i:i:d: Unif (0; 1) if the sequence of densities is correct, and
proposed testing the speci¯cation of a density model by testing whether or not the transformed
series was i:i:d:, and Unif (0; 1) in two separate stages5. We follow this suggestion, and test the
independence of the ¯rst four moments of Ut and Vt, by regressing (ut ¡ ¹u)k and (vt ¡ ¹v)k on 20
lags of both (ut ¡ ¹u)k and (vt ¡ ¹v)k, for k = 1;2;3; 4: We test the hypothesis that the transformed
series are Unif (0;1) via the Kolmogorov-Smirnov (K-S) test6.

There are two drawbacks of the above approach to evaluating a density model: the main
drawback is that we must test the correctness of the density model separately from testing for
serial dependence in the transformed variables7. The second drawback is that the fact that the
Kolmogorov-Smirnov test has lower power in the tails of the distribution than in the centre, see
Stephens (1986). We propose here an alternative test, which draws on the interval forecasting
literature and quanti¯es the intuition that Diebold, et al. (1998) suggest can be gained by looking
at the empirical histograms of the transformed data. Diebold, et al. suggest that by comparing
the number of observations in each bin, otherwise known as a `hit' in that bin, with what would be
expected under the null hypothesis we may gain some insight as to where the model fails, if at all.
This form of evaluation has its roots in K. Pearson's (1900) Â2 test, see D'Agostino and Stephens

5It should be noted that these tests were developed for the case when the parameters of the proposed model

are known, and not estimated from the sample. Constructing the variables ut and vt using parameter estimates is
not innocuous. Indeed, it was known as far back as David and Johnson (1948) that when the probability integral
transform is taken with respect to the true distribution but using estimated parameters the resulting random variable
does not have theUnif (0;1) distribution; instead it has a distribution that depends on the distribution of the original

random variable. The implications for these speci¯cation tests are that we need, as some authors in the past have
done, see Engle and Manganelli (1999) and Diebold et al. (1998), to interpret the tests as being conditional on the
estimated parameters. These tests, then, ignore any estimation error in the parameters. The best we can hope for is
that for large sample sizes the impact of the estimation uncertainty is small.

6See Shao (1999) for the theory underlying this test.
7Berkowitz (2001) proposed one solution to this problem. He suggested that instead of testing the futgTt=1 series,

say, we may de¯ne a new series:
©
zt ´ ©¡1 (ut)

ªT
t=1 , where ©

¡1 is the inverse cdf of a standard normal distribution.
The null hypothesis that futgTt=1 is i:i:d: Unif (0;1) may be tested by testing that fztgTt=1 is i:i:d: N (0; 1), which is

possibly easier due to the large number of tests of normality available.
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(1986) for more details.
In the following test wedecompose a density model into a set of `region' models (`interval' models

in the univariate case), each of which should be correctly speci¯ed under the null hypothesis that
the entire density is correctly speci¯ed. The speci¯cation introduced below is an extension of the
`hit' regressions of Christo®ersen (1998) and Engle and Manganelli (1999), proposed to evaluate
interval forecasts, such as Value-at-Risk forecasts. We will describe the test below in a general
setting, and discuss the details of implementation in Section 4.5.

Let Wt be the (possibly multivariate) random variable under analysis, and denote the support
of Wt by S. Let fRjgKj=0 be regions in S such that Ri \ Rj = ; if i 6= j, and [Kj=0Rj = S. Let
¼jt be the true probability that Wt 2 Rj and let pjt be the probability suggested by the model8.
Finally, let ¦t ´ [¼0t;¼1t; :::;¼Kt]0 and Pt ´ [p0t; p1t; :::; pKt]0. Under the null hypothesis that the
model is correctly speci¯ed we have that Pt = ¦t for t = 1; 2; :::;T . Let us de¯ne the variables to
be analysed in the tests as Hitjt ´ 1 fXt 2 Rjg, where 1 fAg takes the value 1 if the argument, A,
is true and zero elsewhere, and Mt ´

PK
j=0 j ¢ 1 fXt 2 Rjg.

We may test that the model is adequately speci¯ed in each of the K + 1 regions individually
via tests of the hypothesis H0 : Hitjt s i:n:i:d:9 Bernoulli (pjt) versus H1 : Hitjt s Bernoulli (¼jt),
where ¼jt is a function of both pjt, and other elements of the time t ¡ 1 information set thought
to possibly have explanatory power for the probability of a hit. This is where our test di®ers from
those presented in Christo®ersen (1998) and Engle and Manganelli (1999). Christo®ersen (1998)
proposed modelling ¼jt as a ¯rst-order Markov chain to check for ¯rst-order serial dependence of
the hits, while Engle and Manganelli (1999) proposed using a linear probability model to determine
if other variables, such as lagged hits and also lagged levels of the Value-at-Risk, had signi¯cant
predictive value. The Markov chain approach su®ers from the drawback that it is di±cult to check
for the in°uence of other variables or longer lags, while Engle and Manganelli's (1999) model may
be improved relatively easily by using a better model for the hits than a linear probability model.
We propose using a logit model for the hits, which yields more e±cient parameter estimates, and
thus hopefully a more powerful test10. The model we propose for ¼jt is:

8Given the similarity between this test and Pearson's Â2 test it would not be surprising to ¯nd that the power

of the test is maximised when the probability mass in each region is equal. For a univariate density model this is a
simple task, however it may be a more di±cult task in the more general multivariate case. Also, it may be that the
researcher has a particular interest in certain regions of the support (the lower tails, for example, which are important

for VaR estimation) being correctly speci¯ed. For these reasons we consider the case where the probability mass in
each region is possibly unequal.

9\i.n.i.d." stands for \independent but not identically distributed".
10If we wished instead to retain the simplicity of the test of Engle and Manganelli (1999) we could employ an

alternative extension: If we de¯ne Hit¤t ´ (pt (1¡ pt))¡1=2 ¢ (Hitt ¡ pt), then we may use OLS to regress Hit¤t on a

constant and variables in the time-t information set in the same manner as Engle and Manganelli (1999). The test
that all of the parameters in the Hit¤ regression are zero would also be conducted in the same fashion. Standardising
the variance of the dependent variable in the hit regression, in addition to standardising the mean as in Engle and

Manganelli (1999), is necessary as the conditional variance of Hitt under the null is pt (1¡ pt), and thus if pt is
time-varying this causes Hitt to be heteroscedastic. In the case that pt is constant this concern obviously does not
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¼jt = ¼j
¡
Zjt;¯j ; pjt

¢
= ¤

µ
¸j

¡
Zjt;¯j

¢ ¡ ln
·
1 ¡ pjt

pjt

¸¶
(13)

where ¤(x) ´ 1
1+e¡x is the logistic transformation, Zjt is a matrix containing elements from the

information set at time t ¡ 1, ¯j is a (kj £ 1) vector of parameters to be estimated, and j̧ is any
function of regressors and parameters such that j̧ (Z; 0) = 0 for all Z. The condition on ¸j is
imposed so that when ¯j = 0 we have that ¼jt = ¼j (Zjt;0; pjt) = pjt, and thus the competing
hypotheses may be expressed as ¯j = 0 versus ¯j 6= 0. The parameter ¯j may be found via
maximum likelihood, where the likelihood function to be maximised is: L

¡
¼j

¡
Zj ; ¯j; pj

¢
jHitj

¢
=

§Tt=1Hitjt ¢ ln¼j
¡
Zjt;¯j ; pjt

¢
+

³
1 ¡Hitjt

´
¢ ln

¡
1 ¡ ¼j

¡
Zjt; ¯j; pjt

¢¢
. The test is then conducted as

a likelihood ratio test, where LRj ´ ¡2 ¢
³
L

¡
pj jHitj

¢
¡ L

³
¼j

³
Zj ; ^̄j ; pj

´
jHitj

´´
s Â2

kj under
the null hypothesis that the model is correctly speci¯ed in region Rj .

We may test whether the proposed density model is correctly speci¯ed in all K + 1 regions
simultaneously by testing the hypothesis H0 : Mt s i:n:i:d: Multinomial (Pt) versus H1 : Mt s
Multinomial (¦t), where again we specify ¦t to be a function of both Pt and variables in the time
t ¡ 1 information set. We propose the following speci¯cation for the elements of ¦t:

¼1
t = ¼1 (Zt; ¯;Pt) = ¤

µ
¸1 (Z1t;¯1)¡ ln

·
1 ¡ p1t

p1t

¸¶
(14)

¼jt = ¼j (Zt;¯; Pt)

=
³
1 ¡

Xj¡1
i=1

¼it
´

¢ ¤
Ã

¸j
¡
Zjt;¯j

¢
¡ ln

"
1 ¡Pj

i=1 pit
pjt

#!
; for j = 2; :::; K (15)

¼0
t = 1 ¡

XK

j=1
¼jt (16)

where ¤(x) ´ 1
1+e¡x is the logistic transformation, Zt ´ [Z1; :::;ZK]0 and ¯ ´ [¯1; :::;¯K]0.

Let the length of ¯ be denoted K¯. This expression for ¦t is speci¯ed so that ¦t (Zt; 0;Pt) = Pt
for all Zt. Further, it allows each of the elements of ¦t to be a function of a set of regressors, Zjt,
while ensuring that each ¼jt ¸ 0 and that §Kj=0¼jt = 1. Again the competing hypotheses may be
expressed as ¯ = 0 versus ¯ 6= 0. The likelihood function to be maximised to obtain the parameter
¯ is L(¦(Z;¯; P) jHit) = §Tt=1§

K
j=0 ln¼jt ¢ 1 fMt = jg. The joint test may also be conducted as

a likelihood ratio test: LRALL ´ ¡2 ¢
³
L (P jHit) ¡ L

³
¦

³
Z; ^̄; P

´
jHit

´´
v Â2

K¯ under the null
hypothesis that the model is correctly speci¯ed in all K regions.

3.2 Comparison

The comparison of alternative copula models is complicated by the fact that they are generally
non-nested. This means that standard methods of comparison, such as a likelihood ratio test,
are not available to us. We employ a method recently proposed by Rivers and Vuong (2002) to

arise.
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overcome this problem. These authors present results for the comparison of non-nested models for
time series data, with few restrictions on the performance measure used to compare the models.

Rivers and Vuong (2002) show that under some conditions the mean of the di®erence in perfor-
mance measures for two models is asymptotically normal. When the performance measure is the
log-likelihood function, the asymptotic variance of the log-likelihood ratio is simple to compute;
we do so using a Newey-West (1987) heteroskedasticity and autocorrelation consistent variance
estimator. We use a variety of `truncation lengths' (the number of lags used in correcting for
autocorrelation and heteroskedasticity) to determine the appropriate length.

4 An Application of the Conditional Copula

In this section we apply the theory of conditional copulas to the modelling of the conditional
bivariate distribution of the daily Deutsche mark - U.S. dollar and Japanese yen - U.S. dollar
exchange rate returns over the period January 2, 1991 to December 31, 2001. This represents
the post-uni¯cation era in Germany (East and West Germany were united in late 1989, and some
¯nancial integration was still being carried out during 1990) and includes the ¯rst three years of
the euro's reign as the o±cial currency of Germany11. These two exchange rates are the two most
heavily traded, representing close to 50% of total foreign exchange trading volume (see the Bank for
International Settlements, 1996). Given their status, the DM-USD and Yen-USD exchange rates
have been relatively widely studied, see Andersen and Bollerslev (1998), Diebold et al. (1999),
Andersen et al. (2001), amongst others.

In addition to the economic interest in these series, they also represent a statistically interesting
pair of series. The multivariate GARCH literature, for example, has numerous examples of studies
reporting evidence of time-varying variances and covariances for exchange rates, see the papers
mentioned above, and also Bollerslev (1987, 1990), amongst many others. This evidence may
suggest that the entire conditional density and dependence structure is time-varying. In modelling
the conditional marginal distributions we will assume that the conditional means evolve according
to an autoregressive process and that the conditional variances evolve according to a GARCH(1,1)
process, see Engle (1982) and Bollerslev (1986). The standardised innovations in both margins are
assumed to be independent and identically distributed (i:i:d:) as Student's t random variables for
the entire sample period.

There are many ways of capturing possible time variation in the conditional copula. We will
assume that the functional form of the copula remains ¯xed over the sample while the parameters
vary according to some evolution equation. An alternative to this may allow also for time variation
in the functional form, using a regime switching model for example.

11The mark was still used for transactions in Germany until the end of 2001, but the mark/euro exchange rate
was ¯xed on January 1, 1999, and all international transactions are denominated in euros. See the European Central
Bank web site (http://www.ecb.int) for more information.
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4.1 Description of the Data

As mentioned above, the data set used for this analysis comprises daily Deutsche mark - U.S. dollar
and Japanese yen - U.S. dollar exchange rates over the eleven-year period from 2 January 1991
to 31 December, 2000, giving us 2819 observations; 2046 from the eight-year period prior to the
introduction of the euro and 773 from the three-year post-euro period. The data were taken from
the database of Datastream International. As usual, we take the log-di®erence of each exchange
rate. Table 1 below presents some summary statistics of the data.

[ INSERT TABLE 1 HERE ]

The above table shows that neither exchange rate had a signi¯cant trend over either period,
both means being very small relative to the standard deviation of each series. Both series also
exhibit slight negative skewness, and excess kurtosis. The Jarque-Bera test of the normality of the
unconditional distribution of each exchange rate strongly rejects unconditional normality in both
periods. We also test for the presence of serial correlation up to the 20th lag in the squared returns,
an indication of ARCH-type heteroskedasticity, via the ARCH LM test of Engle (1982). Both
exchange rates exhibit strong evidence of serial correlation in the squared returns in the pre-euro
period, but only the yen exchange rate appears to exhibit such evidence in the post-euro period. The
unconditional correlation coe±cient between these two exchange rate returns indicates relatively
high linear dependence prior to the introduction of the euro, and weaker dependence afterwards.

4.2 The Model

In specifying a model of the bivariate density of DM-USD and Yen-USD exchange rates we must
specify three models: the models for the marginal distributions of each exchange rate, and the
model for the conditional copula.

4.2.1 The models for the marginal distributions

The models employed for the marginal distributions are presented below. We will denote the log-
di®erence of the DM-USD exchange rate as the variable Xt, and the log-di®erence of the Yen-USD
exchange rate as the variable Yt.

Xt = ¹x +Á1xXt¡1 + "t (17)

¾2
x;t = !x +¯x¾

2
x;t¡1 +®x"2t¡1 (18)

s
Àx

¾2
x;t(Àx¡ 2)

¢ "t s i:i:d: tÀx (19)
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Yt = ¹y +Á1yYt¡1 + Á10yYt¡10 + ´t (20)

¾2
y;t = !y +¯y¾

2
y;t¡1 + ®y´2t¡1 (21)

s
Ày

¾2
y;t(Ày ¡ 2)

¢ ´t s i:i:d: tÀy (22)

That is, the marginal distribution for the DM-USD exchange rate is assumed to be completely
characterised by an AR(1), t-GARCH(1,1) speci¯cation, while the marginal distribution for the
Yen-USD exchange rate is assumed to be characterised by an AR(1,10)-t-GARCH(1,1) speci¯ca-
tion12. In our case it happened that we only needed univariate models for these two marginal
distributions (no lags of the `other' variable appear in either variable's model). This will not al-
ways be so, and it should be checked for each individual case. We will call the above speci¯cations
the `copula models' for the marginal distributions, as they are to be used with the copula models
introduced below.

4.2.2 For Comparison: Normal and Student's t BEKK models

For the purposes of comparison we also estimate two existing alternative models (the estimation
results are not presented in the interests of parsimony, but are available from the author upon
request). For both of the additional models we ¯rst model the conditional means of the two
exchange rate returns series, using the models in equations (17) and (20). We then estimate a
°exible multivariate GARCH models on the residuals: the BEKK model introduced by Engle and
Kroner (1995). This model is written as:

§t = C0C + B0
t¡1§t¡1B +A0e0t¡1et¡1A (23)

where §t ´
"

¾2
x;t ¾xy;t

¾xy;t ¾2y;t

#
, C ´

"
c11 0
c12 c22

#
, B ´

"
b11 b12
b21 b22

#
, A ´

"
a11 a12
a21 a22

#
, et ´

"
"t
´t

#
,

¾2
x;t is the conditional variance of X at time t, and ¾xy;t is the conditional covariance between X

and Y at time t. The two models di®er in their assumption regarding the joint distribution of
the residuals: the ¯rst model assumes bivariate normality, while the second assumes a bivariate
Student's t distribution.

We include these models as benchmark density models obtained using techniques previously
presented in the literature. When coupled with bivariate Student's t innovations the BEKK model
is one of the most °exible conditional multivariate distribution models currently available. The main
cost of the BEKK models is that they quickly become unwieldy in higher dimension problems13

12Themarginal distribution speci¯cation tests, described in Section 4.3, suggested that the model for the conditional
mean of the Yen-dollar exchange rate return needed the tenth autoregressive lag. This lag was not required for the

DM-dollar exchange rates.
13Kearney and Patton (2000) estimated a ¯ve-dimension BEKK model on european exchange rates. We have not

seen any applications of the BEKK model to problems of higher dimensions than this.
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and are quite di±cult to estimate even for bivariate problems when the Student's t distribution is
assumed.

4.2.3 The models for the copula

In selecting a copula to use, we must have a clear idea of the properties of the data under analysis.
Many of the copulas presented in the statistics literature are best suited to variables that take on
extreme values in only one direction: survival times (Clayton, 1978), concentrations of particular
chemicals (Cook and Johnson, 1981 and Genest and Rivest, 1993), °ood data (Oakes, 1989).
However, exchange rates have extremes in both directions: large positive and negative movements.

For the purposes of comparison, we will specify and estimate two alternative copulas, the
`symmetrised Joe-Clayton' copula and the normal (or Gaussian) copula, both with and without
time variation. The normal copula may be considered the benchmark copula in economics. The
most commonly employed distributional assumption in economics is that of normality, and so when
looking for a copula to take as a benchmark the normal copula seems the most reasonable.

The reason for our interest in the symmetrised Joe-Clayton speci¯cation is that while it nests
symmetry as a special case, it does not impose symmetric dependence on the variables as the
normal copula does. The distribution of individual exchange rates has been found to be symmetric
in many cases, but no investigation of bivariate symmetry has been undertaken to our knowledge.
Asymmetric dependence in stock returns has been reported by a number of authors, see Erb, et
al. (1994), Longin and Solnik (2001) and Ang and Chen (2002), but no such evidence has been
reported for exchange rates. One possible factor driving asymmetric dependence in exchange rates
may be an asymmetry in the behaviour of the central banks. For example, if the DM depreciates
against the U.S. dollar, the Bank of Japan may intervene to ensure a corresponding depreciation
of the yen against the dollar to maintain the competitiveness of Japanese exports to the U.S. with
German exports to the U.S. When the DM appreciates against the dollar, however, there may be
no incentive for the Bank of Japan to seek an appreciation of the yen against the dollar. This
type of behaviour would induce an asymmetry in the dependence structure between these exchange
rates, and a similar scenario for east Asian currencies is described in Takagi (1999). Of course,
there are numerous other possible scenarios, including the one that there is no asymmetry in the
dependence structure.

The symmetrised Joe-Clayton copula The ¯rst copula that will be used is a modi¯cation
of the `BB7' copula of Joe (1997). We refer to the BB7 copula as the Joe-Clayton copula, as it is
constructed by taking a particular Laplace transformation of Clayton's copula14. The Joe-Clayton
copula is:

14For more details on the construction of this copula or on Laplace transformations in copula theory, the reader is
referred to Joe (1997).
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CJC(u;vj¿U; ¿L) = 1 ¡
µn

[1 ¡ (1 ¡ u)·]¡° +[1 ¡ (1 ¡ v)·]¡° ¡ 1
o¡1=°¶1=·

(24)

where · = 1= log2
¡
2 ¡ ¿U

¢

° = ¡1= log2
¡
¿L

¢

and ¿U 2 (0; 1) , ¿L 2 (0; 1) (25)

Joe (1997) asserts that this copula has a number of nice properties: it collapses to Clayton's
copula when · = 1, and the Fr¶echet-Hoe®ding upper bound15 is approached when either parameter
approaches in¯nity. The Joe-Clayton copula has two parameters, ¿U and ¿L, which are measures
of dependence known as tail dependence. These measures of dependence are de¯ned below.

De¯nition 6 If the limit
lim
"!0

Pr [U · "jV · "] = lim
"!0

Pr [V · "jU · "] = lim
"!0

C ("; ")=" = ¿L

exists, then the copula C exhibits lower tail dependence if ¿L 2 (0; 1] and no lower tail depen-
dence if ¿L = 0: Similarly, if the limit

lim
±!1

Pr [U > ±jV > ±] = lim
±!1

Pr [V > ±jU > ±] = lim
±!1

(1 ¡ 2± + C (±; ±))= (1 ¡ ±) = ¿U

exists, then the copula C exhibits upper tail dependence if ¿U 2 (0; 1] and no upper tail depen-
dence if ¿U = 0:

Tail dependence captures the behaviour of the random variables during extreme events. In-
formally, it measures the probability that we will observe an extremely large positive (negative)
realisation of one variable, given that the other variable also took on an extremely large positive
(negative) value. As an example, the bivariate normal distribution (and thus the normal copula)
has ¿U = ¿L = 0 for correlation not equal to one, meaning that in the extreme tails of the distribu-
tion the variables are independent. The Joe-Clayton copula allows upper and lower tail dependence
to range anywhere from zero to one.

One major drawback of the Joe-Clayton copula is that even when the two tail dependence
measures are equal there is still some (slight) asymmetry in the Joe-Clayton copula, due simply to
the functional form of this copula. A more desirable alternative would have the tail dependence
measures completely determining the presence (or not) of asymmetry. To this end, we propose the
`symmetrised Joe-Clayton' copula:

CSJC
¡
u;vj¿U; ¿L

¢
= 0:5 ¢

¡
CJC

¡
u; vj¿U ; ¿L

¢
+CJC

¡
1 ¡u;1 ¡ vj¿L; ¿U

¢
+u + v ¡ 1

¢
(26)

Clearly, the symmetrised Joe-Clayton (SJC) is just a slight modi¯cation of the original Joe-
Clayton copula, but by construction it is symmetric when ¿U = ¿L. From an empirical perspective
we believe that the fact the SJC copula nests symmetry as a special case makes it a more interesting
speci¯cation than the Joe-Clayton copula.

15The Fr¶echet-Hoe®ding upper bound is a theoretical upper bound on the value that a joint distribution can take

at any given point. This upper bound corresponds to perfect positive dependence between the two random variables.
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Parameterising time-variation in the conditional copula We allow for time-variation in the
conditional copula by allowing the parameters of the copula to evolve through time according to a
particular equation. The di±culty in specifying how the parameters evolve over time lies in de¯ning
the forcing variable for the evolution equation . Unless the parameter has some interpretation, as
the parameters of the Gaussian and SJC copulas do, it is very di±cult to know what might (or
should) in°uence it to change. We propose the evolution equations for the symmetrised Joe-Clayton
copula:

¿Ut = ¤

0
@!U +¯U ¿Ut¡1 + ®U ¢ 1

10

10X

j=1
jut¡j ¡ vt¡j j

1
A (27)

¿Lt = ¤

0
@!L +¯L¿Lt¡1 + ®L ¢ 1

10

10X

j=1
jut¡j ¡ vt¡j j

1
A (28)

where ¤ (x) ´ 1
1+e¡x is the logistic transformation, used to keep ¿U and ¿L in (0; 1) at all times.

In the above equations we propose that the upper and lower tail dependence parameters each
follow something akin to a restricted ARMA(1,10) process. The right hand side of the model for
the tail dependence evolution equation contains an autoregressive term, ¯U ¿Ut¡1 and ¯L¿Lt¡1, and
a forcing variable. Identifying a forcing variable for a time-varying limit probability is somewhat
di±cult. We propose using the mean absolute di®erence between ut and vt over the previous ten
observations as a forcing variable16. The intuition behind this can be explained with the aid of
Figure 2. If X and Y are perfectly positively dependent (otherwise known as `comonotonic') then
the transformed variables U and V will all lie on the main diagonal of the unit square. The absolute
value of the di®erence between ut and vt is proportional to the minimum distance from the point
(ut; vt) to the main diagonal, and we use the mean absolute di®erence between ut and vt over the
previous ten observations as an indication of how far from comonotonicity the data were.

The second copula considered, the normal copula, is the dependence function associated with
bivariate normality, and is extracted via Corollary 2.

C(u;vj½) =

©¡1(u)Z

¡1

©¡1(v)Z

¡1

1
2¼

p
(1 ¡ ½2)

exp
½¡(r2 ¡ 2½rs + s2)

2(1 ¡ ½2)

¾
dr ds, ¡ 1 < ½ < 1 (29)

where ©¡1 is the inverse of the standard normal c:d:f:

The transformations ©¡1 (u) = ©¡1 ± F (x) and ©¡1 (v) = ©¡1 ± G (y) transform the variables
X and Y , which are distributed according to F and G, into standard normal random variables.
The normal copula takes as arguments the standard normal transforms of X and Y , and assumes

16A few variations on this forcing variable were tried, such as weighting the observations by how close they are to
the extremes, or by using an indicator variable for whether the observation was in the r̄st, second, third or fourth
quadrant. No signi¯cant improvement was found, and so we have elected to use the simplest model.
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that they are jointly normally distributed. This is how we are able to back out the dependence
implied by bivariate normality. We propose the following evolution equation for ½t:

½t = ~¤

0
@!½+ ¯½ ¢ ½t¡1 +® ¢ 1

10

10X

j=1

©¡1 (ut¡j) ¢ ©¡1 (vt¡j)

1
A (30)

where ~¤(x) ´ 1¡e¡x
1+e¡x is the modi¯ed logistic transformation, designed to keep ½t in (¡1;1) at all

times.

Equation (30) reveals that we again assume that the copula parameter follows an ARMA(1,10)-
type process: we include ½t¡1 as a regressor to capture any persistence in the dependence parameter,
and the mean of the product of the last ten observations of the transformed variables ©¡1 (ut¡j)
and ©¡1 (vt¡j), to capture any variation in dependence17.

4.2.4 Estimating the model

Maximum likelihood is the natural estimation procedure to use in this context: in specifying
models for the two marginal distributions and the copula, we have de¯ned a joint distribution
function for the two exchange rates, and thus a joint likelihood, as shown in equation (10). The
procedure employed to develop the joint distribution lends itself naturally to multi-stage estimation
of the model. Although estimating all of the coe±cients simultaneously yields the most e±cient
estimates, the large number of parameters can make numerical maximisation of the likelihood
function di±cult. In this paper we make use of the multi-stage maximum likelihood estimator
presented in Patton (2001). Under the usual conditions the estimates obtained are consistent and
asymptotically normal.

4.2.5 Allowing for a structural break: the euro

On the 1st of January, 1999 the euro was introduced and eleven European countries agreed to an
irrevocable conversion rate between their currencies and the new euro; the conversion rate for the
Deutsche mark is 1 euro = 1:95583 marks18. The data used in this study includes 773 observations
in the period following the introduction of the euro.

We examine the impact on the introduction of the euro on the joint distribution of the DM-
USD and Yen-USD exchange rates by allowing the parameters of the joint distribution to change
between the pre- and post-euro subsamples. Note that allowing the parameters to change pre- and
post-euro is equivalent to using an information set of Ft = ¾ (xt; yt;wt+1;xt¡1; yt¡1; :::; xt¡9; yt¡9),

17Averaging ©¡1 (ut¡j) ¢ ©¡1 (vt¡j) over the previous ten lags was done to keep the copula speci¯cation here
comparable with that of the time-varying symmetrised Joe-Clayton copula.

18The eleven participating nations are: Austria, Belgium, Finland, France, Germany, Ireland, Italy, Luxembourg,
the Netherlands, Portugal and Spain. The complete list of conversion rates for all eleven currencies now linked to

the euro may be found at http://www.ecb.int/press/pr981231 2.htm.
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where Wt takes the value 0 in the pre-euro sample and 1 in the post-euro sample. Recall that the
same information set must be used for both margins and the copula, meaning that we must test for
a structural break in the DM margin, the Yen margin and the copula. To minimise the number of
additional parameters in the new models, we conducted tests for the signi¯cance of the change in
each parameter, and imposed constancy on those parameters that were not signi¯cantly di®erent
in the two periods.

4.3 Results for the marginal distributions

The parameter estimates and standard errors for marginal distribution models are presented in
Table 2. In the DM margin all parameters except for the degrees of freedom parameter changed
signi¯cantly following the introduction of the euro. The drift term in the mean increased from 0.01
to 0.07, re°ecting the sharp depreciation in the euro in its ¯rst three years. The GARCH parameters
changed in such a way that the implied unconditional annualised standard deviation increased
slightly from 12.25% to 12.77%. In the yen margin only the degrees of freedom changed, from 4.26
to 6.65, indicating a `thinning' of the tails of the Yen - U.S. dollar exchange rate. In the pre-euro
period the yen had fatter tails than the DM, but in the post-euro period this ordering was reversed.
The t-statistic (p-value) for the signi¯cance of di®erence in the degrees of freedom parameters was
2:0877 (0:0368) for the pre-euro period and ¡0:4618 (0:6442) in the post-euro period, indicating a
signi¯cant19 di®erence prior to the break, but no signi¯cant di®erence afterwards20. The signi¯cant
di®erence in degrees of freedom parameters in the pre-euro period is important as the bivariate
Student's t distribution is unable to capture this: as mentioned in the introduction, a bivariate
Student's t imposes the same degrees of freedom parameter on both marginal distributions (and
also on the copula, as we know from Corollary 2). A bivariate t6, for example, imposes that both
marginals are univariate Student's t6 distributions and that the copula is a `Student's t6' copula.
This speci¯cation is rejected by the data for the pre-euro period.

[ INSERT TABLE 2 HERE ]

Although we will not present the parameter estimates from the two BEKK models estimated,
we will include them in the speci¯cation tests. In Table 3 we present the LM tests for serial
independence of the probability integral transforms, U and V , and the Kolmogorov-Smirnov (K-S)
tests for the correctness of the density speci¯cation. We do so for the two sub-periods and for the
entire sample. From the LM tests we can see that all three models for both exchange rates appear
to adequately capture the time series dynamics. No rejections are found in any sub-period for any
moment of the transformed residuals.

19All tests in this paper will be conducted at the 5% signi¯cance level.
20The variance matrix used here assumed the time-varying symmetrised Joe-Clayton copula was used to complete

the joint distribution. Almost identical results were obtained when the time-varying normal copula was used.
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The K-S tests indicate that the normal BEKK model is mis-speci¯ed, with ¯ve out of the six
tests rejecting the null hypothesis of correct speci¯cation. The t-BEKK model passes all K-S tests
at the 5% signi¯cance level, though on two occasions the p-value for the tests are close to 0:05.
The copula model margins pass the K-S tests easily.

[ INSERT TABLE 3 HERE ]

In light of the possible low power of the K-S test, we employ the hit tests discussed in Section
3 to check for the correctness of the speci¯cation in particular regions of the support. We use ¯ve
regions: the lower 10% tail, the interval from the 10th to the 25th quantile, the interval from the
25th to the 75th quantile, the interval from the 75th to the 90th quantile, and the upper 10% tail.
These regions represent economically interesting subsets of the support - the upper and lower tails
are notoriously di±cult to ¯t, and so checking for correct speci¯cation there is important, while the
middle 50% of the support contains the `average' observations. We use as regressors (`Zjt' in the
notation of Section 3) a constant, to check that the model implies the correct proportion of hits,
and three variables that count the number of hits in that region in the last day, week and month, to
check that the model dynamics are correctly speci¯ed21. The ¸j functions are set to simple linear
functions of the parameters and the regressors: ¸j

¡
Zjt;¯j

¢
= Zjt ¢ ¯j . The results of the tests in

the individual regions and the joint test for all ¯ve regions are presented in Table 4 below.

[ INSERT TABLE 4 HERE ]

Table 4 shows that the normal BEKK model is rejected in numerous individual regions, and
fails the joint test for both exchange rates in the pre-euro period and over the entire sample. The
t-BEKK model fails in four individual region tests, and fails the joint test for the yen in the pre-euro
period and for the entire sample. The copula model margins fail two individual region tests, but
pass all joint tests (though two of these have quite low p-values).

Overall, these speci¯cation tests show that conditional bivariate normality is easily rejected, and
that the assumption of equal fatness-of-tails for these two exchange rates is rejected. Thus both the
bivariate normal and bivariate Student's t distributions are mis-speci¯ed for these exchange rates.

4.4 Results for the copulas

We now present the results of the estimation of the normal and symmetrised Joe-Clayton (SJC)
models. For the purposes of comparison we also present the results for these two copulas when no
time variation in the copula parameters is assumed. It should be pointed out, though, that neither
of these copulas are closed under temporal aggregation, so if the conditional copula of (Xt; Yt) is

21We also conducted this test including as additional regressors three variables that counted the number of hits
in the corresponding region of the other variable's support over the last day, week and month. The results did not

change signi¯cantly.
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normal or SJC, the unconditional copula will not in general be normal or SJC. The results are
presented in Table 5.

[ INSERT TABLE 5 HERE ]

All of the parameters in the time-varying normal copula were found to signi¯cantly change
following the introduction of the euro, and a test of the signi¯cance of a break for this copula
yielded a p-value of 0:0000. Using quadrature22 we computed the implied time path of conditional
correlation between the two exchange rates, and present the results in Figure 4. This ¯gure shows
quite clearly the structural break in dependence that occurred upon the introduction of the euro.
The level and the dynamics of (linear) dependence both clearly change. The p-value from the test
for a change in level only was 0:0000, and the p-value from a test for a change in dynamics given
a change in level was also 0:0000, con¯rming this conclusion.

[ INSERT FIGURE 4 HERE ]

For the time-varying SJC copula only the level of dependence was found to signi¯cantly change;
the dynamics of the parameters of the conditional copula were not signi¯cantly di®erent. The
signi¯cance of the change in level was 0:0000. For the purposes of comparing the results for the
SJC copula with the normal copula, we present in Figure 5 the conditional correlation between the
two exchange rates implied by the SJC copula. The plot is similar to that in Figure 4, and the
change in the level of dependence is again very clear.

[ INSERT FIGURE 5 HERE ]

In Figures 6 and 7 we present plots of the conditional tail dependence implied by the time-
varying SJC copula model. Figure 6 con¯rms that the change in linear dependence also takes place
in tail dependence, with average tail dependence dropping from 0:33 to 0:04 after the break. Figure
7 shows the degree of asymmetry in the conditional copula via the di®erence between the upper
and lower conditional tail dependence measures. In this application, upper (lower) tail dependence
measures the dependence between the exchange rates on days when the U.S. dollar is appreciating
(depreciating). Our unconditional results suggested that the limiting probability of the dollar
appreciating heavily against the mark, given that it has appreciated heavily against the yen, is
about 20% greater than the corresponding depreciation probability23, meaning that the exchange
rates are less dependent in bad markets for the US dollar than in good markets.

[ INSERT FIGURES 6 AND 7 HERE ]
22We use Gauss-Legendre quadrature, with ten nodes for each margin, leading to a total of 100 nodes. See Judd

(1998) for more on this technique.
23As tail dependence is a symmetric concept, it does not matter which of the two currencies one conditions on the

dollar having appreciated against.
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In Figure 7, we see that before the break conditional upper tail dependence was almost always
greater than conditional lower tail dependence (their di®erence is almost always above zero) while
after the break the reverse is true. In fact, on 94% of days before the break the implied conditional
upper tail dependence was greater than conditional lower tail dependence, and conditional lower tail
dependence was greater than upper tail dependence on every single day after the break. Because
we used the same forcing variable in the evolution equations for both upper and lower dependence,
we can formally test for the signi¯cance of asymmetry in the conditional copula. The p-value on
this test is 0:0103 in the pre-euro sample and 0:1413 in the post-euro sample (and 0:0261 overall).
Thus we have strong evidence that the conditional dependence structure between the DM-dollar
and yen-dollar exchange rates was asymmetric over the period January 1991 to December 1998, a
¯nding that has not been previously reported in the empirical exchange rate literature, and one that
we would not have been able to capture with standard multivariate distributions like the normal
or Student's t.

The presence of such an asymmetry has many possible economic implications. As we suggested
above, such an asymmetry may be a result of an asymmetric reaction by the three relevant central
banks to appreciations versus depreciations of their currency. This asymmetry may also have
implications for the distribution of portfolios of international stocks and bonds: Patton (2002b)
shows that asymmetric dependence can lead to skewed portfolios even when the individual assets
have zero skewness, a case that seems quite relevant here, and recent work in the empirical ¯nance
literature has found that stocks that exhibit conditional skewness and asymmetric dependence carry
a market premium, see Harvey and Siddique (2000) and Ang, et al. (2002).

4.5 Goodness-of-¯t tests and comparisons

In Table 6 we present the results of the bivariate `hit' tests. We divided the support of the copula
into seven regions24, each with an economic interpretation, and one `remnant' region. The regions
are presented graphically in Figure 3. Regions 1 and 2 correspond to the lower and upper 10%
Value-at-Risk for each variable. The ability to correctly capture the probability of both exchange
rates taking on extreme values simultaneously is of critical importance to portfolio managers and
macroeconomists, amongst others. Regions 3 and 4 represent moderately large up and down days:
days in which both exchange rates were somewhere between their 10th and 25th, or 75th and 90th ,
quantiles. Region 5 is the `median' region: days when both exchange rates were in the middle 50%
of their distributions. Regions 6 and 7 are the extremely asymmetric days, those days when one
exchange rate was in the upper 25% of its distribution while the other was in the lower 25% of its
distribution.

[ INSERT FIGURE 3 ]
24Using rectangular regions makes computing the probability of a hit in that region implied by the copula model,
Ĉ , particularly simple: it is just the Ĉ-volume of the region, de¯ned in Section 2.
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We again specify a simple linear function for ¸j , that is: ¸j
¡
Zjt; ¯j

¢
= Zjt ¢ ¯j , and we include

in Zjt a constant term, to capture any over- or under-estimation of the unconditional probability
of a hit in region j, and three variables that count the number of hits that occurred in the past
day, one week and one month, to capture any violations of the assumption that the hits are serially
independent. The results for each of the seven regions, for the four models considered are presented
below. For the joint test we de¯ne the zeroth region as that part of the support not covered by
regions one to seven.

[ INSERT TABLE 6 HERE ]

Table 6 again shows that the normal BEKK model is rejected by the data. This model fails all
three joint tests and numerous individual region tests. Note that, since the marginal distribution
models were also rejected, it is possible that marginal mis-speci¯cation is causing the copula model
mis-speci¯cation. The t-BEKK model passes all joint tests and all individual region tests, though
some p-values are close to 0:05. Both the normal and the SJC copula models pass all individual
region and joint tests easily.

Finally, we conducted likelihood ratio tests to compare the competing models. For the com-
parison of the normal BEKK and the t-BEKK we may use a standard likelihood ratio test as the
normal BEKK model is nested within the t-BEKK model. This comparison yielded a p-value of
0:0000, clear evidence that the t-BEKK model is preferred to the normal BEKK model. The re-
maining comparisons all involve non-nested models, and so we use the Rivers and Vuong (2002)
test described in Section 3.2. Using this test we also found that the normal and SJC copula speci-
¯cations signi¯cantly out-performed the normal BEKK model, however no other comparisons were
signi¯cant. The fact that both the normal and the SJC copula models pass the goodness-of-¯t
tests, and are not distinguishable using the Rivers and Vuong test indicates the di±culty these
tests have in distinguishing between similar models, even with substantial amounts of data. The
signi¯cance of the conditional asymmetry in the SJC copula, though, suggests that a density model
with a symmetric copula, such as the normal copula, is mis-speci¯ed.

5 Conclusion

In this paper we veri¯ed that the existing theory of copulas may be extended to the conditional case,
and applied it to a model of the time-varying conditional joint distribution of the daily Deutsche
mark - U.S. dollar and Yen - U.S. dollar exchange rates, over the period from January 1991 to
December 2001. Standard AR- tGARCH models were employed for the marginal distributions
of each exchange rate, and two di®erent copulas were estimated: the copula associated with the
bivariate normal distribution, and the `symmetrised Joe-Clayton' copula, which allows for asym-
metric dependence in the joint distribution. Time-variation in the dependence structure between
the two exchange rates was captured by allowing the parameters of the two copulas to vary over
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the sample period, employing an evolution equation similar to the GARCH model for conditional
variances. For comparison, we also estimated models using the BEKK speci¯cation for the condi-
tional covariance matrix coupled with a bivariate normal and a bivariate Student's t assumption
for the standardised residuals.

Some attention was paid to tests of the relative goodness-of-¯t of the copulas analysed. Goodness-
of-¯t testing in our study was complicated by the fact that we wished to test the adequacy of the
entire density, rather than just a set of moments from this density, and by the fact that many of our
models were non-nested. We introduced and employed an extension of the `hit' tests of Christof-
fersen (1998) and Engle and Manganelli (1999) to test for the goodness-of-̄ t of the four models
considered, and proposed a new test for evaluating the performance of multiple interval forecasts
simultaneously. We also used the model selection test for non-nested models recently proposed by
Rivers and Vuong (2002).

We found evidence against both the bivariate normal and bivariate Student's t distributional
assumptions. However, a bivariate model with univariate Student's t marginal distributions was
not rejected once we allowed each exchange rate to exhibit di®erent thickness of tails. We proposed
a new copula, the `symmetrised Joe-Clayton' copula, which allows for the possibility of asymmetric
dependence and nests symmetric dependence as a special case. In the pre-euro period we were able
to reject the null hypothesis that the two exchange rates under analysis had a symmetric conditional
dependence structure: speci¯cally, dependence was greater during appreciations of the U.S. dollar
(or alternatively, during depreciations of the mark and the yen) than during depreciations of the
U.S. dollar. Finally, we reported strong evidence of a structural break in the conditional copula
following the introduction of the euro in January 1999. The dependence between these exchange
rates fell dramatically following the break, and the conditional dependence structure went from
signi¯cantly asymmetric to approximately symmetric.

Many extensions of our analysis are possible. The use of conditional copulas in constructing
higher dimension density forecasts is possible, though some care may be required to keep the model
tractable. Also, other forms of time variation in the dependence between the variables may be
explored: in this paper we considered allowing the parameter of the copula to vary through time,
holding the form of the copula ¯xed. An alternative to this may be to consider conditional copulas
that vary in functional form, perhaps in a regime switching model.
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6 Appendix A: Proofs

Some of the results below are simpli¯ed with the following lemmas. These are adapted from Nelsen
(1999).

Lemma 1 Let x1 · x2 and y1 · y2, then

°x(x) ´ H(x;y2) ¡H(x;y1) is a non-decreasing function of x, and

°y(y) ´ H(x2; y) ¡ H(x1; y) is a non-decreasing function of y.

Proof of Lemma 1. From the de¯nition of a bivariate distribution function we know that
H(x2; y2)¡H(x2; y1)¡H(x1; y2)+H(x1; y1) ¸ 0, so H(x2; y2)¡H(x2; y1) ¸ H(x1; y2)¡H(x1; y1)
for all x1; x2; y1; y2 2 R such that x1 · x2; y1 · y2. Similarly for °y(y).

Lemma 2 Let x1 · x2, y1 · y2 and w1 · w2 then

±x(z) ´ Hxyw (z;y2;w2) ¡Hxyw (z; y2; w1) ¡Hxyw (z; y1; w2) + Hxyw (z;y1; w1)

±y(z) ´ Hxyw (x2; z;w2) ¡ Hxyw (x2; z;w1) ¡ Hxyw (x1; z;w2) +Hxyw (x1; z; w1)

±w(z) ´ Hxyw (x2; y2; z) ¡Hxyw (x1; y2; z) ¡Hxyw (x2; y1; z) +Hxyw (x1; y1; z)

are all non-decreasing functions of z.

Proof of Lemma 2. From the de¯nition of a trivariate distribution function we know that
Hxyw (x2; y2; w2) ¡ Hxyw (x2; y2; w1) ¡Hxyw (x2; y1;w2) +Hxyw (x2; y1;w1) ¸ Hxyw (x1; y2;w2) ¡
Hxyw (x1; y2; w1) ¡Hxyw (x1; y1;w2) +Hxyw (x1; y1; w1) for all x1 · x2, y1 · y2 and w1 · w2. Thus
±x (x) is non-decreasing in x. Similarly for ±y (y) and ±w (w).

Lemma 3 jH(x2; y2) ¡ H(x1; y1)j · jF (x2) ¡ F(x1)j +jG(y2) ¡G(y1)j .

Proof of Lemma 3. By the triangle inequality we have:
jH(x2; y2) ¡ H(x1; y1)j · jH(x2; y2)¡ H(x1; y2)j + jH(x1; y2) ¡ H(x1; y1)j
Assume x1 · x2 and y1 · y2, then by the above lemma we have

H(x2; y1) ¡H (x1; y1) · H(x2; y2) ¡ H(x1; y2)

· H(x2; 1) ¡ H(x1; 1)

= F(x2)¡ F(x1)

Considering the case when x1 ¸ x2 and applying the same logic leads us to

H(x1; y1) ¡ H(x2; y1) · F (x1) ¡F (x2)
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So we have
jH(x2; y1) ¡ H(x1; y1)j · jF (x2) ¡F (x1)j

Similarly for y we ¯nd that

jH(x1; y2) ¡ H(x1; y1)j · jG(y2) ¡G(y1)j

and so

jH(x2; y2) ¡ H(x1; y1)j · jH(x2; y2) ¡ H(x1; y2)j + jH(x1; y2) ¡ H(x1; y1)j
· jF(x2)¡ F(x1)j + jG(y2) ¡G(y1)j

Lemma 4 jHxyw (x2; y2; w2)¡Hxyw(x1; y1;w1)j · jFx(x2) ¡Fx(x1)j + jGy(y2) ¡ Gy(y1)j+jFw(w2) ¡Fw(w1)j,
where (X; Y;W ) s Hxyw and X s Fx; Y s Gy and W s Fw.

Proof of Lemma 4. Follows using the same steps as the proof of Lemma 3.

Proof of Theorem 1. For 0 · u · 1 we have:

Pr [U · u] = Pr [F (X) · u]

= Pr
h
F (¡1) (F (X)) · F(¡1) (u)

i

= Pr
h
X · F(¡1) (u)

i

´ F
³
F(¡1) (u)

´

= u

For u < 0 we know that Pr [U · u] = 0 as the range of F is [0; 1]. Similarly for u > 1. Thus U has
the Unif (0; 1) distribution.

Proof of Proposition 1.

1. That the domain of C is [0;1]£ [0; 1] is given by the fact that the ranges of F and G are both
[0;1]. Similarly the range of C is [0; 1] as it is a bivariate distribution function.

2. In Theorem 1 we showed that U and V are Unif (0;1), thus Pr [U · 0] = Pr [V · 0] =
Pr [U · 0 \ V · v] = Pr [U · u\ V · 0] = 0 for all (u;v) 2 [0;1] £ [0; 1].

3. C (u; 1) ´ Pr [U · u\ V · 1] = Pr [U · u] = u, as U and V are Unif (0;1). Similarly for
C (1; v).

4. This follows from the fact that C is a bivariate distribution function on [0; 1] £ [0;1].
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Proof of Theorem 2. Note that from Lemma 3 and the triangle inequality we have:

jH (x2; y2) ¡ H (x1; y1)j · jH (x2; y2) ¡ H (x2; y1)j
+ jH (x1; y2) ¡H (x1; y1)j

· jF (x2jw) ¡F (x1jw)j + jG(y2jw) ¡G(y1jw)j
= 0 when x1 = x2 and y1 = y2

Thus if x1 = x2 and y1 = y2 then H (x2; y2) = H (x1; y1). The function C is de¯ned by the set of
ordered pairs:

©
((F(x);G(y)) ; H (x;y)) : (x; y) 2 ¹R£ ¹R

ª
.

That C is a copula must be veri¯ed: the domain of C is clearly [0;1]£ [0; 1], as this is the range
of F and G. The range of C is similarly determined to be [0;1] as this is the range of H . We now
check the two conditions for C to be a copula, as given in De¯nition 1.

1.

C (u; 0) = H
³
F(¡1) (u) ; G(¡1) (0)

´

= H
³
F(¡1) (u) ; ¡1

´

= 0

Similarly for C (0; v). Further,

C (u; 1) = H
³
F(¡1) (u) ; G(¡1) (1)

´

= H
³
F(¡1) (u) ; 1

´

= F
³
F(¡1) (u)

´

= u

Similarly for C (1; v).
2. For this part, let ui = F (xi), vi = G (yi), and consider the points x1; x2; y1; y2 2 R such

that x1 · x2 and y1 · y2. Then,

VC ([u1; u2] £ [v1; v2]) ´ C (u2; v2) ¡C (u1; v2) ¡ C (u2; v1) +C (u1; v1)

= H (x2; y2) ¡H (x1; y2) ¡ H (x2; y1)+ H (x1; y1)

´ VH ([x1; x2] £ [y1; y2])

¸ 0 since H is a distribution function.

Thus the function C de¯ned above is a copula.
The proof of the converse requires us to verify the conditions that make H a distribution

function with marginal distributions F and G, given F and G are distribution functions, and C is
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a copula.

H (x; ¡1) = C (F (x) ; G (¡1))

= C(F (x) ; 0)

= 0

Similarly for H (¡1; y) : Further,

H (x;1) = C (F (x) ; G (1))

= C (F (x) ; 1)

= F (x)

Similarly for H (1; y). Thus the marginal distributions H and F and G. We now need to show
that VH ¸ 0.

VH ([x1;x2] £ [y1; y2]) ´ H (x2; y2) ¡H (x1; y2) ¡H (x2; y1) + H (x1; y1)

= C (u2; v2) ¡C (u1; v2) ¡ C (u2; v1)+ C (u1; v1)

´ VC ([u1; u2] £ [v1; v2])

¸ 0 since C is a copula

This completes the proof of the converse. Thus the function H is a bivariate distribution function
with marginal distributions F and G.

Proof of Corollary 1. This proof follows directly from that of Theorem 2, letting x ´
F(¡1) (u) and y ´ G(¡1) (v), and noting that u = F

¡
F (¡1) (u)

¢
and v = G

¡
G(¡1) (v)

¢
8u; v 2 [0; 1] :

Proof of Proposition 2.

1.

F (¡1jw) = fw (w)¡1 ¢ @Fxw (x; w)
@w

jx=¡1

= fw (w)¡1 ¢ @
@w

(Fxw (¡1; w))

= 0

And

F (1jw) = fw (w)¡1 ¢ @Fxw (x; w)
@w

jx=1

= fw (w)¡1 ¢ @
@w

(Fxw (1;w))

´ fw (w)¡1 ¢ @
@w

(Fw (w))

= 1

So the ¯rst conditions are satis¯ed.
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2.

F (x2jw) ¡F (x1jw) = fw (w)¡1 ¢
µ

@
@w

(Fxw (x2;w)) ¡ @
@w

(Fxw (x1; w))
¶

= fw (w)¡1 ¢
µ

@
@w

(Fxw (x2;w) ¡ Fxw (x1; w))
¶

¸ 0

by Lemma 1 and the fact that fw is a density function. Thus the properties of the conditional
univariate distribution function are obtained directly from the joint distribution function.

Proof of Proposition 3. Let the joint distribution of (X; Y;W ) be denoted Hxyw. and let
the marginal distribution of W be Fw: Then

H (x; yjw) ´ fw (w)¡1 ¢ @Hxyw (x; y;w)
@w

1.

H (x; ¡1jw) = fw (w)¡1 ¢ @
@w (Hxyw (x;¡1; w))

= 0

Similarly for H (¡1; yjw). And

H(1;1jw) = fw (w)¡1 ¢ @
@w

(Hxyw (1;1;w))

´ fw (w)¡1 ¢ @
@w

(Fw (w))

= 1

2.

VH ([x1;x2] £ [y1; y2] jw) ´ H (x2; y2jw) ¡H (x1; y2jw) ¡H (x2; y1jw) +H (x1; y1jw)

= fw (w)¡1 ¢
µ

@
@w

(Hxyw (x2; y2;w) ¡Hxyw (x1; y2; w)¡

¡Hxyw (x2; y1; w) + Hxyw (x1; y1;w))
´

¸ 0

by Lemma 2 and the fact that fw is a density function.

Proof of Proposition 4. We obtain the properties of the conditional copula by deriving
results for the joint distribution of (F (XjW ) ; G (Y jW ) ;W ). Let U ´ F (XjW ) and V ´ G (Y jW ).
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We now consider a conditional version the probability integral transform described in the body of
the paper. Consider the distribution of U jW = w :

Pr [U · ujw] = Pr [F (Xjw) · ujw]

= Pr
h
F(¡1) (F (X jw) jw) · F (¡1) (ujw) jw

i

= Pr
h
X · F(¡1) (ujw) jw

i

´ F
³
F(¡1) (ujw) jw

´

= u

for u 2 [0;1]. For u < 0 Pr [U · ujw] = 0 as the range of F is [0; 1]. Similarly for u > 1. Thus the
conditional distribution of U ´ F (X jW) jW = w is Uniform (0; 1). Note that this implies that
the unconditional distribution of U is also Uniform (0; 1). This result hold similarly for V .

Let the joint distribution of (U; V;W ) be denoted C¤, and let the joint distribution of (U;W ) be
denoted ~C: Notice that by the above result that ~C (u; w) = u ¢Fw (w). The conditional distribution
of (U; V ) jW is given by:

C (u; vjw) ´ fw (w)¡1 ¢ @3C¤ (u; v;w)

where @3C¤ denotes the partial derivative of C¤ with respect to its third argument. We do not
write @C

¤(u;v;w)
@w as u and v are also functions of w:

We now verify the properties of C given in the proposition.

1.

C (u; 0jw) = fw (w)¡1 ¢ @3 (C¤ (u;0;w))

= 0

Similarly for C (0; vjw). Also

C (u; 1jw) = fw (w)¡1 ¢ @3 (C¤ (u;1;w))

= fw (w)¡1 ¢ @2
³

~C (u;w)
´

= fw (w)¡1 ¢ u ¢ @
@w

(Fw (w))

= u

Similarly for C (1; vjw). Thus the marginal distributions of (U;V ) jW s C are Uniform (0; 1).

2. The proof of part 2 follows the same reasoning as given to show part 2 in the proof of
Proposition 3.

Proof of Theorem 3. We will only show the parts that di®er from the proof of Sklar's
theorem for the unconditional case.
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Note that from Lemma 3 and the triangle inequality we have:

jH (x2; y2jw2) ¡ H (x1; y1jw1)j · jH (x2; y2jw2) ¡H (x2; y1jw2)j
+ jH (x1; y2jw2)¡ H (x1; y1jw2)j
+ jH (x1; y1jw2)¡ H (x1; y1jw1)j

· jF (x2jw) ¡F(x1jw)j + jG(y2jw) ¡ G(y1jw)j
+ jH (x1; y1jw2)¡ H (x1; y1jw1)j

= jH (x1; y1jw2) ¡H (x1; y1jw1)j when x1 = x2 and y1 = y2

= fw (w)¡1 ¢
¯̄
¯̄ @
@w

(Hxyw (x1; y1;w2) ¡ Hxyw (x1; y1;w1))
¯̄
¯̄

= 0 when w1 = w2

Thus if x1 = x2, y1 = y2 and w1 = w2 then H (x2; y2jw2) = H (x1; y1jw1). The function C is
de¯ned by the set of ordered pairs:

©
((F (xjw); G(yjw);w) ; H(x;yjw)) : (x; y; w) 2 ¹R £ ¹R£W

ª
.

The remainder of the proof can be shown following the steps of the proof of Theorem 2.

Proof of Corollary 2. This proof follows directly from that of Theorem 3, letting x ´
F(¡1) (ujw) and y ´ G(¡1) (vjw), and noting that u = F

¡
F(¡1) (ujw) jw

¢
and v = G

¡
G(¡1) (vjw) jw

¢

8u; v 2 [0;1] and each w 2 W.
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7 Tables and Figures

Table 1: Summary statistics
DM-USD Yen-USD

Pre-euro
Mean 0.0053 -0.0090
Std Dev 0.6757 0.7344
Skewness -0.0149 -0.7486
Kurtosis 4.9642 9.2961
Jarque-Bera stat 327.35 3560.5
Jarque-Bera p-val 0.0000 0.0000
ARCH LM stat 104.05 131.99
ARCH LM p-val 0.0000 0.0000
Linear correlation 0.5085

Post-euro
Mean 0.0358 0.0194
Std Dev 0.6617 0.6735
Skewness -0.5031 -0.2294
Kurtosis 4.2830 4.2471
Jarque-Bera stat 84.593 55.967
Jarque-Bera p-val 0.0000 0.0000
ARCH LM stat 7.0850 25.253
ARCH LM p-val 0.2144 0.0001
Linear correlation 0.1240

Note: This table presents some summary statistics of the data used in this paper. The data are 100
times the log-di®erences of the daily Deutsche mark - U.S. dollar and Japanese yen - U.S. dollar exchange
rates. The sample period runs eleven years from January 1991 to December 2001, yielding 2819 observations
in total; 2046 prior to the introduction of the euro on January 1, 1999 and 773 after the introduction of the
euro.

Table 2: Results for the marginal distributions
DM margin Yen margin

Coe® Std Error Coe® Std Error
Const1 0.0125 0.0120 0.0225 0.0120
Const2 0.0656 0.0229
AR(1)1 0.0032 0.0228 -0.0091 0.0220
AR(1)2 0.0276 0.0322
AR(10) ¡ ¡ 0.0679 0.0201
GARCH const1 0.0046 0.0033 0.0077 0.0051
GARCH const2 0.0011 0.0078
Lagged variance1 0.9344 0.0181 0.9394 0.0212
Lagged variance2 0.9876 0.0304
Lagged e21 0.0579 0.0150 0.0475 0.0140
Lagged e22 0.0107 0.0160
nu1 5.9256 0.7217 4.2554 0.3963
nu2 6.6540 1.3959
Notes to Table 2 are on the following page.
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Note to Table 2: Here we report the maximum likelihood estimates and asymptotic standard errors for
the parameters of the two univariate exchange rate models. The subscripts refer to the period before or
after the introduction of the euro on January 1, 1999. An empty cell indicates that the parameter did not
change following the introduction of the euro. Note that only the Yen margin model contains an AR(10)
parameter, and that this parameter did not change throughout the sample.

Table 3: LM tests of serial independence and Kolmogorov-Smirnov tests of the density
Normal BEKK Student's t BEKK Copula margins
DM Yen DM Yen DM Yen

Pre-euro
First moment 0.3861 0.7473 0.4011 0.6405 0.4233 0.8360
Second moment 0.8375 0.4498 0.8098 0.3788 0.8199 0.7107
Third moment 0.9488 0.3854 0.9454 0.3273 0.9421 0.6052
Fourth moment 0.9631 0.4384 0.9727 0.3643 0.9675 0.5751
K-S test 0.0024 0.0000 0.7940 0.0641 0.9889 0.7557

Post-euro
First moment 0.5294 0.5253 0.5554 0.5752 0.5416 0.7093
Second moment 0.5928 0.5082 0.5973 0.5914 0.5785 0.6318
Third moment 0.4978 0.3536 0.5068 0.4354 0.4870 0.4563
Fourth moment 0.3571 0.2306 0.3881 0.2923 0.3552 0.3125
K-S test 0.0225 0.0815 0.0924 0.6731 0.8111 0.8077

Entire sample
First moment 0.3067 0.5507 0.3292 0.4805 0.3852 0.4833
Second moment 0.7608 0.4640 0.7207 0.4251 0.7623 0.4152
Third moment 0.8698 0.4022 0.8320 0.3973 0.8482 0.3941
Fourth moment 0.9006 0.4002 0.8750 0.4175 0.8798 0.4260
K-S test 0.0002 0.0000 0.4252 0.0562 0.8469 0.4763
LL -2765.50 -2861.60 -2701.50 -2743.83 -2699.45 -2733.11

Note: This table presents the p-values from LM tests of serial independence of the ¯rst four moments of
the variables Ut and Vt, described in the text, from the three types of models: BEKK models for variance
with normal and Student's t innovations, and marginal models to use with copulas. We regress (ut ¡ ¹u)k

and (vt ¡ ¹v)k on twenty lags of both variables, for k = 1; 2; 3;4. The test statistic is (T ¡ 40) ¢R2 for each
regression, and is distributed under the null as Â2

40 . Any p-value less than 0.05 indicates a rejection of the
null hypothesis that the particular model is well-specī ed. We also report the p-value from the Kolmogorov-
Smirnov test for the adequacy of the distribution model, and the value of the log-likelihood at the optimum
for these models.
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Table 4: Hit test results for the marginal distributions
Normal BEKK Student's t BEKK Copula margins
DM Yen DM Yen DM Yen

Pre-euro
Region 1 0.2027 0.0293 0.1749 0.0078 0.1829 0.0060
Region 2 0.0010 0.0007 0.0929 0.1922 0.3375 0.4154
Region 3 0.0000 0.0000 0.0368 0.3025 0.2520 0.7454
Region 4 0.8930 0.3934 0.7245 0.1997 0.8805 0.7300
Region 5 0.0176 0.0133 0.7552 0.4200 0.6975 0.0904
All regions 0.0000 0.0000 0.3306 0.0285 0.6581 0.0532

Post-euro
Region 1 0.6351 0.2379 0.7214 0.9004 0.6980 0.9508
Region 2 0.0449 0.7831 0.2492 0.8721 0.9275 0.9565
Region 3 0.0549 0.0672 0.6280 0.6793 0.7376 0.4142
Region 4 0.7666 0.7510 0.9039 0.6906 0.9827 0.5457
Region 5 0.4033 0.4677 0.0997 0.5835 0.0623 0.6613
All regions 0.1872 0.5156 0.5153 0.9664 0.8599 0.9766

Entire sample
Region 1 0.7069 0.0087 0.4460 0.0144 0.3381 0.0260
Region 2 0.0000 0.0003 0.0203 0.1358 0.2853 0.3655
Region 3 0.0000 0.0000 0.0769 0.1599 0.2982 0.3104
Region 4 0.8245 0.8258 0.8430 0.2781 0.9185 0.6888
Region 5 0.0268 0.0069 0.8515 0.2802 0.7087 0.0643
All regions 0.0000 0.0000 0.4007 0.0265 0.7991 0.0589

Note: We report the p-values from tests that the models are correctly speci¯ed. The test statistic is a Â2
4

random variable for the individual region tests and a Â2
16 random variable for the joint tests. Any p-value

less than 0.05 indicates a rejection of the null hypothesis that the particular model is well-speci¯ed. The
numbers 1 through 5 refer to the regions of the marginal distribution support described in the text. `ALL'
refers to the joint test of all regions simultaneously.
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Table 5: Results for the copula models
Coe® Std Error LC

Constant ½1 0.5391 0.0148 360.628
Normal ½2 0.1444 0.0386
Constant ¿U1 0.3591 0.0247
symmetrised ¿L1 0.2951 0.0271 354.413
Joe-Clayton ¿U2 0.0000 0.0000

¿L2 0.0719 0.0381
Const1 -0.1611 0.0212

Time-varying Const2 0.1642 1.3967 372.911
Normal ®1 0.0600 0.0140

®2 0.2858 0.0148
¯1 2.4872 0.3959
¯2 0.6101 0.0386
ConstU1 -1.9105 0.0201
ConstU2 -8.4501 0.0148

Time-varying ®U -1.2534 0.0051 375.322
symmetrised ¯U 4.2345 0.0212
Joe-Clayton ConstL1 2.1675 0.0140

ConstL2 0.1026 0.0386
®L -8.3017 0.3959
¯L -5.0944 1.3967

Note: The subscripts refer to the period before or after the introduction of the euro on January 1, 1999.
For the ¯rst three copulas all parameters changed, while for the fourth copula only the constant terms for
the two tails dependence measures changed. LC stands for the copula likelihood at the optimum.
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Table 6: Hit test results for the copula models
Normal BEKK Student's t BEKK Normal copula SJC copula

Pre-euro
Region 1 0.1143 0.1365 0.1807 0.2196
Region 2 0.1445 0.7821 0.9130 0.1005
Region 3 0.0161 0.0671 0.7424 0.7614
Region 4 0.5651 0.7424 0.7609 0.9097
Region 5 0.0000 0.5134 0.2737 0.6042
Region 6 0.3562 0.4798 0.7332 0.2665
Region 7 0.0208 0.0679 0.4967 0.2979
All regions 0.0000 0.0915 0.7780 0.3546

Post-euro
Region 1 0.1429 0.3857 0.1903 0.4970
Region 2 0.6616 0.9564 0.8134 0.8457
Region 3 0.3349 0.7801 0.7766 0.7782
Region 4 0.3416 0.9071 0.9401 0.9394
Region 5 0.0098 0.3976 0.7068 0.6404
Region 6 0.6038 0.6883 0.8478 0.9072
Region 7 0.0410 0.2149 0.3777 0.3788
All regions 0.0347 0.8375 0.9026 0.9624

Entire sample
Region 1 0.3807 0.1830 0.1485 0.2624
Region 2 0.1491 0.7952 0.8882 0.1348
Region 3 0.0080 0.0552 0.5842 0.6094
Region 4 0.8989 0.6642 0.7593 0.8909
Region 5 0.0000 0.8617 0.5131 0.8067
Region 6 0.1368 0.2629 0.9962 0.5975
Region 7 0.0019 0.0831 0.8139 0.2717
All regions 0.0000 0.1166 0.9236 0.5179

Note: We report the p-values from tests that the models are correctly speci¯ed. The test statistic is
a Â2

4 random variable for the individual region tests and a Â2
28 random variable for the joint tests. Any

p-value less than 0.05 indicates a rejection of the null hypothesis that the particular model is well-specī ed.
The numbers 1 through 7 refer to the regions of the copula support depicted in Figure 3. `ALL' refers to
the joint test of all regions simultaneously.
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Figure 1: Contour plots of various distributions all with standard normal marginal distributions
and linear correlation coe±cients of 0.5.
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Figure 2: Motivation for the choice of forcing variable in the speci¯cation of the time-varying
symmetrised Joe-Clayton copula.
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Figure 3: Regions used in the hit tests
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Figure 4: Conditional correlation estimates from the Normal copulas allowing for a structural break
at the introduction of the euro on January 1, 1999, with 95% con¯dence interval for the constant
correlation case.
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Figure 5: Conditional correlation estimates from the symmetrised Joe-Clayton copulas allowing for
a structural break at the introduction of the euro on January 1, 1999, with 95% con¯dence interval
for the constant correlation case.
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Figure 6: Average tail dependence from the symmetrised Joe-Clayton copulas allowing for a struc-
tural break at the introduction of the euro on January 1, 1999.
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Figure 7: Di®erence between upper and lower tail dependence from the symmetrised Joe-Clayton
copulas allowing for a structural break at the introduction of the euro on January 1, 1999.
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