
Benchmarks and Software Standards: A Case
Study of GARCH Procedures

DRAFT: not to be quoted; all results subject to change.

B. D. McCullough1

Federal Communications Commission
2000 M St. NW Room 533

Washington, DC 20554
INTERNET: bmccullo@fcc.gov

and
C. G. Renfro

Alphametrics Corporation

1Thanks for comments to C. Cummins, G. Fiorentini, C. Hallahan, M. Kim,
and R. Schoenberg. The views expressed herein are those of the authors and do
not necessarily reflect those of their employers.

This version is GARCH3.TEX on 1 April 1999.

1 Introduction

It is well-known that two different packages can produce two different sets of

solutions to the same estimation problem. Sometimes the discrepancies can

be attributed to implementation, as in the treatment of corrections for AR(1)

errors (Lovell and Selover, 1994) which can take several forms, including

Cochrane-Orcutt, Prais-Winsten and Beach-MacKinnon. Other times no

such possible reason for the discrepancies can be identified, which constitutes

prima facie evidence that at least one of the packages is inaccurate. In

principle, a benchmark can resolve the question of accuracy: Silk’s (1996) use

of Calzalori and Panattoni’s (1988) FIML benchmark is an example of this.

However, benchmarks can be of more use than determining the accuracy of

software; they can also assist in setting standard features which econometric

software should possess, such as defaults and options for ific econometric

procedures. This often-overlooked function of benchmarks has become more

important in recent years with the proliferation of sophisticated nonlinear

econometric procedures.

Thirty years ago econometric software incorporated techniques which

were essentially linear in nature. In such a world, it was possible to fo-

cus benchmark evaluation on the issue of algorithmic implementation, as

demonstrated by the Longley (1967) benchmark. But as econometric soft-

ware began to incorporate nonlinear estimation, the creation of benchmarks,

never an easy task, became technically more difficult. Nevertheless, there

could still be widespread agreement as to how a benchmark model should

be specified and how it should be estimated, e.g., Donaldson and Schnabel

(1987). In the present day, nonlinear procedures are so complex (GMM,

1

ARIMA, GARCH, etc.) that the question of how a benchmark should be

specified no longer is clear-cut. For such procedures a benchmark cannot be

merely a set of exceedingly accurate estimates. A broader context is required.

For complex econometric procedures, benchmark models should be chosen

with two questions in mind, one positive and the other normative: What

models can software packages estimate? and What models should they be

able to estimate? This positive/normative distinction is the crux of the larger

context in which benchmark models need to be considered. At first sight it

might seem that the literature can provide appropriate guidance. Ostensibly,

“What models can be estimated?” should be evident from the package’s

documentation. What models should be able to be estimated is surely just

a matter of consulting the econometrics literature. However, in the first

case, user manuals tend to be less than comprehensive in their treatment

of computational details, especially for the more sophisticated econometric

procedures. In the second case, determining the set of estimatable models

actually depends upon the degree of consensus: if an authoritative survey

has been written or the procedure is so well known as to be treated as a

matter of course in textbooks, there is likely to be a standard specification;

arguably, all packages should be able to estimate such a model – but whether

they can is a different question. And even in the case of standard procedures,

there are likely to be both subtle and not-so-subtle variations that may have

statistical or numerical consequences.

Considering the creation of a standardized benchmark, there are several

issues that must be resolved. Frequently, it will be necessary to carefully

determine, and possibly restrict, the range of candidate estimation options.

A person writing a benchmark program might even select a single specifica-

tion and then estimate that model with benchmark precision. But of course,

2

making this choice imposes the requirement that at least some of the pack-

ages tested must be able to estimate this model – otherwise, how might any

package’s results be compared to the benchmark. This requirement would

seem to restrict the choice to only standard specifications, if any such exist.

However, for there to be a standard specification essentially implies a well de-

veloped literature, which also raises the question, How do we know packages

are reliable during the process of the infancy or adolescence of a procedure?

In fact, benchmarks that point to the significant questions are needed at each

stage of a procedure’s progressive adoption. In this way, benchmarks can be

of more use than simply measuring accuracy: they can also help set standards

for software implementations of econometric procedures, which is, inciden-

tally, an important part of replicability (Dewald, Thursby, and Anderson,

1986; Feigenbaum and Levy, 1993; Renfro, 1997, pp. 279-80).

With these considerations in mind, this paper attempts to benchmark the

GARCH procedures in several software packages. Since our focus is software

packages and benchmarks in general, we do not identify specific packages by

name. To fix ideas, Section Two describes the types of problems encountered

when using these packages to conduct default estimation of a simple GARCH

model. Section Three then discusses the basics of GARCH estimation, with

attention to computational details and sources of numerical error. Section

Four present a benchmark for GARCH estimation due to Fiorentini, Calzolari

and Panattoni (1996, hereafter FCP). Section Five applies the benchmark to

the several packages. Section Six presents the conclusions.

2 Default Estimation

An obvious empirical requirement for a benchmark is an appropriate dataset.

Such a dataset should be well-known and readily available. Bollerslev and

3

Ghysel’s (1996, hereafter BG) 1974 observations on the daily percentage

nominal returns for the Deutschemark/British pound exchange rate can be

used (the “BG data,” which are available at the Journal of Business and

Economic Statistics archive). All packages should be able to estimate the

simplest of all GARCH models, a constant with GARCH(1,1) errors. In

many papers the model is presented as

yt = µ+ εt

where

εt|Φt−1 ∼ N(0, ht)

and

ht = α0 + α1ε̂
2
t−1 + β1ĥt−1

We note two important features of this model. First, it maximizes not the

likelihood, but the conditional likelihood. Second, this is only a partially-

specified model, because the elements on which the likelihood is conditioned

are not specified: initial values for ε̂0 and ĥ0 are not given. In fact, the

initialization of the series ε̂t and ĥt, though often overlooked, can substan-

tially affect the “solution” produced by the software. Two common methods

of initialization are: (1) discarding observations; and (2) estimating the un-

conditional expectation of the series. All packages implement a default ini-

tialization, and so can estimate a GARCH(1,1) model, but not all packages

mention what initialization is used – this is a serious omission.

For the above simple model, Table 1 presents default coefficient estimates

for the seven packages we have evaluated. There appears to be some agree-

ment, but the need for a benchmark is apparent – the difference cannot be

attributed to rounding error. One source of discrepancy is that the packages

are not all maximizing the same GARCH function. Different conditional

4

package µ α0 α1 β1

X1 -0.00540 0.0096 0.142 0.821
X2 -0.00608 0.0098 0.144 0.818
X3 -0.00624 0.0108 0.153 0.806
X4 -0.00619 0.0108 0.152 0.806
X5 -0.00613 0.0107 0.153 0.806
X6 -0.00919 0.0098 0.144 0.818
X7 -0.00619 0.0108 0.153 0.806

Table 1: GARCH estimates

likelihood functions, which arise from different initializations for ε̂20 and ĥ0,

lead naturally to different parameter estimates. Another possible source of

discrepancy is numerical error, which is discussed in detail in the appendix.

At this point, is it useful to pose a very general question. Initially, one

might think that there is a simple GARCH likelihood well-established in the

literature and that all packages could estimate it by invoking the appropriate

options. In such a case, it would be possible to attribute discrepancies solely

to numerical error. There is such a GARCH likelihood, but most packages

cannot estimate it because they do not have options to allow its estimation.

Thus the question is raised, What options should GARCH procedures have?

Consider also Table 2, which presents default t-statistics on the coeffi-

cients. Here there is less agreement, and the need for a benchmark is even

more apparent. In addition to the above-mentioned sources of discrepancy,

there are two more. First, the differing parameter estimates can lead to

different standard error estimates. Second, there are at least five different

methods for computing standard errors for GARCH coefficients, which can

be computed with varying degrees of accuracy.

In order to consider the various methods, let g(θ) and H(θ) be the gra-

dient and Hessian of the likelihood function, respectively, and let Q be an

5

package µ α0 α1 β1

X1 -0.64 8.01 11.09 53.83
X2 -0.72 3.80 5.80 26.34
X3 -0.74 8.13 10.95 48.64
X4 -0.74 8.15 10.97 48.61
X5 -0.73 5.58 7.91 36.96
X6 -1.08 8.09 10.77 45.90
X7 -0.67 1.66 2.86 11.12

Table 2: GARCH t-stats

estimator of the covariance matrix. The choice Q = g(θ)g(θ)′ produces the

outer product of the gradient (OP) estimator which is the basis of the BHHH

method. The BHHH method is the usual Gauss-Newton method applied to

maximizing a likelihood rather than minimizing a sum of squares. Direct use

of the Hessian (H) is Q = −H(θ) from the Newton-Raphson method. Choos-

ing Q = E[H(θ)] produces the negative of the information matrix (IM) from

the method of scoring. These are the three usual estimators for nonlinear pro-

cedures. In the context of maximum likelihood estimation, there are two oth-

ers. The quasi-maximum likelihood (QMLE) estimator is Q = H−1(gg′)H−1

and the Bollerslev-Wooldridge (BW) estimator is Q = I−1(g′g)I−1. The ac-

curacy of these various covariance matrix estimators is affected not only by

the accuracy of the coefficient estimates, but also by the method of calculat-

ing derivatives: using a finite-difference approximation to the Hessian, rather

than an exactly calculated analytic Hessian, induces numerical error in the

estimated standard errors of the coefficients.

It is worth noting that estimation schemes vary in the amount of deriva-

tive information used. For example, Newton-Raphson requires explicit calcu-

lation of the function value, L(θ), the gradient, and the Hessian. The BHHH

method, by contrast, requires only explicit calculation of the function and

6

the gradient, as do quasi-Newton methods such as Davidon-Fletcher-Powell

(DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms. More-

over, the method by which derivatives are calculated matters. In particular,

analytic derivatives are more accurate than numerical derivatives and lead

to more accurate estimation (Bard, 1974, p. 117; Gill, Murray and Wright,

1981, p. 285).1 The most accurate way to calculate H(θ), for example, is by

analytic differentiation of an analytic gradient. This is more accurate than a

finite-difference approximation based on an analytic gradient which, in turn,

is more accurate than a finite-difference approximation based on a numerical

gradient.

Some packages offer misleading information on this point, suggesting that

the difference between numerical and analytic derivatives is only speed or

a negligible loss of accuracy. Anonymous quotes from two user manuals

demonstrate this. “[Numerical derivatives] provide sufficent accuracy to ob-

tain appropriate solutions to the problems. However, it is relatively slow

compared to analytic derivatives.” “Analytic [derivatives] will, in general,

be slightly more accurate than numeric derivatives, if the calculation of an-

alytic derivatives has been carefully optimized by hand to remove common

subexpressions.” Both these statements are true only in specific cases, and

should not be taken as general rules.

The general rule is that if the gradient is analytic, then the Hessian may

be calculated numerically from the gradient with no loss of accuracy. This is

supported by Monte Carlo evidence (Donaldson and Schnabel, 1987). How-

ever, this is only a general rule and it does not apply to GARCH estimation,
1It is true that, with proper programming, numerical derivatives can be practically as

good as analytic derivatives. However, this proper programming entails more than the
simple forward difference or even central difference approximations commonly found in
statistical and econometric software. See Quandt (1983, pp. 731-735).

7

for which accurate estimation requires not only an analytic gradient, but an

analytic Hessian, as well.

An analytic gradient leads to more accurate estimates than a numerical

gradient (Bard, 1974, p. 117). Finite-difference approximation of the gradi-

ent should only be used when analytic derivatives are not available, either

because there is no closed-form expression for the derivatives or the func-

tion is too complex to differentiate. Tables 1 and 3 obviously demonstrate

the need for careful evaluation, especially since documentation sometimes is

unclear and even incorrect. We will give specific examples of this.

3 The Basic GARCH Model

The GARCH model has many extensions, but the basic GARCH(p, q) model

is given by

yt = x′tb+ εt εt|Ψt−1 ∼ N(0, ht) (1)

ht = α0 +
p∑
i=1

αiε
2
t−i +

q∑
j=1

βjht−j (2)

The conditional likelihood function for this model can be written as

Lt(θ) =
T∑
t=1

lt(θ) (3)

lt(θ) = −1
2

lnht −
1
2
ε2t
ht

(4)

As given, the model is only partially specified and therefore not estimat-

able. In order to fully specify the model, the initialization of the series ht and

ε2t must be defined. This is a particularly important implementation issue

because, as can be seen from (4), these initial values enter the likelihood func-

tion. To be explicit, ceteris paribus, different initializations lead to different

parameter estimates because different likelihoods are being maximized. We

8

note that this is a separate issue from the determination of starting values

for an iterative, nonlinear estimation procedure. Lumsdaine (1996, lemma 6)

shows that dependence on the initialization is asymptotically neglible. Per-

haps for this reason, many authors do not even discuss the initialization in

their GARCH papers, though this is tantamount to not identifying the con-

ditional likelihood function on which reported estimation results are based.

It is intuitively obvious that reported results do depend on the initialization,

since in finite samples the initialization is not necessarily negligible and can

even be substantial, as shown by Diebold and Schuermann (1998). This is

an important consideration when benchmarking accuracy is the objective.

Many choices for this initialization have been proposed in the literature.

One such initialization is

ht = ε2t =
1
T

T∑
s=1

ε2s, t ≤ 0 (5)

An initial vector of residuals for εs can be computed from a preliminary OLS

regression.2 It is not unreasonable to suggest that every GARCH procedure

should be able to estimate a GARCH(1,1) model with the initialization (5).

This model should always be supported for two reasons. First, because a

minimal degree of flexibility is thereby insured. Second, the existence of

the FCP GARCH benchmark allows users to verify the accuracy of their

packages. The primary reason a package might not be able to estimate this

model is because the developer has decided not to allow the user to control the

initialization. Such packages are of questionable value, since the user cannot

specify the GARCH likelihood to be maximized. Some packages have options

for various initializations, but this is still unsatisfactory. The researcher
2It is unclear whether Bollerslev (1986) held SS fixed at the value provided by the

preliminary regression, or whether SS was updated with current parameter estimates on
each iteration. This demonstrates the need for a benchmark model at every stage of a
procedure’s development.

9

might well need an initialization for which the developer has not provided

an option – thus, the need for flexibility is apparent. Other relevant package

requirements are considered in the Appendix, which examines in greater

detail the numerical aspects of nonlinear estimation, including circumstances

that may cause estimation attempts to fail disastrously.

4 The Benchmark

It is well-known that the GARCH likelihood is a complicated and highly

nonlinear function (Engle and Bollerslev, 1986, p. 24; Bollerslev, Engle, and

Nelson, 1994, p. 2981), an implicit argument for the use of numerical deriva-

tives. However, at least for the standard GARCH(1,1) model, analytic first

derivatives are easily derived (Greene, 1993, §18.5). In a recent paper, Fioren-

tini, Calzolari and Panattoni (1996, FCP) paved the way for substantially

more accurate GARCH estimation by providing readily useable, closed-form

expressions for the first- and second-derivatives of the GARCH conditional

likelihood. For their Monte Carlo study, they wrote FORTRAN code to

estimate three types of GARCH models with analytic derivatives. Their

Monte Carlo study reached three conclusions which are relevant for present

purposes:

• For methods which use an analytic gradient and a Hessian, numerical

calculation of the Hessian is inferior to analytic calculation of the Hes-

sian. Moreover, numerical second derivatives tend to be unstable, and

thus not suitable for calculating standard errors.

• The OP estimator of the standard error is inferior to methods based on

second derivative information, especially the QML and BW estimates.

• Faster convergence is achieved by using one algorithm to start and

10

another to finish than by using one algorithm throughout the iterative

process. Such use of two different algorithms often is referred to as a

“hybrid algorithm” or a “mixed method.”

The FCP code, applied to the BG data, constitutes a benchmark. FCP’s

Model I, which corresponds roughly to Bollserslev’s (1986) seminal formula-

tion3, is estimated:

yt = µ+εt where εt|Φt−1 ∼ N(0, ht) and ht = α0+α1ε̂
2
t−1+β1ĥt−1.

This needs six starting values for: µ, α0, α1, β1, ε̂20 and ĥ0. Two natural choices

are: µ = −0.016427, the unconditional mean of y; and α0 = 0.221130, such

that α0/(1−α1−β1) equals the unconditional and variance of y. The values

α1 = 0.35 and β1 = 0.50 were chosen after examining several possibilities,

all of which led to the same solution. The least squares regression of yt on

a constant yields a sum of squared errors which, divided by the sample size,

produces the starting value for both ε̂20 and ĥ0, in accordance with Eq. 5.

The FCP code uses ||θ̂k − θ̂k−1|| < ε||θ̂k−1|| as a stopping rule with con-

vergence tolerance ε = 10−9. Successful convergence is tested by examining

whether the squared norm of the gradient is less than ε, i.e., the convergence

criterion is ||g(θ)||2 < ε. Results to six significant digits are presented in

Table 3. We note that Bollerslev and Ghysels estimated the same model on

the same data, and obtained the following results (QMLE standard errors in

parentheses): µ = −0.006(0.009), ω = 0.264(0.075), α1 = 0.153(0.054), and

β1 = 0.806(0.073) where, in terms of the original model, ω = α0/(1−α1−β1).

These results are consistent with the FCP benchmark.
3Again, we note that Bollserslev might have held ε20 and h0 fixed, but this is unclear.

11

coefficient standard error
-H OP QMLE IM BW

µ -.619041E-2 .846212E-2 .843359E-2 .918935E-2 .837628E-2 .873092E-2
α0 .107613E-1 .285271E-2 .132298E-2 .649319E-2 .192881E-2 .312364E-2
α1 .153134E-0 .265228E-1 .139737E-1 .535317E-1 .194012E-1 .273219E-1
β1 .805974E-0 .335527E-1 .165604E-1 .724614E-1 .218399E-1 .301509E-1

Table 3: FCP GARCH Benchmark

5 Applying the Benchmark

Relying on defaults does not permit the packages to be compared, since

no two of the packages use the same defaults. This is not surprising since

defaults can be idiosyncratic. What is surprising is that four of the seven

packages could not estimate Model I, because they do not provide the nec-

essary options. This is particularly noteworthy in the case of Package X1,

the documentation for which makes the claim that the user can supply all

the necessary starting values. We subsequently telephoned the vendor and

received confirmation that the documentation is incorrect: the user can sup-

ply starting values for the coefficients, but cannot supply the initialization.

As has been discussed, all four of these packages are of little use for serious

research.

The remaining three packages (X4, X5 and X7) can be evaluated using the

FCP Benchmark. The points of evaluation are the accuracy of the coefficients

and the accuracy of their standard errors. We could simply present the

estimates for each package and let the reader compare them to Table 3.

Ambitious readers would then count the number of accurate digits, perhaps

noting them in the margin for later comparison. There is an easier way to

present the same information.

A useful way to measure the number of digits of accuracy is to use the

12

pack- par- coef- standard error
age ameter ficient H OP QMLE IM BW
X4 µ 3.6 2.8

α0 2.3 2.5
α1 2.4 2.3
β1 3.6 3.2

X5 µ 2.6 5.1 5.1 4.7
α0 4.8 4.6 4.6 4.5
α1 5.0 4.8 4.9 6
β1 5.5 4.6 4.7 5.0

X7 µ 6 6 6 6
α0 6 6 6 6
α1 6 6 6 6
β1 6 6 6 6

X4a µ 2.6 3.1 4.9 2.8
α0 4.2 4.2 4.3 4.2
α1 4.4 4.4 4.3 4.6
β1 5.0 4.4 4.5 4.5

Table 4: accuracy of estimates

log relative error

LRE = − log10(|x− c|/|c|) (6)

where x is the estimated value and c is the benchmark value. This measure

is accurate only if the benchmark value and the estimated value differ by

a factor of less than two, so that at least the first digits agree. In two

circumstances the LRE is reported as zero: if the first digits do not agree, or

if the computed LRE is less than unity. Each of the three packages is used

to estimate Model I, and the LREs for the coefficients and standard errors

are computed. Results are presented in Table 4.

It is clear that Package X7, which uses Newton-Raphson with analytic

gradient and analytic Hessian, hits the benchmark precisely. Package X5,

which uses a quasi-Newton method with an analytic gradient, performs rea-

13

sonably well, though the coefficient on the intercept is bit less accurate than

the other coefficients. Package X4, which uses Newton-Raphson with an an-

alytic gradient with a numerical Hessian, achives less success than the other

packages. However, this developer has since upgraded its GARCH procedure,

and now reports the results given under X4a – a significant improvement.

6 Conclusions

During the past twenty-five to thirty years that forms the period during

which econometric software has become widely available and commonly used

by economists, there has been considerable innovation in both econometric

techniques and the implementation of those techniques in software. In gen-

eral, the focus of software evaluation, mainly in the form of reviews, has been

upon this demonstration of new ideas. Much less attention has been paid to

issues such as the numerical accuracy of programs or normative considera-

tions, such as what features an econometric software package should offer its

users. However, one of the implications of the results that we have presented

is that even in the case of a relatively standard specification, a large varia-

tion in numerical results can be observed. Although it is not possible to draw

general inferences from this case, two points should be made. First, that the

results we have presented were obtained from an entirely arbitrary choice: we

did not perform a series of tests of a variety of econometric procedures; we

have made only one set of tests and this paper describes our findings. Sec-

ond, as elsewhere noted by McCullough (1997) and Renfro (1997), this paper

represents an unusual contribution: during the whole of the past 30 years,

there has been surprisingly little testing done by economists of the numeric

accuracy of econometric packages or of the suitability of those package for

the application to which they have been put. Thus we cannot rule out the

14

possibility that a series of benchmark tests, considering a variety of proce-

dures, could expose a wide range of problems. For this reason we encourage

others to join in the numerical and more general evaluation of econometric

software procedures.

In presenting our results, we have been concerned not simply to offer a

benchmark, but to try to demonstrate how the design of a software package

can make a difference in terms of the usability of the software. As dis-

cussed, particularly in the case of nonlinear techniques, it is not sufficient

to simply present a single set of results as definitive. Software users need

to understand that nonlinear techniques raise the possibility of local, rather

than global convergence, as well as a series of potential problems relating

to the specifics of the algorithmic implementation. We have discussed the

distinction between analytic derivatives and finite approximations, and have

noted that this raises numerous complexities, one of the reasons being that

the structure of the problem in a particular case cannot necessarily be deter-

mined in advance. It is possible to assert that, in general, analytic derivatives

are to be preferred on the basic of numeric/analytic considerations; however,

someone–the user in many cases–must take the responsibility for specifying

these. Nonlinear estimation packages cannot always be presented to users as

“canned” procedures; this fact makes it important to begin to consider the

design and development of packages as a broadly defined set of characteris-

tics.

In the introduction, we established two questions as critical to the de-

velopment of useful benchmarks: What specifications can a tested package

estimate? and What ones should a package be able to estimate? The issue

of which specifications can be estimated is central to the establishment of

any benchmark: obviously, benchmarks are most useful to the degree that

15

they establish a standard for existing packages. However, the issue of which

specifications a package should be able to estimate is much more centrally

normative and transcends the design of software packages. It is a general rule

that users of software packages are dependent upon those packages to deter-

mine the range of estimatable models. As a consequence there is a higher

degree of symbiosis between the development of econometric theory and the

development of software than has heretofore generally been recognized. This

paper represents an inital attempt to begin to better define this interaction

between benchmarks, software standards, and econometric theory using the

GARCH model as a case study.

7 Computational Details

All packages were run on a 166 Mhz Pentium under Windows 95. The FCP

code was compiled using Lahey Fortran 90, with two switches invoked: -

dbl, to extend all real and complex numbers to double precision; and -o0,

to suppress all optimization. The FCP code was altered in the following

way. In both VSGARCMX.FOR and GSGARCOV.FOR there is a function

VALUNC which is amended twice. First, the function is declared as REAL*8

so “FUCNTION VALUNC(IDYNAM,C,...” becomes “REAL*8 FUNCTION

VALUNC(IDYNAM,C,...” Second, the value of LOG(SQRT(2*PI)) is given

only to six digits, which makes LogL accurate to only that many digits.

Therefore, about four lines before the end of VALUNC the constant 0.9189385

is changed to 0.9189385332046725D0

16

8 Appendix: Some Numerical Details of Non-
linear Estimation

Many econometrics texts provide good theoretical discussions of the vari-

ous nonlinear estimation methods, e.g., Davidon-Fletcher-Powell (DFP) or

Broyden-Fletcher-Goldfarb-Shanno (BFGS). Invariably, these texts mention

that two different algorithms might not be able to solve the same problem.

Just as invariably, they do not mention that when two algorithms can solve

the same problem, one solution might be decidedly better than the other.

The purpose of this appendix is to give the reader some idea of why this

can occur. In particular, we discuss some numerical sources of inaccuracy

in nonlinear estimation, and various ways a nonlinear procedure can fail.

We draw a distinction between between an algorithm and its implementa-

tion. The algorithm is a set of rules, and this is what usually is presented in

econometrics texts. How these rules are coded in a programming language is

the implementation, and it is this with which we are concerned. It shall be

apparent that two different implementations of the same algorithm do not

necessarily yield the same answer.

Good general introductions to the subject of nonlinear maximization in-

clude the contributions by Bard (1974), Goldfeld and Quandt (1972) and

Quandt (1983). See, for example, Bard (pp. 83-88) for a good presentation

of the basic concepts of unconstrained optimization that underlie the discus-

sion here. Considering GARCH estimation, maximization of the appropriate

(conditional) likelihood function, L(θ) can be algorithmically implemented

in many ways, but in the end usually involves iteration, particularly in the

context of nonlinear maximization. Let θ = [θ1θ2 . . . θp]′ be the argument of

the likelihood function and let θ0 be a vector of starting values. The iterative

17

process

θ̂k+1 = θ̂k − λkdk k = 0, 1, . . . (7)

can be shown to be a member of a very broad class of algorithms, where dk
is the direction moved and λk is the distance moved on the k-th iteration

(Quandt, 1983, p. 717).

As a general rule, until terminated, the iteration process involves succes-

sively changing θ̂ by an amount and a direction. The amount of change, λk,

is usually termed the “step size”. In a multivariate context, the direction

of change, dk, is represented by a vector, possibly representing the gradient

and/or Hessian of the objective function, which vector is normally chosen so

as to conform with a particular negative definite matrix. Various methods

differ is the ways which λk and dk are computed. The change from the k-

th to the (k + 1)-th iteration is evaluated using a “stopping rule.” If this

test is successful and iteration is halted, then under ideal circumstances the

program should report that it has found a stationary point and upon fur-

ther (successful) testing in terms of second and any higher order conditions

(“convergence criteria”), that it has found a maximum. In Section Four the

FCP program was described as possessing both a stopping rule and a test

for successful convergence. Frequently, discussions of nonlinear estimation

conflate the stopping rule and convergence criterion, treating them as one

and the same.

Note that if this secondary testing is unsuccessful, the program may re-

port that it has “stalled” – stopped at a point that is not a maximum. As

discussed futher below, some packages do a poor job of conducting this ex-

amination, and consequently have a marked tendency to report having found

a maximum when, in fact, they have not. Stalling can also occur when the

program reaches a point from which either an acceptable step or direction

18

cannot be determined. In this case, the proram will report, “unable to im-

prove current iterate – iterations terminated.”

8.1 Step Length

With respect to determining a good step-length, the requirements are simple:

it must not be too large, it must not be too small, and it must be in a good

direction. If too large, the procedure can easily miss a stationary point by

stepping over it. If too small, the procedure might never get to a stationary

point: imagine trying to walk up a hill by taking successively smaller steps;

your path might well converge to a point which is only part-way up the hill.

Now, assume a good direction, d̃, has been found. Then one common method

of determining the step-length is to find λ∗ which minimizes

L(θk + λ∗d̃) (8)

and then set λk ≡ λ∗. There are many other ways to solve this problem,

many of them based on the concept of a “line search” – admissible values

for λ are restricted to some interval, and this interval is searched for the

value which minimizes (8). See Dennis (1984) for a discussion of step-length

determination. We defer consideration of finding a good direction until later.

8.2 Stopping Rules and Convergence Criteria

Let g(θ) be the gradient of the likelihood function. In principle, iteration

should continue until g(θ) = 0 for some θ = θ̂, which is, of course, the re-

quirement for a stationary point. Then L(θ̂) can be investigated to determine

whether θ̂ is a maximum. However, given the nature of finite precision com-

putation, it is a far too stringent test to impose the operative requirement

that g(θ) = 0 exactly. Bear in mind that decimal numbers are represented

19

in the computer by finite-precision binary numbers, which are essentially

approximations. Consequently, it is a rare event that a computation yields

the number zero exactly. Thus it is appropriate to evaluate the results of

computations on the basis not that they evaluate to exactly zero, but rather

approximately zero, i.e. −ε < g(θ) < ε for some small value, ε, called the

“tolerance.” Clearly this condition admits not only stationary points, but

nonstationary points for which the gradient is near but not equal to zero.

Thus, even locating a stationary point is fraught with the potential for nu-

merical error.

It can be shown (Bard, p. 86-88) that, in principle, once a stationary point

is found succesive values of θk should be approximately the same (which is

the definition of “stationary”). Therefore, the change from one iteration

to the next should be “essentially” zero; that is, it should be smaller than

epsilon upon testing using another stopping rule |θk+1 − θk| < ε.4 Suppose,

though, that the step-length rule happened to produce an exceptionally small

λk so that θk+1 was close to θk Then yet another rule would be necessary to

determine whether θk+1 really was a stationary point, and still the conver-

gence criterion must be applied to determine whether the stationary point

is an extremum. This demonstrates why stopping rules and convergence cri-

teria should not be conflated. In fact, there are many stopping rules. Some

common ones are

1. k > K where K is an upper bound on the number of iterations; “max-

imum iterations reached”

2. |L(θk+1)− L(θk)| < ε; “function convergence”

4This is yet another reason that a step length should not be “small.” If the step length
could be arbitrarily small, then this stopping rule could always be satisfied far from the
maximum.

20

3. maxi[|θk+1
i − θki |] < ε i = 1, 2, . . . , p; “parameter convergence”

4. maxi[(θk+1
i − θki)2] < ε i = 1, 2, . . . , p; “squared parameter conver-

gence”

5. |g(θ)| < ε; “gradient convergence”

Of course, the Hessian can be examined if it is available (not all algorithms

require the calculation of second derivatives). These criteria can be used

singly or in combination, frequently the latter because any one does not

necessarily imply any other. When convergence is achieved, set θ̂ = θ̂k+1;

the procedure has converged in k + 1 iterations.5 Ideally, θ̂ is a stationary

point. It may or may not be a local extremum, and so L(θ̂) must be examined

carefully to determine whether or not it is a maximum. Some of these criteria

may be dependent upon the scaling of the variables. Another criterion which

merits mention is “relative offset convergence criterion” discussed in Bates

and Watts (1988, ch. 2). See also Belsley (1980), Dennis, Gay and Welsch

(1981), and Gay (1983) for further discussion.

8.3 Derivatives

To see the difference between numerical analytic derivatives, consider the

forward-difference approximation to the first derivative to a univariate func-

tion, f ′(x) = (f(x+ h)− f(x))/h+R(h) where R(h) is the remainder. Note

that R(h) might not be negligible if the function is highly nonlinear. Ex-

act analytic derivatives are not contaminated by this approximation error,

R(h). This approximation error can be decreased at the expense of com-

putational time by using a more sophisticated form of numerical derivative,
5The information in dk usually provides the standard errors for the coefficients. Note

that at this point, the subscript on d is k, so if d is used to compute standard errors, one
more iteration must be made to update d to (k + 1).

21

such as the central difference: f ′(x) = (f(x − h) − f(x + h))/2h + R(h)

[check this formula]. Of two otherwise identical programs, one which uses

forward differences and another which uses central differences, the latter can

be expected to be more accurate. In some cases, though, an algorithm based

on the most accurate numerical first derivatives can stall in a region where

||g(θ)|| is small but non-zero, whereas a similar algorithm based on analytic

derivatives will encounter no difficulty. Since convergence tests (as opposed

to stopping rules) are based on derivatives, cet. par., inaccurate computation

of derivatives can lead to false convergence results. Sometimes the procedure

will fail to recognize a maximum it has encountered but, more commonly,

will label as a maximum a point which is not even stationary.

In the use of either forward or central differences, there is an optimal

choice of h. If h is chosen too large, then truncation error dominates the

result, while if h is chosen too small, then roundoff error and cancellation

error dominate the result. See Press, et al (1992), for further elementary dis-

cussion. However, determining the optimal choice of h for a numerical first

derivative usually entails knowledge of the second derivative, producing a

Catch-22: the second derivative cannot be calculated before the first deriva-

tive. Thus, if two otherwise identical programs both use foward differences,

but differ in how h is calculated, there might be some difference in accuracy

(Dennis and Schnabel, 1983 §5.4). Gill, Murray and Wright (1981, p. 285)

have noted, “[T]he user should be aware of the increased complexity and de-

creased reliability that result when exact first derivatives are not available to

an algorithm.” Thus, if a package uses numerical derivatives as default but

accepts user-supplied analytic derivatives, the user is well-advised to take

the time and trouble to supply the analytic gradient. Further discussion of

numerical derivatives can be found in Gill, Murray, and Wright (1981) and

22

Dennis and Schnabel (1983).

8.4 Algorithm Choice

As Quandt (1983) has noted, algorithms have a variety of characteristics, not

all of which can necessarily be embodied in a specific algorithm. Thus the

choice of method of maximization necessarily involves tradeoffs, for there is

no best algorithm and, in fact, the characteristics of any one algorithm may

vary from problem to problem, being less amenable to one particular problem

and more amenable to another. This is because different algorithms make

different assumptions about the problem structure. For example, nonlinear

least squares (NLS) problems have a special structure, and methods designed

specifically for NLS are likely to be better at solving NLS problems than

general unconstrained maximization routines. Likewise, some algorithms are

more sensitive to the control parameters (starting values, step-length, etc.)

than others. For example, Newton-Raphson is more dependent on the choice

of starting values than quasi-Newton methods.

Two important considerations are: (1) the robustness of an algorithm,

that is, its ability to find a potential “solution” and (2) the cost of execution.

Today, with powerful microcomputers, cost is essentially a matter of time,

but in the past it was defined in terms of computer resource use, especially on

mainframe computers. The robustness of an algorithm can be a subtle issue,

depending not only the problem at hand, stopping rules, and step length,

as noted, but also on the amount of derivative information (gradient, or

gradient and Hessian), and the types of derivatives (numerical or analytic).

Fraley (1989) gives a lucid discussion of these issues in the context assessing

algorithms for nonlinear least squares.

For the maximization of a function F (θ), a common conceptual starting

23

point is the specification of a second-order Taylor approximation a point θk:

F (θ) = F (θk) + (θ − θk)′gk +
1
2

(θ − θk)′Hk(θ − θk) +R(θ − θk) (9)

where gk is the vector of first derivatives (the gradient) evaluated at the point

θk and Hk is matrix of second derivatives (the Hessian) evaluated at the point

θk, which reflects the concavity property of the function to be maximized. In

order for (9) to be valid, F must be analytic in a region about θk. Then from

(7) choosing dk = H−1
k g(θk) and setting λk ≡ 1 defines the Newton method6

θk+1 = θk −H−1
k gk (10)

The Newton method critically depends for its properties on the starting value

θ0, being “close” to the value which maximizes the likelihood. The reason

is that in order for H−1
k to be a part of a “good” descent direction, H−1

k

must be negative definite. Though Hk is negative definite when θk is close

to θ, when θk is not close to θ, Hk might not be negative definite and the

procedure breaks down.

A variety of schemes for solving this problem of negative definiteness

center around replacing Hk in (10) with some Qk, where Qk is constructed so

as to be negative definite whatever the value of θk. A decided advantage of

this approach is that the convergence properties no longer depend so critically

on the starting values, as compared to Newton-Raphson. One particular class

of such schemes, the quasi-Newton (variable metric) method, constructs Qk

using F and g. In quasi-Newton routines, an approximation to the Hessian

is built over several iterations with the hope that, by the time iterations

converge, Qk ≈ Hk. On each iteration, Qk is updated by Qk+1 = Qk + Uk

where Uk is the updating matrix. One rule for constructing Uk leads to the
6If λk 6= 1 in (10), then the algorithm often is referred to as a “modified Newton

method.”

24

DFP algorithm, while another leads to the BFGS algorithm. Since each

iteration yields information only about one direction, Qk+1 can be expected

to differ from Qk by a low-rank matrix. When Uk has rank one, this is called

a “rank one update.” Naturally, there exist methods based on rank two

updates, such as BFGS and DFP. Because these methods builds up curvature

information slowly, if the procedure terminates in only a few iterations, Qk

is likely to be a poor approximation to Hk; the coefficient estimates may be

good, but the standard error estimates will not. Even if several iterations

occur, standard errors based on Qk will be inaccurate to the extent that

Qk 6= Hk. An additional difficulty with the quasi-Newton approach and other

methods which use only gradient information is that they cannot detect and

move away from a saddle-point as well as Newton-Raphson can.

One common approach to securing the best of both worlds is to use a

“hybrid algorithm.” An algorithm which is not so sensitive to starting values,

such as a quasi-Newton method, is used to move the iterate “close enough”

to the solution, and the the problem is handed off to a method with superior

convergence properties, such as Newton-Raphson. When both algorithms are

of the gradient variety, this is called a “mixed gradient algorithm” (Dagenais,

1978).

Generally, choice of algorithm and its implementation, starting values,

stopping rule, and the method of computing derivatives all interact to de-

termine whether the program can compute the optimum and, if so, how

accurately. The reasons a procedure can fail can be simply enumerated.

8.5 Ways a Procedure Can Fail

The preceding discussion makes clear several of the reasons that, when two

packages solve the same problem, the solutions might not be equally accurate.

25

These same reasons can also shed light on the ways a package can fail to

produce a solution (Murray, 1972).

There is a variety of ways a procedure can fail to obtain satisfactory pa-

rameter estimates, but these can be roughly categorized under four headings:

(1) failure to converge (the iterations do not stop until the upper bound is

hit); (2) failure to improve the current iterate (the procedure reaches a point

from which it cannot find another step to take); (3) failure to recognize a

maximum (the procedure stops at a maximum, but does not recognize that

the point is a maximum); and (4) “false maximum” (the procedure stops at a

point which is not a maximum but indicates that a solution has been found).

In the first three cases the user has some idea that something is amiss, and

so can take appropriate action. Diagnostic output can be examined to see

whether the iterates are converging appropriately, etc. (Gill, Murray and

Wright, 1981, §8.3) and the usual “fixes” can be applied: change the starting

value, vary the options, even try another algorithm. The fourth case is a

catastrophic failure, for the user has no idea that anything is wrong. We

discuss each in turn.

In failure to converge, the procedure hits the upper bound on the num-

ber of iterations, the user resets the upper bound, and again the procedure

hits the bound. There are two primary reasons that a procedure may fail to

converge. First, the iterates may diverge monotonically or in an oscillatory

fashion. A strong hint that this is occurring comes when the user must in-

crease the maximum number of iterations. It can be confirmed by examining

the function values and other diagnostics. Second, the iterates may cycle,

with (nearly) the same sequence of iterates recurring. Again, the user has

to reset the maximum number of iterations, and examination of function

values and diagnostics reveals some sort of cyclical behavior. There is yet a

26

third reason: the algorithm may be exceedingly slow for this particular prob-

lem, making very little progress on each iteration, perhaps requiring several

hundred iterations.

That a step length and a step direction have been found does not mean

that a step is taken. This is the problem underlying “failure to improve cur-

rent iteration”. The step must be “acceptable” before it is taken. Generally,

this means that for a candidate θk+1, it must be true that L(θk+1) > L(θk).

If such a step cannot be found, then the program will issue a “failure to

improve the current iterate” message and terminate. One common reason

for such a message is that the convergence tolerance has been set too small

for the accuracy to which the function and gradient are computed. This can

be especially true if the likelihood is flat in the region of the maximum. Al-

ternatively, the function or one of its derivatives might be discontinuous near

the point at which the algorithm stalls. This discontinuity might be real,

or it might be a numerical artifact of finite precision (see Murray, Gill and

Wright, 1981, p. 327). Yet another possibility is that the derivatives might

be inaccurate.

Formally, failure to recognize a maximum is a special case of failure to

improve. If the program stops at a maximum but fails to recognize it as such,

it is likely to finally exhibit the error message “failure to improve,” indicating

the inability to determine a next step that increases the value of the given

objective function, yet also the inability to determine the satisfaction of the

second order conditions. A simple test which often works in practice is to

increase the convergence tolerance. If the procedure converges to the same

point but this time labels it a maximum, it probably is a maximum.

“False maximum” occurs when the procedure stops at a point which is

not stationary, and this point somehow satisfies the program requirements for

27

the point to be labelled a maximum. This problem often arises due to poor

implementation of the termination criteria (Gill, Murray, and Wright, 1981,

p. 306). Careful examination of the diagnostics might indicate that the point

is not a maximum, but even then there is no “fix” which the user can apply

using that same software package. For this reason a package should err on

the side of caution: better to label a maximum as “no solution found” than

to label a non-solution as a solution. Some packages have a marked tendency

to report false maxima, and users contemplating nonlinear estimation should

avoid the use of such packages.

References

Bard, Y. (1974), Nonlinear Parameter Estimation, New York: Acadmeic

Press

Bates, D. M. and D. G. Watts (1988), Nonlinear Regression and Its Appli-

cations, New York: J. Wiley and Sons

Belseley, D. (1980), On the Efficient Computation of Full-Information Maximum-

Likelihood Estimation, Journal of Econometrics 14, 203-224

Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroscedas-

ticity,” Journal of Econometrics, 31, 307-327

Bollerslev, T. and E. Ghysels (1996), “Periodic Autoregressive Conditional

Heteroscedasticity,” Journal of Business and Economic Statistics, 14, 139-

151

Bollserlev, T., R. F. Engle and D. B. Nelson (1994), “ARCH Models,” in

R. Engle and D. McFadden, eds., Handbook of Econometrics, volume 4,

Amsterdam: North-Holland, 2959-3038

Calzolari, G. and L. Panattoni (1988), “Alternative Estimators of FIML

Covariance Matrix: A Monte Carlo Study,” Econometrica 56, 701-714

Dagenais, M. G. (1978), “The Computation of FIML Estimates as Iterative

28

Generalized Least Squares Estimates in Linear and Nonlinear Simultane-

ous Equations,” Econometrica, 46, 1351-1362

Dennis, J. E. and R. B. Schnabel (1996), Numerical Methods for Uncon-

strained Optimization and Nonlinear Equations, Philadelphia: SIAM

Dennis, Gay and Welsch (1981) “An Adaptive Nonlinear Least-squares Al-

gorithm,” TOMS 7, 348-368

Dewald, William G., Jerry G. Thursby and Richard G. Anderson. 1986.

“Replication in Empirical Economics: The Journal of Money, Credit and

Banking Project,” American Economic Review, 76:4, pp. 587-603.

Diebold, F. X. and T. Schuermann (1998), “Exact Maximum Likelihood

Estimation of Observation-Driven Econometric Models,” in R. S. Mari-

ano, M. Weeks and T. Schuermann, eds., Simulation-Based Inference in

Econometrics: Methods and Applications, Cambridge: Cambridge Uni-

versity Press, ????-????

Donaldson, J. R. and R. B. Schnabel (1987), “Computational Experience

with Confidence Regions and Confidence Intervals for Nonlinear Least

Squares,” Technometrics 29, 67-82

Engle, R. F. and T. Bollerslev (1986), “Modelling the Persistence of Condi-

tional Variances,” Econometric Reviews 5, 1-50

Feigenbaum, S. and D. M. Levy (1993), “The Market for (Ir)Reproducible

Econometrics,” Social Epistemology, 7, 243-244

Fiorentini, G., G. Calzolari and L. Panattoni (1996), “Analytic Derivatives

and the Computation of GARCH Estimates,” Journal of Applied Econo-

metrics 11, 399-417

Fraley, C. (1989), “Software Performance on Nonlinear Least- Squares Prob-

lems,” Report No. 89-1244, Stanford University Department of Computer

Science

29

Gay, D. M. (1983), “Algorithm 611: Subroutines for Unconstrained Mini-

mization Using a Model/Trust-Region Approach,” ACM TOMS, 9, 503-

524

Gill, P. E., W. Murray, and M. H. Wright (1981), Practical Optimization,

New York: Academic Press

Greene, W. (1993) Econometric Analysis, 2e. New York: MacMillan.

Longley, J. W. (1967), “An Appraisal of Computer Programs for the Elec-

tronic Computer from the Point of View of the User,” Journal of the

American Statistical Association, 62, 819-841

Lovell, M. C. and D. D. Selover (1994), “Econometric Software Accidents,”

The Economic Journal, 104, 713-726

Lumsdaine, R. (1996), “Consistency and Asymptotic Normality of the Quasi-

Maximum Likelihood Estimator in IGARCH(1,1) and Covariance Station-

ary GARCH(1,1) Models,” Econometrica 64, 575-596

McCullough, B. D. (1997), “Benchmarking Numerical Accuracy: A Review

of RATS v4.2,” Journal of Applied Econometrics, 12, 181-190

Murray, W. (1972), “Failure, the Causes and Cures,” in W. Murray, ed.,

Numerical Methods for Unconstrained Optimization, New York: Academic

Press, 107-122

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. R. Flannery (1994)

Numerical Recipes in Fortran, 2e New York: Cambridge University Press

Quandt (1983)

Renfro, C. (1997) “Normative Consideration in the Development of a Soft-

ware Package for Econometric Estimation,” Journal of Economic and So-

cial Measurement, 23, 277-330

Silk, J. (1996) “System Estimation: A Comparison of SAS, SHAZAM, and

TSP,” Journal of Applied Econometrics, 11, 437-450

30

Ueberhuber, C. W. (1997), Numerical Computation, vol. 2, Berlin: Springer

31

