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estimating a time-varying conditional correlation estimator. The standard errors of the first
stage parameters remain consistent, and only the standard errors for the correlation parame-
ters need be modified. We use the model to estimate the conditional covariance of up to 100
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specification tests of the estimator using an industry standard benchmark for volatility models.
This new estimator demonstrates very strong performance especially considering the ease of
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1 Introduction

While univariate GARCH models have met with widespread empirical success, the problems as-
sociated with the estimation of multivariate GARCH models with time-varying correlations have
constrained researchers to estimating models with either limited scope or considerable restrictions.
Large time-varying covariance matrices are needed in portfolio management and optimization,
models of the term structure of treasuries or commodities, and large vector autoregressions. In
this paper we describe a model which can be used to estimate extremely large time-varying co-
variance matrices and describe the theoretical properties of the Dynamic Conditional Correlation
(DCC) Multivariate GARCH model, first introduced in Engle (2001). This class of MV-GARCH
models differs from other specifications in that univariate GARCH models are estimated for each
asset series, and then, using the standardized residuals resulting from the first step, a time varying
correlation matrix is estimated using a simple specification. This parameterization preserves the
simple interpretation of univariate GARCH models with an easy to compute correlation estimator.
This multi-stage estimation requires modifying the standard errors of the parameters, however the
Bollerslev-Wooldridge standard errors for each univariate GARCH model remain consistent, and
only the asymptotic covariance of the parameters of the correlation estimator need be modified.

Bollerslev, Engle and Wooldridge (1988) originally proposed the multivariate GARCH model in
the familiar half-vec (vech) form which provided a very general framework for multivariate volatility
models. The full unrestricted model requires O(k*) parameters to be estimated by maximum
likelihood, where k is the number of time series being modelled. A simpler model, the diagonal
vech was also proposed which allows for non-zero coefficients only on own lagged effects and cross
products, reducing the numbers of parameters needing to be estimated to be O(k?). The diagonal
specification allows for a relatively straightforward interpretation, as each series has a GARCH-like
specification. However, deriving the restrictions necessary on the parameters to ensure the positive
definiteness of the conditional covariance becomes extremely difficult as k£ grows to even a moderate
size.

Bollerslev (1990) introduced the constant conditional correlation (CCC) multivariate GARCH
specification,where univariate GARCH models are estimated for each asset and then the correlation
matrix is estimated using the standard closed form MLE correlation estimator by transforming
the residuals using their estimated conditional standard deviations. The assumption of constant
correlation makes estimating a large model feasible and ensures that the estimator is positive
definite, simply requiring each univariate conditional variance to be non-zero and the correlation
matrix to be of full rank. However, the constant correlation estimator, as proposed, does not

provide a method to construct consistent standard errors using the multi-stage estimation process.



Bollerslev finds the notion of constant correlation plausible, yet recent work by Tsui and Yu (1999)
has found that constant correlation can be rejected for ceratin assets. Bera (1996) and Tse (2000)
both have developed tests for constant correlation, the former being a bivariate test while the latter
is a more general multivariate LM test.

The BEKK formulation, proposed in Engle and Kroner (1995), developed a general quadratic
form for the conditional covariance equation which eliminated the problem of assuring the positive
definiteness of the conditional covariance estimate of the original vech model. In order for the
BEKK model to be fully general, the number of parameters needing to be estimated is O(k*), but
a standard BEKK estimation will involve O(k?) parameters. Other more tractable formulations of
the BEKK model include diagonal and scalar which place restrictions on certain parameters to be
equal to zero, although these restrictions are typically rejectable. In addition to the large number of
parameters needing to be estimated for the general form, the exact interpretation of the individual
coefficients is difficult to discern.

Recently, Alexander (2000) has advocated the use of factor GARCH models, as first outlined
Engle, Ng, and Rothschild (1990), for estimation of large covariance matrices. Factor or Orthog-
onal MV-GARCH models provide a method for estimating any dynamic covariance matrix using
only univariate GARCH models. Alexander shows how a limited number of factors can explain a
significant amount of the volatility in certain cases. However, this approach, while reducing the
numbers of parameters estimated to o(k), is limited by both the difficulty in interpreting the co-
efficients on the univariate GARCH models and the poor performance for less correlated systems
such as equities.

Engle (2001) proposed a new class of estimator that both preserves the ease of estimation of
Bollerslev’s constant correlation model yet allows for non-constant correlations. Dynamic Condi-
tional Correlation MV-GARCH preserves the parsimony of univariate GARCH models of individual
assets’ volatility with a simple GARCH-like time varying correlation. Further, the number of pa-
rameters estimated using maximum likelihood is O(k), a considerable improvement over both the
vech and the BEKK models. More importantly, the number of parameters requiring simultaneous
estimation is O(1). The focus of the current paper is to explore both the theoretical and empirical
properties of the DCC MV-GARCH model when estimating large conditional covariance matrices.

Tse and Tsui (1998) have also proposed a dynamic correlation multivariate GARCH model,
however no attempt has been made to allow for separate estimation of the univariate GARCH
processes and the dynamic correlation estimator. In addition, by not allowing for reversion to the
unconditional correlation in the correlation estimator, the number of parameters needing to be

simultaneously estimated is O(k?), and is only slightly less than the typical BEKK formulation.



While this estimator does possess a straight forward interpretation of the coefficients, it still will
require simultaneous estimation of 32 parameters in a 5 asset model, and 167 parameters in a 15
asset model.

The paper is organized as follows. The second section outlines the model in detail and discusses
the estimation procedure used. Section three establishes the asymptotic consistency and normality
of the parameters, discusses the modified mispecification robust standard errors, provides a modified
likelihood-ratio test that is valid under either two stage estimation or model mispecification, and
discusses using a one-step Newton-Raphson iteration to achieve full efficiency. Section four describes
an easy to implement test for constant correlation requiring only the estimation of a restricted VAR.
Section five describes the data used and provides empirical results where systems with up to 100
assets are estimated. In section six, specification tests and benchmark comparisons are conducted
and section seven describes multi-step forecasting with the DCC model. Finally, section eight

concludes and outlines area of future research.

2 Model

The multivariate GARCH model proposed assumes that returns from % assets are conditionally

multivariate normal with zero expected value and covariance matrix H;.! The returns can be

either mean zero or the residuals from a filtered time series.?

rt‘ft—l ~ N(O, Ht)
and
Ht = DthDt

where Dy is the k x k diagonal matrix of time varying standard deviations from univariate GARCH
models with /A on the i*" diagonal, and R; is the time varying correlation matrix. The log-

likelihood of this estimator can be written:

—_

T
52 klog(2m) + log(|Hy|) 4 v H; 1ry)
t=1

!The assumptions of multivariate normality is not required for consistency and asymptotic normality of the
estimated parameters. When the returns have non-Gaussian innovations, the DCC estimator can be interpreted as a

quasi-maximum likelihood estimator.
2The standard errors of the model will not depend on the choice of filtration (ARMA, demeaning), as the cross

partial derivative of the log-likelihood with respect to the mean and the variance parameters has expectation zero

when using the normal likelihood.



(klog(2m) + log(| Dy Ry Dy|) + réDt_lRt_lDt_lrt)

Il

|
N =
E

~
Il
i

(klog(2m) + 2log (|Dy]) +log(| Rel) + iRy er)

I

|
N =
E

o~
Il
—

where €; ~ N(0, R;) are the residuals standardized by their conditional standard deviation. We

propose to write the elements of D; as univariate GARCH models, so that

P; Q;
hit = w; + Z OéipT?t_p + Z Bighit—q (1)
p=1 q=1

for i = 1,2,...,k with the usual GARCH restrictions for non-negativity and stationarity being
imposed, such as non-negativity of variances and 25;1 aip + ZqQ:il Biqg < 1. The subscripts are
present on the individual P and @) for each series to indicate that the lag lengths chosen need not
be the same. The specification of the univariate GARCH models is not limited to the standard
GARCH (p,q), but can include any GARCH process with normally distributed errors that satisfies
appropriate stationarity conditions and non-negativity constraints. For instance, one could use
TARCH to capture asymmetric effects in volatility or APARCH to allow for long memory volatility

processes. The proposed dynamic correlation structure is:

M N B M N
Qt = (1 - Z Qm — Zﬁn)@ + Z @m(ft—mfg_m) + Zﬁn@t—n (2>
m=1 n=1 m=1 n=1

R = Q' !

where @ is the unconditional covariance of the standardized residuals resulting from the first stage

estimation, and

0 0 0o ... ,/qkk_

so that Q; is a diagonal matrix composed of the square root of the diagonal elements of ;.

. : it : .
The typical element of R; will be of the form p;;; = \/qijiqjj. The following useful result from
linear algebra simplifies finding the necessary conditions for R; to be positive definite and hence a

correlation matrix.?

3A correlation matrix is defined as a real, symmetric positive semi-definite matrix, with ones on the diagonal.



Proposition 1 (Positive Definiteness) Let A be a real, symmetric square matriz. Then A is
positive definite if and only if B = A*"YAA*~! as defined above, is positive definite.

Proof: See Appendix
Proposition 1 establishes that for positive definiteness of R;, we only need to ensure @ is
positive definite. Applying this proposition, we can describe a set of sufficient conditions for H; to

be uniformly positive definite.

Proposition 2 (Positive Definiteness of DCC) If the following univariate GARCH parameter

restrictions (Equation 1) are satisfied for all asset seriesi € [1,...,k]:

a. wi >0

b. aip Vp € [1,...,B] and Big Vq € [1,...,Qi] are such that hy will be positive with probability
one.*

c. hip>0

d. The roots of 1 — 25;1 aippZ? + ZqQ:il BiqZ1 lie outside the unit circle.
and the DCC parameters satisfy (Equation 2):
e. ay > 0Vm e [1,..., M)
M N
g- Zm:1 Oy + anl Bn <1
h. The minimum eigenvalue of R > & > 0.
Then Hy will be positive definite for all t.

Proof: Each h;; will be strictly positive as each is a sum of w, a strictly positive parameter with «
and 3 such that Zf;l aipr%_p—i-zg;'l Bighit—q is non-negative with probability 1. @); will be positive
definite for all ¢ as it is a weighted average of a positive definite matrix (@), a positive semi-definite
matrices (e;—;€;_;) and a positive definite matrices Q¢—;, with non-negative parameters, and Qo is
positive definite by Assumption h. By Proposition 1, R; will be positive definite, and H; = D; Ry Dy
will be positive definite as it is the product of three positive definite matrices.

Essentially, the requirements for positive definiteness of the conditional covariance are the same
for the DCC model as for a univariate GARCH process. The restrictions on parameters in Propo-

sition 2 are not necessary, only sufficient to guarantee positive definiteness for H;.

“Exact conditions are complicated and can be found in Nelson and Cao (1992).



3 Estimation and Standard Errors

The DCC model was designed to allow for two stage estimation, where in the first stage uni-
variate GARCH models are estimated for each residual series, and in the second stage, residuals,
transformed by their standard deviation estimated during the first stage, are used to estimate the
parameters of the dynamic correlation. The likelihood used in the first stage involves replacing
R; with I, an identity matrix of size k. Let the parameters of the model, @, be written in two
groups (¢1, ¢2, ..., 0k, ¥) = (¢, 1), where the elements of ¢; correspond to the parameters of the
univariate GARCH model for the it" asset series, ¢; = (w, a1, ..., api, B, - - - ; 8Q,i)- The resulting

first stage quasi-likelihood function is:

T
QLi(9lr) = —5 > (klog(2m) + logl|14]) + 2log(1Di) + 1D LD w) (3
1 t;l
= 33 (klog(2m) + 2log(IDi) + 7Dy ) W
t=1
1 T b ri2t
= — tzl (k log(27) + ; (10g(hit> + ht>> )
1 k T ?”2
= 3 ; (T log(27) + ; (10g(hit) + hz>> (6)

which is simply the sum of the log-likelihoods of the individual GARCH models for each of the
assets. Once the first stage has been estimated, the second stage is estimated using the correctly

specified likelihood, conditioning on the parameters estimated in the first stage likelihood:

QLy(Y|p, 1) = ~— (klog(2m) + 2log |Dy| + log(| Re|) + riD; 'Ry Dy ry) (7)
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Since we are conditioning on gﬁ, the only portion of the log-likelihood that will influence the
parameter selection is log(|Rs|) + ¢, R; '€, and in estimation of the DCC parameters, it is often

easier to exclude the constant terms and simply maximize:

T

QLyWId, ) = —5 S (log(IRi]) + ;e

t=1



White (1994) has provided a proof for the asymptotic distribution for two-stage QMLE estima-
tors. The proofs for consistency and asymptotic normality of the parameter estimates of the two
stage DCC estimator closely follow the results presented in White. The following set of assump-
tions are sufficient to establish the consistency of the parameters estimated using this two stage
procedure, in addition to standard assumptions guaranteeing the completeness of the probability

space and measurability of the quasi-likelihood functions.

A 1 (i) For each ¢ in ®, E(log fi(r¢, ¢)) exists and is finite, t =1,2,. ..,
(ii) {logf1(r¢, @)} obeys the strong uniform law of large numbers.
(iii) For each 6 = (¢,v) in © = & x U, E(log fa(r,0)) exists and is finite, t =1,2,. ..
(iv) {logfa(r,0)} obeys the strong ULLN.

A 2 (i) 0y = (¢0,%0) is identifiably unique, interior in © = & x ¥ uniformly in n, O is compact,
and 0y satisfies the conditions of Proposition 2.

(it) {L1r(¢) = BE(T~' S log fi(re, d))} is O(1) uniformly on ®

(iii) {Lor(0) = E(T~1 23:1 log fa(r¢,0))} is O(1) uniformly on ©

A 3 (i) For all ¢ in ®, VLi7(¢) = E(VLir(rT,¢)) < oo, where v’ = (ri,ra,...,r7), the T-
dimensional vector of observations.
(ii) For all § in ©, VLor(0) = E(VLar(r!,0)) < 0o

A 4 (i) For all ¢ in ®, V2Li7(¢) = E(V2Lir(rT, ¢)) < oo
(ii) E(V2Lyr(rT, ")) is continuous on ® uniformly in T =1,2,...
(iii) {V2logfi(r¢, )} obeys the strong ULLN.
(iv) For all 0 in ©, V2Lar(0) = E(V2Laor(rT,0)) < 0o
(v) E(V?Lar(rT, ")) is continuous on © uniformly in T =1,2,. ..
(vi) {V2%logfa(r, )} obeys the strong ULLN.

A5 (i) {An1 = VeeLir(do)} is O(1) and uniformly negative definite.
(ii) {Asar = VyypLor(0o)} is O(1) and uniformly negative definite.

Theorem 1 (Consistency) Under assumptions A1 - A5, dr 2 do and ((;AST,MAJT) =07 5 0,.

Details of the proof can be found in White. The conditions for consistency are very weak and
will be satisfied by numerous data generating processes. We now will add sufficient regularity
conditions to allow for asymptotic normality of the estimated parameters. The following additional

assumption is needed for this result:



A6 (i) {T*1/2V’¢ In f1(re, ¢0),T*1/2V§p In fo(re, ¢o,v0)} obeys the central limit condition with co-

variance matriz Bor, and Bor is O(1) and uniformly positive definite.

Using these assumptions the following theorem establishes the asymptotic distribution of the

two stage estimation process used in estimating DCC-MVGARCH models.

Theorem 2 (Asymptotic Normality) Under assumption A1 - A6, for fi and fa,

VT (b7 — o) & N(0, Ao BoAy' ™)

where
Ay — Ve In f1(¢0) 0 _ | An 0
ngw ln f2(90) V¢¢ ln f2 (00) A12 A22
and
T Bi1 Bio
By = var |y {T7V2VyIn fi(re, ¢0), T~*ViIn fo(re, do, v0)} | = e B
t=1 12 22

Following from the theorem, the asymptotic variance of 6, is given by Ao~ 'ByAo~". Applying
the partitioned inverse theorems for square matrices, the asymptotic variances of the GARCH
parameters for each asset, ¢Sn are the standard Bollerslev-Wooldridge robust covariance matrix
estimators given by Ay By A5 The asymptotic variance of the second stage DCC parameters
is however a much more complicated formula involving all of the covariance terms. Further, the
asymptotic variance of the DCC parameters is (weakly) greater in this case than would be the case
where A1o was a zero matrix, due to the loss of efficiency in estimating the parameters separately.

In addition to having modified standard errors, a likelihood-ratio test with r restrictions will
not typically be x2. Both Foutz and Srivastave (1977) and Liang and Self (1996) have discussed
likelihood ratio testing when either the distributional assumption is incorrect or a model is estimated
in multiple steps. Both of these results demonstrate when the Information Matrix Equality does not
hold, i.e. Ag — By 4 0, then the asymptotic distribution will be a weighted sum of r independent
X3 variables where the weights will not necessarily be unity. In this case, where the limiting
distribution of the parameters is known (Theorem 2), Foutz and Srivastave have shown that to test
the null of Hy : 0 € O, against Hy : 0 € O that

max
6 €O Il f(r.0)} a
max - C

0 €0, {[1}_, f(re.0)}

5A117'B11A11 7! will be a block diagonal matrix with the covariance matrix for the i univariate GARCH model

—2InA=-2In

on the i*"* diagonal block.



where

C ~ c(00)1X3 + c(B)ax? + ...+ ¢c(00)r 3

where ¢(fp); is the i eigenvalue of W (89)M (0o), W (6) = (—A; + A2 A7  A3) and M(6p) is the
upper r x r matrix of A71BA~! where A is A, as defined in theorem 2, with the rows and columns
of the restricted parameters interchanged, so that the first r rows and columns of A correspond to
the standard errors of the restricted parameters being tested and B is similarly defined. In testing
one restriction, we have (W (6g)M(6p)) ' A ~ x3. Another useful result in understanding the DCC
estimator is that the expectation of the scores of the full loglikelood, evaluated at the estimated
parameters from the first stage estimate, is zero, and thus the parameters of the two stage process

have the same limit as a jointly estimated model. Proposition three details this claim.

Proposition 3 (Univariate GARCH specification) If E;_1(r2) = hy, then the expectation of
the partial gradient with respect to ¢ of the second-stage log-likelihood evaluated at the parameters
estimated using the first-stage log-likelihood is zero, i.e. E(Vg1n fo(r, $1(-),1ha(-)) = 0.

Proof: See Appendix

While the parameters are consistent and asymptotically normal with a known covariance, they
are not fully efficient as both sets of parameters are estimated using LIML. However, due to a result
from Pagan (1986) among others, we know that when an estimator is root-n consistent, that a fully
efficient estimate requires only one step using a Newton-Raphson algorithm that involves using the
second stage likelihood to obtain consistent estimates of the first and second derivatives.® Lemma

one gives an exact statement of the one step efficiency for the DCC estimator.

~ A~ ——1 —_— —
Lemma 1 (One Step Efficiency) If0; = 0as+Ags Vo ln fo(r, o, o) where Agg is a consistent
estimate of the second derivative of the QL2 and VglIn m0,¢0) is a consistent estimate of the
gradient of QLy, then TY/2(0; — 0y) has the same limiting distribution as TY/2(6 — 0y), where 0,

would is a one step efficient estimator and 0 is a standard one-stage estimator.

Proof: See Pagan (1996)

4 Testing for Constant Correlation

One of the primary motivations for this paper is that the correlations between assets are not con-

stant through time. Testing data for constant correlation has proven to be a difficult problem, as

SEstimates of the derivatives can be easily computed from the second stage likelihood function numerically.

10



testing for dynamic correlation with data that have time-varying volatilities can result in mislead-
ing conclusions and can lead to rejecting constant correlation when it is true due to misspecified
volatility models. Tse (1998), testing a null of constant conditional correlation against an ARCH in
correlation alternative, and Bera (1996), testing a null of constant conditional correlation against
a diffuse alternative, have provided tests of a null of constant correlation against an alternative
of a dynamic correlation structure. One short coming of both of these tests is that they do not
generalize well to higher dimensions. We propose a test that only requires a consistent estimate of
the constant conditional correlation, and can be implemented using a vector autoregression.

We are interested in testing the null of constant correlation against an alternative of dynamic
conditional correlation. However, there is a significant difficulty in conducting this test as the
decay parameters (;) in the DCC estimator are unidentified under the standard null hypothesis
and must be treated as nuisance parameters. There are two ways to treat this. One is to merely
test the null against an alternative with a specific coefficient for beta 3. This test can be conducted
using standard likelihood ratio test with the usual properties of LR testing holding, however it may
lack power if the chosen coefficient for § is far form the truth. However, this is an unnecessarily
restrictive test as it should not be necessary to identify 5. Andrews and Ploberger (1994) establish
a procedure by which tests with unidentified parameters can be conducted and only recently has
this framework been extended to cases where the parameter unidentified under the null can be on
the boundary of the parameter space. Implementing this type of test is very difficult as it requires

many optimizations and monte carlo critical values. The test we propose is

Hy:R; =R VteT

against

H, : vech"(R;) = vech"(R) + Brvech"(Ry—1) + Bavech® (Ri—2) + . .. Bpvech (Ri—p)
where vech" is a modified vech which only selects elements above the diagonal. The testing pro-
cedure is as follows. Estimate the univariate GARCH processes and standardize the residuals for
each series. Then estimate the correlation of the standardized residuals, and jointly standardize
the vector of univariate standardized residuals by the symmetric square root decomposition of the

R.” Under the null of constant correlation, these residuals should be IID with a variance covariance

"While the E(ete;) is a correlation matrix, in finite samples this is never going to occur. In practice it is more
efficient to use R as the covariance matrix in place of the correlation matrix. By using a correlation matrix, the test
is further weakened as the test is also sensitive to the standardized variance of the univariate GARCH processes not

being unity.

11



matrix given by I;.® The artificial regressions will be a regression of the outer products of the resid-
uals on a constant and lagged outer products. Let Y; = vech" [(R‘1/2Dt_1rt)(R_1/2Dt_1rt)’ — Iy
where R~/ Dy Yy, is a k by 1 vector of residuals jointly standardized under the null. The vector

autoregression is

th:a‘i‘ﬁlyvt—l‘i"--"i‘ﬁsn—s“"nt

Under the null the intercept and all of the lag parameters in the model should be zero. In
order to estimate the test statistic, all that is necessary to do is to make the T x 1 vector of
outer-products for each univariate regressand and the 7" x s + 1 matrix of regressors including
the constant for each set of regressors. Then the parameters can be estimated by stacking the
k(k — 1)/2 vectors of regressands and regressors and performing a seemingly unrelated regression.
The test can then be conducted as 3{;5( & \which is asymptotically X%s 1

regression parameters and X is a matrix consisting of the regressors.? In every model considered

) where & are the estimated

in this paper, we reject the null of a constant correlation in favor of a dynamic structure.

A Monte Carlo study was conducted to study size and power of the test for constant conditional
correlation. In addition to studying the size under correctly specified models for the conditional
variance, we felt that studying the size with misspecified conditional variance models was also
warranted, as in practice one can never be completely sure of correct specification. To begin
studying the size under the simplest case, correct specification of the conditional variance models,
we used 4 different levels of correlation for the constant conditional correlation: The first three
simply set the constant conditional correlations (between all pairs of assets) to .3, .5 and .8, while
the fourth drew, at random, unconditional correlations from the correlation matrix of the 100 S&P
500 indices, by selecting the appropriate number of rows and columns. All univariate GARCH
models were GARCH(1,1) with w = 0.1, « = 0.1., and § = 0.8, resulting in an unconditional
variance of unity. The tests were conducted with the number of assets ranging over 2, 3, 4, 5 and
10; 5000 thousand replications were performed for each choice of unconditional correlation and
number of assets. Table 1 contains the results for the size of the test with 5 lags when the critical
value is chosen at the 5% level form a X% distribution.

The test was under sized for all correlations and number of assets. This under size of the

test is most likely due to parameter estimation uncertainty in the conditional variance estimation.

8A limitation of this test is that it cannot necesarily differentiate between a dynamic correlation structure and
misspecified conditional heteroscedasticity of the univariate series. However, as demonstrated in this section, the test

has od size properties even when the univariate models are misspecified.
91f the covariance of the standardized residuals is used in place of the correlation, the intercept will necessarily be

zero, and the test could be conducted as (k)(k — 1)TR? from the regression which will be distributed x%S).

12



However, the size distortion is quite manageable, typically falling in a very narrow range, about
2% too low. The second experiment conducted was to examine the power of the test when the
conditional variance models are misspecified. To examine this, we used the different GARCH
specifications for the univariate volatility generation, and estimated a GARCH(1,1) in lieu of the
correct model. The three misspecifications considered where a GARCH(2,1), a GARCH(2,2) and
a GARCH(3,2). The parameters of the three models were [0.1, 0.05, 0.05, 0.85], [0.1, 0.05, 0.05,
0.5, 0.35], and [0.1, 0.05, 0.05, 0.05, 0.5, 035] respectively. As the unconditional correlation does
not appear to affect the size of the test, the unconditional correlation was set to be .5 between all
assets. Table 2 contains the size of the tests when the conditional volatility models are misspecified.
The conditional volatility model misspecidifcation does not appear to affect the size of the test in
the least. The test is still under sized with a size of approximately 3% when using a 5% critical
value form a x2. The robustness to this type of misspecification makes this a very attractive test,
allowing of fitting a GARCH(1,1) model for the conditional volatility when a specification search
could be costly.!?

Finally, we were interested in the power of this test in detecting DCC. The power experiment
was conducted using 2, 5 and 10 assets with the unconditional correlation set to 0.5. The experiment
allows the a x 3 to range over [0.005,0.01,0.02,...,.1] x [.9,.91,...,.99] subject to a+ 3 < 1. The
test appears to have good power properties, even against near alternatives. When considering 2
asset models, the power ranged form a low of .423 to one for models with large . The 5 asset
power test was similar to the 2 asset, having power of about % for near alternatives, and increasing
to have unity power for distant alternatives. For the 10 asset models, the test had unity power
for all choices of a > .01, and had a minimum power of .657 when o = 0.005, 3 = 0.9. Naturally,
the power is lowest for small values of o, and is increasing in 3. Tables 3, 4, and 5 contain the
calculated power of the test for the varying combinations of o and 3. The proposed test seems to
have consistent size properties and good power, ranging from nearly one-half for local alternatives

to unity for distant alternatives.

5 Empirical Results

The data used in this paper consist of 100 S&P 500 Sector Indices including the S&P 500 Composite
and the 30 Dow Jones Industrial Average stocks plus the average. Both data series were from

January 1, 1994 until December 31, 1999, and were provided by Datastream. All days that the

10While the test appears robust to misspecification, it is necessary that the volatility models to have correct
dynamics for the standard errors presented in Section 3 to be correct. Thus, we would recommend using an information

criteria in selecting the univariate GARCH models.
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market was closed were removed, with the number of days removed being either eight or nine,
depending on the year.!! After removing these days there were 1509 observations for the sample.
We feel these two sets of data allow for meaningful analysis of high dimensional systems without
experiencing problems due to thinly traded assets or nonsynchronous issues.

The model used in the empirical section was a simple DCC (1,1)-MVGARCH where each of
the univariate GARCH models estimated for the conditional variances was selected by finding the
minimum of the AIC allowing for P < 4 and @ < 3.!? In addition, an integrated form of this model
was estimated where A = 1 — 3 = a was imposed. The models were built in an expanding fashion
so that the three asset model included the assets of the two asset model plus an additional asset,
the four asset model nested the three asset model, and so forth.'

Table 6 summarizes the estimated & and B of the mean reverting model for the different port-
folios of assets using the S&P indices, as well as the value of the statistic derived from a corrected
likelihood ratio test that tests Hy : @« = 1 — 3 and thus the correlations have an integrated struc-
ture. T-stats are reported for each coefficient using the mispecification robust standard errors in
parenthesis. Table 6 also reports the estimated A and the modified LR statistic of the test of the
null of an integrated model against an alternative of a mean reverting model.'* For every model
with more than six assets, the estimated \ was on the boundary, and the test statistic is most likely
not distributed x%.!> Also, the mean reverting model was preferred to the integrated model for
all data sets, with the rejection of the integrated model occurring at the 0.1% level for all models.
The estimated parameters imply a highly persistent correlation, with a half-life of innovation of 21
days for the 10 asset model.

Table 7 presents the estimated parameters for the Dow Jones Industrial Average stocks. All of
the coefficients of the mean reverting models were significant at the 5% level, with most significant
at the 1% level. The estimated integrated parameter X was in all instances estimated at the
boundary of 0. The typical estimated set of parameters had slow decay (@ > .97) with a small
news parameter (& < .01). While the distribution of the LR is not know, we would solidly reject

" There were at least 8 days removed each year:New Year’s Day, President’s Day, Good Friday, Memorial Day,
Independence Day, Labor Day, Thanksgiving Day, and Christmas Day. In addition in 1994, the markets were closed

for President Nixon’s funeral, and in 1998 and 1999, the markets were closed on Martin Luther King’s Day
12The data were not filtered other than simple subtraction of the mean.
13The S&P 500 was included as the first asset for the models estimated S&P 500 data with the remaining assets

entering in alphabetical order, while the Dow Jones Industrial Average was included as the 31°% asset in the DJIA

models. There was no perfectly redundant asset in the 31 asset Dow Jones model as the DJIA uses variable weights.
14The nuisance parameter is only present for the test of the mean reverting model against an alternative of a

constant correlation, and is not present for either the null of an integrated model against the alternative of constant

correlation, or a null of mean reverting against an alternative of an integrated model.
15When A = 0, the first test statistic can be interpreted as a test of Hp : « = 0,8 = 0 against a DCC.
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the null of constant correlation in favor of dynamic conditional correlation at the 1% level based
on the likelihood ratio test statistic if it were between a x? and a x3.

To ensure that the expanding data sets used in estimation were not driving the results that the
parameters seem to settle down and are contained in a fairly narrow range, we estimated 10 models
where the data series were chosen at random from the 100 data series of the S&P 500 indices used
in the paper. Figure 1 contains the estimated & and B for the ten models. The & range from 0.004
to 0.013 while the [5‘ range from 0.86 to 0.98. None of the models produced parameters which were
constrained on the boundary of o + 8 < 1. Comparing these values to the estimated coeflicients
of 0.0255 and 0.9410 for the 10 asset model estimated using the S&P 500 indices, these typically
have a slightly smaller news impact parameter and a slightly larger decay parameter, most likely
due to the correlation structure of the different sector indices and the S&P 500 index. We also
estimated the integrated model on these same ten pairs of assets, finding the estimated parameter
to be on the boundary for all but one of the models. For the one set of assets where the integrated
model did not estimate the parameter on the boundary, the null of an integrated moving average
was rejected in favor of an alternative mean reverting model at 0.001%. We feel that the evidence
does not provide support for the integrated version as all models considered preferred the mean
reverting model using the LR test. In writing this paper, we considered using a longer sample of 10
years. When estimating models with ten years of data, we found that the integrated model typically
had a coefficient that was significantly different from zero, although the mean reverting model was
preferred to the integrated model for this data length as well. One possible explanation for this
phenomena is that there are breaks in the unconditional correlation, which allow the integrated
model to fit better than a constant correlation model over longer horizons. This line of research is
beyond the scope of this paper, and will be saved for future work.

Finally, we estimated a variety of specifications for the DCC model, allowing for more lags of
both the news term («) and the decay term (/). Table 8 contains the corrected likelihood ratio
results for both the S&P and the Dow assets. The models estimated were DCC (2,1), DCC (2,2),
and DCC (3,2), where the first number represents the number of « lags included. The models
of the Dow assets never preferred a longer lag length, with most parameters estimated as zero.
The likelihoods improved when using the (3,2) specification, although none were significant. The
original specification was always preferred to the (2,1) specification for all S&P 500 index models.
The DCC (2,2) was preferred to the DCC (1,1) for the 25 asset model, and 10 of the 12 models
estimated with the DCC (3,2) rejected the null of a DCC (1,1) process. However, upon inspection
of the fitted correlations, the larger models typically generated correlation which were much noisier

than the original model, although the basic dynamics of the correlations remained the same.
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Figure 2 contains a plot of the cumulative returns of the 4 S&P 500 indices used in estimation,
while figure 3 plots the time-varying correlations of the S&P 500 composite and 3 sector indices.
Also in figure 3 are the CCC estimated correlations and 95% confidence intervals. The correlations
range form 0.2 to 0.8 over the course of the sample, and are often outside of the confidence intervals
from the CCC. Figure 4 contains the estimated variances and correlations for these stocks over the
sample period. The variances for each series are simply the result of the univariate GARCH
specifications. Figure 5, contains the minimum variance portfolio weights for these same four
assets.'® For the first 3 years of the sample, the weights are relatively constant with a high loading
in the S&P 500 index and slight shorts in most of the others. However, in the latter periods of the
sample, the weights become extremely volatile and include a short position in the S&P 500 index
and a weight greater than 1 in the S&P 500 Auto Parts index. Figure 6 contains the dynamic
correlations of the first four Dow Jones Industrial Average stocks, as well as the CCC estimated
correlations and confidence intervals. Consistent with the smaller news parameter estimated for this
model, the conditional correlations are less volatile than the four asset S&P 500 model. However,
there do appear to be periods where the correlation is above or below the unconditional correlation

for hundreds of days, and outside of the CCC confidence bands.

6 Specification Testing

In order to test the specification of the DCC model, we propose to examine the model’s performance
using three methods: the standard deviation of portfolios of returns standardized by the portfolio
standard deviation implied by the conditional covariance estimate, Value-at-Risk performance, and
relative performance to the industry standard RiskMetrics exponential smoother. The first test we
conducted involved testing the variance of returns of portfolios against the predicted variance. We
use three different portfolio weighting methods: equally weighted, value weighted, and minimum
variance portfolio weighted. The minimum variance portfolio is of particular interest as the weights
on the assets are determined by the estimated variance covariance matrix. We feel that if a
particular estimated conditional covariance estimate is misspecified, that the minimum variance
portfolio should exacerbate the short coming. The time-varying weights on the minimum variance

portfolio were calculated using

H
wy = c,
where
Cy = LIHt_lL

Y8The procedure used to construct minimum variance weights is discussed in section 6.
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and where H; is the one-step ahead forecast of the conditional covariance constructed at time ¢ —1,
and ¢ is a k by 1 vector of ones. There was no limit on short selling, however no portfolio ever took
an extreme position. The portfolio weights of the value weighted portfolio were calculated using

the following formula:

wy © (1 41y)

Wi+1 = (1 + Tt),L

where 74 is a k by 1 vector of time t asset returns with wy = k~'¢. Finally a simple equally weighted
portfolio was used where the weights were w; = k~!.. If the model was correctly specified for the
conditional covariance, then we would expect that the variance of any portfolio with weights w;
would be w; Hyw;. To test this hypothesis we used a symmetric confidence interval with «/2 prob-
ability in each tail.!” Portfolio variances which are too small relative to the predicted variance are
indication of excess correlation while variances which are too big indicate underestimation of the
correlation. When standardized by their estimated standard deviations, all assets had standardized
(by univariate GARCH processes) residual variance that were in the 95% confidence interval cen-
tered at 1 for both the S&P 500 indices and the DJIA stocks. The RiskMetrics EWMA covariance
filter is

H, = .06ese; + .94H; 1

where Hy can be taken to be the sample covariance matrix or a presample data selection to begin
the smoother. The primary advantage of the RiskMetrics model is that it is extremely easy to
estimate, given that it has no parameters to estimate. According to RiskMetrics, the choice of the
smoothing parameter has been calibrated using an extensive model search. The obvious drawback
to the model is that it has no estimated parameters, and that it forces all assets have the same
smoothing coefficient (.94) irrespective of the type of asset of the asset’s volatility dynamics. The
RiskMetrics model is widely used in industry, especially for portfolio Value-at-Risk.

For the S&P 500 indices, the minimum variance portfolio proved to be troublesome for both the
mean reverting DCC estimator and the industry standard RiskMetrics EWMA. The standardized
variances of the minimum variance portfolios only fall with in the confidence interval for portfolios
under 5 assets using the DCC estimator, while the predicted variance of the RiskMetrics model is
uniformly too small, resulting in a portfolio standard deviation 35 times larger than what would
have been expected. For the equally weighted and value weighted portfolios, the DCC estimator

produced portfolio standard deviations insignificantly different from one for all portfolios. Further,

'"Confidence intervals were constructed to find a and b such that Jo fwydu = [ f(u)du , o : {% <o <

%} where f(u) is the probability density function of a x7_;.
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we reject the null that the variance is equal to one for all of the RiskMetrics generated portfolios
using equally weighting or value weighting at the 5% level. Table 9 summarizes the results for
models estimated on the S&P 500 indices.

The performance of the DCC estimator on the DJIA stocks was similar. We reject the null that
the portfolio variance is one for all of the RiskMetrics portfolios, and for the larger DCC generated
minimum variance portfolio. We are also not able to reject the hypothesis that the portfolio
standard deviations are unity for any of the value or equally weighted portfolio variances estimated
by the DCC model. The slight better performance of DCC and slightly worse performance of
the RiskMetrics model is most likely due to the larger news parameters of the RiskMetrics model
(A =.06). These tests on the DCC estimator show for many portfolio strategies it performs well at
fitting the portfolio variance, although the structure of the dynamics of the correlation may need
to allow for more than one news parameter as the size of the portfolio grows. Table 10 summarizes
the results of the portfolio variance diagnostic test for the DJTA stocks.

The second measure of performance used to test the empirical validity of the models was the
HIT test (Engle and Manganelli (2000)). The test is designed to test the performance of a model’s
prediction of Value-at-Risk. A series of HITSs is defined as a binary variable, 1., cvqr(q)], where a
hit is a return below the forecasted Value-at-Risk and ¢ is the VaR quantile. Under the null of a
correctly specified model for Value-at-Risk, the HITs should have mean ¢ and should be independent
of everything in the conditioning information set, including lagged HITs. An artificial regression

can be constructed to test both the mean and the independence of the HITs using OLS:
HIT, —q=360+ 60 HITi—1 +6HITi o+ ...+ 6 HITy_r + 04 1VaR: + 14

The artificial regression tests the independence of a HIT from past hits and from the predicted
Value-at-Risk (which is in the time ¢ — 1 information set).!® We constructed one step ahead
forecasts of the variance of a portfolio using the mean reverting DCC model. The 5% VaR was
defined as —1.656;, where &), is the forecasted portfolio standard deviation. Under the assumption
that returns are conditionally multivariate normal, this level would be appropriate. However,
all of the standardized residuals from either the S&P 500 indices or the Dow stocks reject the
null of normality using a Jarque-Bera test at the 5% level. This leptokurtosis of the univariate
returns would invalidate using the —1.650,, as a test for the number of HITs. We found that when
including the constant term in the artificial regression, we were able to reject the null of a correct

VaR model for all cases. Thus, in the test conducted, we tested for independence of the HITs

18This is the out of sample version of the HIT test as presented in Engle and Manganelli. As noted in their paper,
the distribution of the HITs is not known when the same data are used for fitting the model and evaluating the HIT
test, although this test is still a useful diagnostic.
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without simultaneously testing if the percentage of HI'Ts was correct by excluding the constant and
replacing q with ¢,the mean number of HITs at —1.65&p19 The DCC model results in a consistently
lower percentage of HITs when estimated on equally weighted portfolios of S&P 500 indices data
(Table 11). Further, even with the mean of the HITs subtracted, there was still serial correlation in
the HITs when modelled on the past 5 HITs and the forecasted VaR. The VaR performance on the
minimum variance portfolio varies from slightly better to considerably worse, with nearly 5% for
smaller portfolios to 10% when estimated on all 100 indices. This is consistent with the estimated
variance performance of the DCC on the minimum variance portfolio significantly underestimating
the variances as the number of assets increased.

The performance of the DCC model using the HIT test was better for the Dow Jones stocks
than it was for the S&P 500 indices. However, the DCC again consistently underestimated the
number of violations of Value-at-Risk for the equally weighted portfolio at the 5% level. Table 12
contains the results of the HIT testing for the DJIA 30 stocks. The performance relative to the 1%
level is much more accurate, usually falling within 20% of the anticipated level.2® The probability
the HITs are independent was also better for all portfolios, however for the largest portfolios the
HITs seem to be correlated with past hits and/or contemporaneous VaR. The performance of the
minimum variance portfolio was generally worse than the equally weighted portfolio with respect
to the percentage of HITs, but better with regards to the probability of independence. We fail to
reject the null of independence of the HITs for none of the 14 portfolios at the 5% level using the
minimum variance portfolio.

The final specification test we used was to compare the results of the DCC estimator against
the estimator used widely by practitioners, the RiskMetrics exponential smoother. The comparison
was conducted using 4 criteria. The first criterion examines the percentage of HITs predicted
with each model using the equally weighted portfolio. The RiskMetrics estimator consistently
outperformed the DCC estimator in terms of the correct percentage of hits. The RiskMetrics filter
using S&P 500 indices data also performs slightly better on the HIT test, however the performance
of both estimators is inadequate by this metric, with both series having at least 11 out of 15 series
failing independence at the 5% level. A second criteria is the percentage of multivariate variance
standardized residuals which have variance in a confidence interval of one. The test relies on the

assumption that assets are multivariate normal, so

_1
rt’]:t—l ~ N(O,Ht) = Ht 2rt|ft—1 ~ N(O,I)

19 An alternative aproach would be to treat the DCC estimator as a QMLE and use the empirical distribution when

choosing the scaling on the variance in a VaR setting.
29However this difference was still significant at the 5% level.
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The DCC estimator produced standardized residuals in the range for all models with less than
10 assets, and performed well in this metric for larger models. The RiskMetrics model produced
no standardized series in the 95% confidence interval for any of the models. This is consistent
with the standardized portfolio variance of Table 13 where the RiskMetrics estimator consistently
underestimated true variance. The final test was a Ljung-Box Q test at lag 15 of the residual to
determine if there was excess serial correlation in the squares and cross products of the covariance
standardized residuals using a 5% significance level. We found that the percentage of cross products
failing (there were (k x k+1)/2 cross products for a given number of assets k) was relatively small
for the DCC estimator for assets with models with fewer than 10 assets , with 15% typically failing
the test for serial correlation for larger models. The RiskMetrics model standardized residual
consistently performed worse, having over 40% of the residuals failing this test for the largest
models. We also found that the percentage failing was always greater than the 5% which would
have been expected with the test at the 5% level.

The Value-at-Risk calculation using the DJIA stocks performed similarly to the S&P Indices,
with the percentage of HITs being consistently under estimated for the equally weighted portfolios
and with the RiskMetrics estimator was always closer to the expected percentage of HITs for all but
one portfolio. In addition, the HITs generated by the RiskMetrics model only fail the independence
test for one of the 15 portfolios at the 1% level, while 7 out of the 15 DCC generated portfolios
fail the independence test at that level. However, for all assets and sizes of the models, with the
exception of one asset in the 31 asset model, the standard deviations of the returns standardized
by the square root of the estimated covariance were always in the confidence interval for the DCC
estimator. In addition, the DCC estimator significantly outperformed the RiskMetrics estimator in
terms of the Ljung-Box Q-statistics in the outer products, having fewer series fail for dependance
at lag 15 than the RiskMetrics model, usually by at least a factor of two. This provides strong
evidence in favor of the DCC model over the RiskMetrics model for assets with a less dynamic
correlation structure.

Overall, the DCC estimator performs very well. While it is not possible to directly compare the
DCC and the constant conditional correlation multivariate models using LR statistics due to an
unidentified parameter, even allowing 2 degrees of freedom, the corrected likelihood ratio statistics
using S&P index data are always greater than 80 which corresponds to a p-value of less than .001%.
The larger models estimated with the Dow Jones data also have very large likelihood ratio statistics,
typically greater then 50. The standard deviations of portfolios were also fit much better using
the DCC than the RiskMetrics model, resulting in no rejections of the null of a portfolio standard
deviation of 1 for the value or equally weighted portfolios using the S&P index data or the Dow
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Jones stocks. The RiskMetrics estimator performed especially poor using the minimum variance
portfolios, possibly due to the correlation dynamics imposed by the choice of smoothing parameter.
Figure 7 contains a graph of the correlations estimated using the DCC model and the RiskMetrics
smoother for the 4 asset S&P 500 model. The RiskMetrics produced correlations are much more
volatile and imply that the correlation matrix was nearly singular at certain points in time. Further,
the DCC estimator produced multivariate standardized residuals in a confidence interval of one for
all models with less than 10 assets, and never had a rejection rate greater than 14%, while the
RiskMetrics model never produced multivariate standardized residuals in the confidence interval.
Finally, the DCC estimator typically produces residuals with less serial dependence at lag 15 then
the RiskMetrics estimator using a Ljung-Box Q statistics on the standardized outer-products of

the residuals.

7 Multi-Step Ahead Forecasting

Forecasting covariances is a requirement of GARCH models. Most GARCH models provide an easy
to implement method to generate r-step ahead forecasts. For instance, the r-step ahead forecast
of a standard GARCH (1,1) is given by

r—2

hipr = Y wla+B) + (a+8) " hip
=0

However, the DCC evolution process is a non-linear process, where

Quir = (1—a—3)Q + alerrr—16, 1) + BQiir-1

where Eileryr—1€,_1] = Ei[Ryyr—1] and Ry = QF +r71Qt+er M*l. Thus, the r-step ahead
forecast of the correlation cannot be directly solved forward to provide a convenient method for
forecasting. In examining methods to overcome this difficulty, two forecasts seem to be the most
natural, each requiring a different set of approximations. The first technique proposed would be to
generate the r-step ahead forecast of () by making the approximation that E;le;y 1€, ] = Q41 for

i €[1,...,r]. Using this approximation, we then have the r-step ahead forecast of @, is

[\

r—

EQyr] = (I—a—=PB)Qa+ ) + (a+ 5)T_1Qt+1

s
Il
=)

and Riyr = Qf +let+rQ}f M*l. An alternative approximation would be that Q ~ R and that

Ey[Qt+41] = E[Ry41]. Using this approximation, we can forecast Ry, directly using the relationship
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Ey[Ryyr] = Z (1—a=B)R(a+p) + (a+B) 'Ry

In order to test which of these approximations performs better (if either), a Monte Carlo
experiment was conducted. In the Monte Carlo, 1000 days of bivariate normal data were simulated
using o = .01, 8 = .98, and varying the unconditional correlation over the set [—0.8, —0.5,0,0.35,
0.5,0.65,0.8,0.9]. At the 750t observation, Q7so, 7750, and Ryso were saved. Forecasts were
then constructed for days 751 through 1000 using the two methods described above. In order to
study these two forecasting techniques, we treated & B, and R as known, setting each parameter
to the value used to simulate the data, to avoid the effects of parameter estimation uncertainty.
It is also worth noting that this experiment would be exactly the same had we allowed for time
varying volatility as the volatility errors would be exactly the same for either correlation forecasting
technique. With these parameters, the half life of an innovation would be 68 days. Figure 8 contains
a plot of the bias of the two forecasting methods. The first observation is that both of the forecasting
techniques produce forecasts with a very small bias. This bias is generally toward 1 (or -1 for the
series with negative unconditional correlation). The forecast produced by solving forward for Q¢
(the dash-dotted line) was always closer to 1 (or -1) and consequently more biased. The method
for solving Ry, forward had better bias properties for almost all correlations and horizons. Also
of interest is that both forecasts appear to be unbiased when the unconditional correlation is zero,
and that they make essentially the same forecast when the unconditional correlation is zero.

Figure 9 contains a plot of the ratio of the MSFE of the forecast produced by solving R; forward
directly divided by the forecast produced by solving @; forward, then transforming the final Q;,
to a correlation matrix. Neither forecast seems to produce uniformly smaller MSFE in the first fifty
days. For certain unconditional correlations, the forecast which solves @)y forward produces better
MSFE (represented by a value greater than 1), yet this performance is hardly uniform. The ratio of
the MSFEs is extremely close to 1, despite the lower bias produced by the R; forecast as the square
of the bias was typically at least three orders of magnitude smaller than the variance. Finally,
figure 10 contains a fan plot of the density of the forecast errors. Two observations can be made
from this figure. First, as the unconditional correlation approaches 1 (or -1), the variance of the
forecast errors decreases. Second, the amount of skewness in the distribution of errors increases as
the unconditional correlation increases. This is not surprising given that correlations are bounded
between 1 and -1. While neither of these two techniques significantly outperformed the other, it
would seem that a logical choice for forecasting would be the method that directly solves forward

R;. Not only is this method easier to implement, it appears that it also suffers less bias without
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any detectable increase in variance.

8 Conclusion

This paper presents a class of estimators which join the simplicity and empirical success of univariate
GARCH models with an easy to estimate and interpret dynamic correlation estimator. The two-
step estimator is shown to be consistent and asymptotically normal and a consistent estimator of
standard errors is provided. The standard errors for the correlation parameters depend on the
cross partial derivatives of the second stage likelihood with respect to the first and second stage
parameters in addition to the typical Bollerslev-Wooldridge robust standard errors. Ensuring the
positive definiteness of the estimator is also shown to be easy to achieve as it simply requires using
the same restrictions as univariate GARCH processes, and in the DCC(1,1) case could be treated
as a scalar BEKK model for the correlation to allow estimation without lower bounds on the
parameters. In addition to the two stage process, a fully efficient estimation procedure is outlined
which involves a single Newton-Raphson step from the original consistent estimates.

A simple test is presented to test the null of constant correlation against an alternative of a
dynamic conditional correlation-like structure. This test involves running a simple restricted VAR
and can be easily estimated by OLS. A Monte Carlo study of this test has shown it to have good
size and power against local alternatives. Specification testing provided a solid picture that this
estimator exhibits better performance than the industry standard benchmark RiskMetrics for both
large and small models. The real strength of the DCC estimation process is the flexibility provided
in modelling the dynamics of the univariate volatility process. For instance, it would be easy to
allow for asymmetric affects in volatility or to consider long memory volatility models, such as
APARCH. In addition, the theory of DCC specification can be easy extended to include exogenous
factors in the correlation model or alternative parameterizations which allow for heterogeneous
dynamics in the correlations. In particular, it would be of interest to investigate whether increased

correlation between assets is caused by either large volatilities or the correlations of other assets.
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Figure 1: Graph of & (left) and f3 for 10 portfolios randomly selected from the 100 S&P Indices.

The models were strictly mean reverting in the sense that o + 3 < 1 for all models.
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produces much more volatile conditional correlations with a number of near non-singularities(p; > .9)

Figure 7



‘() 0} I9SO[O SAeMmIR ST #J pIemIo] SUIAJOS A pojeIduas

150010 1]} ‘(UOIPR[OLIOD [RUOIIIPUOIUN DAIJRZIU I0] T- 10) SUO SPIRMO] PaseIq oIk [j0q o[IYA\ (Ul paysep j0p) ()

pue (oul] pI[os) #J PIeMIO] SUIAJOS AQ POJRISUDS SUOIJR[OLIOD [RUOIIIPUOD 91} JO }SLIDI0J JO Seiq oY) Jo delr) :g oIngiy

0Ss (017 (0] 0¢ 0T
: _ _ 710
/\I
- ’
I ;e Iz
/\
A
L . \‘\ 1v
l\_‘
L. N Y Rad 4
Y v =2 _ _ {9
6°0 = uoIeeLI0D » 0T X
0s ov o€ 0¢ 0T
T - T 0
L ,\, 12z
/'/'
! 1y
L L gl :\_I.’, {19
,\\/ ,)‘N, 4.~
4 N, ,\ 18
\ V4
A0 s s
g'0 = uoned1oD » 0T X
0S (017 og 0¢ 0T 0
3 150
D\
~ _’ ”
L "~ . A 1T
(A - l,~ —_J \Y/Z
"\/ V4
_avr s s v
' 1 a 1 1
0T X

G'0 = uonealod

0s

ov

o€

(074

0T

0 = uoneauod

(014

0¢

g'0— = uone|aL0)

m|

31



*JSRODIOJ PoJRIOUSS *Y oY) JO souruLIOjIod POOT
ATOAT)R[AI 9)ROIPUI SUO URT) SSI[ SON[RA PIRMIO] *() SUIA[OS A PIIRIOUSS )SRIAIOJ 9} JO IOLIS ISRIAIO] Parenbs wesw

9} 0} PIEMIO] #}J SUIAJOS A( PoYeIoUSS 1SBI9I0J 9} JO IOII9 }SBIDIOJ parenbs ueawn o} Jo orjel oy} jo yderr) :g oInsig

05 o 0€ 0z 0T 05 o 0€ 0z 0T
_ _ _ _ _ _ _ _ 186660
1T
{66660
{5000°T 11
11001 {1000'T
{2000°T
_ _ _ _ {6T00'T _ _ _ _ le000T
60 = uonejaiiod 0 = uone@uo)d
05 oy 0€ 0z 0T 05 o 0€ 0z 0T
_ _ _ _ 196660 _
‘ {86660
{T
‘ 1T
‘ {2000°T
‘ {7000°T 150007
‘ {9000°T
_ _ _ _ _ _ _ _ 11001
8'0 = uonejalo)d G'0— = uonejaliod
05 o 0€ 0z 0T 05 o 0€ 0z 0T
: ; : : : 1
{96660
{2000°T
{86660
{¥000°T
1T
{9000°T
{2000°T

G'0 = uonealod 8'0- = uoneaI0d

32



‘sAep ()G 03 dn IO} SIOLI® 9SBIDIO0J JO ASUep oy} Jo sjord ueq :(OT oInsig

14 0c ST 0T S

0 = uonea1od
14 (014 GqT 0T ]

G' = uonejalo)
14 0¢ ST ot S

6" = uonejalio)d

S0°0-

S0°0

S0°0-

S0°0

¢0'0-

T00-

100

00

33



No. of Assets | p=03 p=05 p=0.8 pfrom S&P indices
2| 0.0312 0.0274 0.0290 0.0274
3| 0.0268 0.0286 0.0212 0.0274
41 0.0290 0.0290 0.0298 0.0292
5| 0.0280 0.0276  0.0278 0.0296
10 | 0.0308 0.0292  0.0444 0.0308

Table 1: Size under correct specification

DGP Model | 2 assets 3 assets 4 assets 5 assets 10 assets
0.0266 | 0.0310  0.0262  0.0242  0.0284
0.0230 | 0.0290  0.0250  0.0258  0.0268
0.0264 | 0.0308  0.0266  0.0218  0.0310

Table 2: Size under conditional volatility misspecification

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0.005 | 0.4230 0.4033 0.4144 0.4424 0.4073 0.4127 0.4094 0.4000 0.4197 0.4725
0.01 | 0.4879 0.4525 0.4627 0.4657 0.4547 0.4789 0.4523 0.4781 0.4925
0.02 | 0.5619 0.6096 0.5690 0.6356 0.5951 0.6150 0.6553 0.7298
0.03 | 0.7367 0.7571 0.7710 0.7957 0.8474 0.8794 0.9282
0.04 | 0.8952 0.8854 0.9216 0.9437 0.9705 0.9843
0.05 | 0.9686 0.9858 0.9819 0.9925 0.9998
0.06 | 0.9972 0.9992 0.9982 0.9999
0.07 | 0.9971 0.9999 0.9997
0.08 | 1.0000 1.0000
0.09 | 1.0000

Table 3: Power of the test with 2 asset portfolios as « (across) and 3 (down) vary.
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0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0.005 | 0.4876 0.4991 0.4717 0.4675 0.4738 0.4894 0.5195 0.5213 0.4908 0.5144
0.01 | 0.6832 0.7103 0.7139 0.7498 0.7383 0.7489 0.7515 0.7591 0.8714
0.02 | 0.9727 0.9862 0.9866 0.9930 0.9953 0.9973 0.9982 0.9999
0.03 | 0.9998 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
0.04 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 | 1.0000 1.0000 1.0000 1.0000 1.0000
0.06 | 1.0000 1.0000 1.0000 1.0000
0.07 | 1.0000 1.0000 1.0000
0.08 | 1.0000 1.0000
0.09 | 1.0000

Table 4: Power of the test with 5 asset portfolios as « (across) and § (down) vary.

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0.005 | 0.6570 0.6413 0.6944 0.6862 0.7065 0.7440 0.7568 0.7690 0.7464 0.7753
0.01 | 0.9761 0.9736 0.9848 0.9810 0.9865 0.9869 0.9972 0.9946 0.9988
0.02 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.03 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.04 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.05 | 1.0000 1.0000 1.0000 1.0000 1.0000
0.06 | 1.0000 1.0000 1.0000 1.0000
0.07 | 1.0000 1.0000 1.0000
0.08 | 1.0000 1.0000
0.09 | 1.0000

Table 5: Power of the test with 10 asset portfolios as « (across) and [ (down) vary.

35



Hy:a=1-0 Hog:2=0

No.of Assets & ,3 x2 value P-value A x2 value P-value

2 0.0335 0.9559 10.7490 0.0010 0.0305 90.1908 0.0000
(2.96) (60.20) (3.5079)

3 0.0266 0.9531 30.9750 0.0000 0.0198 61.9264 0.0000
(2.34) (38.13) (4.4168)

4 0.0163 0.9688 50.5591 0.0000 0.0144 43.3558 0.0000
(4.33) (112.83) (5.5370)

5 0.0123 0.9719 81.6736 0.0000 0.0108 3.7207 0.0537
(6.09) (168.13) (5.0889)

6 0.0103 0.9732 83.8247 0.0000 0.0000 0.0000 1.0000
(6.34) (172.13) (0.0000)

7 0.0101 0.9746 125.6139 0.0000 0.0000 0.0000 1.0000
(7.74) (224.44) (0.0000)

8 0.0097 0.9718 122.1910 0.0000 0.0000 0.0000 1.0000
(6.95) (164.23) (0.0000)

9 0.0090 0.9688 115.1191 0.0000 0.0000 0.0000 1.0000
(5.78) (116.99) (0.0000)

10 0.0255 0.9410 832.5525 0.0000 0.0000 0.0000 1.0000
(3.26) (28.85) (0.0000)

15 0.0176 0.9539 1012.6965 0.0000 0.0000 0.0000 1.0000
(3.70) (43.10) (0.0000)

20 0.0133 0.9662 1246.8991 0.0000 0.0000 0.0000 1.0000
(3.51) (57.48) (0.0000)

25 0.0097 0.9696 1099.0391 0.0000 0.0000 0.0000 1.0000
(3.27) (60.69) (0.0000)

50 0.0072 0.9643 1644.6180 0.0000 0.0000 0.0000 1.0000
(5.56) (85.47) (0.0000)

75 0.0052 0.9597 1571.7479 0.0000 0.0000 0.0000 1.0000
(9.85) (98.65) (0.0000)

100 0.0049 0.9497 2100.8853 0.0000 0.0000 0.0000 1.0000
(14.58)  (154.53) (0.0000)

Table 6: Parameters Estimated on the S&P 500 Indices. The numbers in parentheses are robust T-
statistics. The leftmost x? value is for the null of integrated DCC against an alternative of dynamic
conditional correlation, while the rightmost is for the null of constant conditional correlation against

an alternative of a integrated dynamic conditional correlation.
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Hop:a=1-7 Hog:A=0

No.of Assets & B x2 value P-value A x2 value P-value

2 0.0104  0.9642 2.9885 0.0839 | 0.0000 0.0000 1.0000
(1.27)  (43.58) (0.00)

3 0.0038  0.9679 1.2988 0.2544 | 0.0000 0.0000 1.0000
(0.90)  (44.96) (0.00)

4 0.0048  0.9627 3.6213 0.0570 | 0.0000 0.0000 1.0000
(1.70)  (81.11) (0.00)

5 0.0042  0.9672 5.5486 0.0185 | 0.0000 0.0000 1.0000
(2.14)  (95.01) (0.00)

6 0.0043  0.9639 7.7226 0.0055 | 0.0000 0.0000 1.0000
(2.55)  (65.33) (0.00)

7 0.0061  0.9690 26.7969 0.0000 | 0.0000 0.0000 1.0000
(3.69)  (68.47) (0.00)

8 0.0061 0.9778 51.5646 0.0000 0.0000 0.0000 1.0000
(4.34) (61.85) (0.00)

9 0.0061  0.9768 63.2891 0.0000 | 0.0000 0.0000 1.0000
(5.15)  (58.43) (0.00)

10 0.0066 0.9770 93.3452 0.0000 0.0000 0.0000 1.0000
(5.44)  (55.87) (0.00)

15 0.0048  0.9690 70.3416 0.0000 | 0.0000 0.0000 1.0000
(2.67)  (54.66) (0.00)

20 0.0044  0.9626 84.9840 0.0000 | 0.0000 0.0000 1.0000
(4.45)  (76.16) (0.00)

25 0.0047  0.9384 92.5593 0.0000 | 0.0000 0.0000 1.0000
(5.12)  (60.12) (0.00)

30 0.0043  0.9118 81.6511 0.0000 | 0.0000 0.0000 1.0000
(4.74)  (26.97) (0.00)

31 0.0059  0.9441 252.2591 0.0000 | 0.0000 0.0000 1.0000
(8.62)  (88.50) (0.00)

Table 7: Parameters Estimated on the Dow Jones Industrial Average Stocks. The numbers in
parentheses are robust T-statistics. The leftmost x? value is for the null of integrated DCC against
an alternative of dynamic conditional correlation, while the rightmost is for the null of constant

conditional correlation against an alternative of a integrated dynamic conditional correlation.
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S & P assets Dow assets
No.of Assets | DCC (2,1) DCC (2,2) DCC (3,2) | DCC (2,1) DCC (2,2) DCC (3,2)
2 1.4654 4.7682 11.5884* 0.0073 2.7891 6.5251
3 0.5825 5.3769 13.4353* 0.0073 0.4521 1.1840
4 1.5316 4.8220 7.8573 0.4276 0.3018 2.5090
5 0.4124 5.0408 17.0898* 0.0000 0.8375 4.2364
6 0.1304 3.6116 9.9360* 0.0000 0.3382 3.1993
7 0.0936 2.9785 15.6030* 0.0000 2.4545 5.9331
8 0.0000 0.1521 9.3299* 0.0000 1.5234 3.4858
9 0.0000 0.2382 4.8142 0.0000 3.0485 5.3958
10 0.0000 0.0169 18.8947* 0.0000 1.1618 5.0438
15 0.0000 2.0201 11.9072* 0.0000 0.5200 6.7282
20 0.0000 8.2936 19.5614* 0.0000 0.4654 3.3290
25 0.0000 10.6189* 21.2871* 0.0086 0.0000 5.2352
30 - - - 0.0298 0.4725 9.6378
31 - - - 0.0000 1.3408 9.7959

Table 8: Table of likelihood ratio statistics for alternative forms of the DCC estimator.

No. of Assets | DCC MVP RM MVP | DCC Equal RM Equal | DCC Value RM Value

2 1.0271* 1.0917** 0.9967 1.0509* 0.9930 1.0478*
3 1.0342* 1.1238"* 0.9908 1.0421* 0.9888 1.0409*
4 1.0386* 1.1600** 0.9899 1.0431* 0.9881 1.0415*
5 1.0424* 1.1949** 0.9881 1.0419* 0.9883 1.0408"
6 1.0504** 1.2311** 0.9855 1.0395* 0.9856 1.0385"
7 1.0663** 1.2757* 0.9856 1.0397* 0.9867 1.0397*
8 1.0726*" 1.3188"* 0.9852 1.0398" 0.9869 1.0401"
9 1.0753** 1.3573** 0.9851 1.0419* 0.9860 1.0415*
10 1.1299** 1.4261** 0.9868 1.0423* 0.9883 1.0422*
15 1.2707** 1.6540"* 0.9842 1.0433* 0.9858 1.0435"
20 1.3380** 1.9362** 0.9830 1.0431* 0.9871 1.0423*
25 1.3627** 2.2994™* 0.9767 1.0435" 0.9814 1.0425%
50 1.5459** 6.1302** 0.9778 1.0491** 0.9810 1.0476*
75 1.6471** 11.2570** | 0.9781 1.0507** 0.9830 1.0494**
100 1.7794** 35.8968"* | 0.9777 1.0514™* 0.9831 1.0497**

Table 9: Standard Deviation of different portfolios (VP, Equally weighted, and value weighted)
using the S&P 500 Indices. (* indicates significantly different from 1 at the 5% level, ** indicates
significantly different from 1 at the 1% level)
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No. of Assets | DCC MVP RM MVP | DCC Equal RM Equal | DCC Value RM Value

2 1.0113 1.1120** 0.9881 1.0531** 0.9876 1.0519**
3 1.0090 1.1502** 0.9901 1.0521** 0.9908 1.0496™*
4 1.0121 1.1825"* 0.9901 1.0549** 0.9921 1.0539**
5 1.0160 1.2139** 0.9885 1.0483* 0.9912 1.0454*
6 1.0234 1.2451** 0.9845 1.0476* 0.9884 1.0457*
7 1.0252 1.2891** 0.9846 1.0475* 0.9905 1.0466*
8 1.0281 1.3447** 0.9830 1.0459* 0.9883 1.0444*
9 1.0285 1.3790"* 0.9837 1.0453* 0.9905 1.0437*
10 1.0355 1.4142** 0.9826 1.0435* 0.9896 1.0419*
15 1.0454* 1.6613** 0.9814 1.0459* 0.9901 1.0452*
20 1.0715*" 1.9195"* 0.9780 1.0454* 0.9879 1.0441*
25 1.0783** 2.2456™* 0.9795 1.0464* 0.9932 1.0450*
30 1.0906™* 2.6087"* 0.9799 1.0448* 0.9945 1.0445"
31 1.2689"* 2.7048** 0.9778 1.0449* 0.9917 1.0445*

Table 10: Standard Deviation of the minimum variance portfolio created from the estimated VCV of
the DJIA 30 stocks (* indicates significantly different from 1 at the 5% level, ** indicates significantly
different from 1 at the 1% level)

% of HITs(Equal) Probability | % of HITs (MVP)  Probability
No. of Assets | 5% 1% Independent. 5% 1% Independent
2 4.83 1.52 0.0048 5.29 1.92 0.0360
3 4.57 1.26 0.0030 5.36 2.05 0.0005
4 4.04 1.26 0.0309 5.29 1.99 0.0032
5 4.04 1.39 0.0004 5.16 1.85 0.0595
6 4.17 1.19 0.0177 5.36 2.05 0.1359
7 3.90 1.32 0.0468 5.69 1.85 0.0040
8 4.10 1.32 0.1013 5.76 1.85 0.0179
9 4.37 1.39 0.0445 5.69 2.12 0.0242
10 4.57 1.39 0.0222 6.02 2.38 0.0238
15 4.63 1.26 0.0212 7.81 3.64 0.0304
20 4.30 1.26 0.0014 8.07 3.77 0.0004
25 4.43 1.26 0.0132 8.93 4.24 0.0003
50 4.17 1.52 0.0002 9.23 5.76 0.0035
75 4.30 1.59 0.0002 | 10.71 6.42 0.0004
100 4.04 1.65 0.0009 | 13.70 7.08 0.0030

Table 11: Value-at-Risk violations and HIT regression results for S&P 500 Indices for an equally

weighted and a minimum variance portfolio
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% of HITs(Equal) Probability | % of HITs (MVP)  Probability
No. of Assets | 5% 1% Independent. 5% 1% Independent
2 3.97 0.79 0.5241 | 3.84 0.99 0.2213
3 4.30 1.26 0.2116 | 4.17 0.99 0.9035
4 4.43 0.93 0.1374 | 4.10 0.99 0.1078
5 3.90 1.19 0.0162 | 4.17 1.39 0.1658
6 3.84 1.13 0.6381 | 4.30 1.46 0.5429
7 3.90 1.26 0.1130 | 4.30 1.32 0.5460
8 3.84 1.32 0.4277 | 3.90 1.52 0.2341
9 3.97 1.26 0.3687 | 3.90 1.59 0.5338
10 4.10 1.26 0.7277 | 3.97 1.59 0.4796
15 4.24 1.19 0.0684 | 4.37 1.79 0.1703
20 4.10 1.26 0.0757 | 4.83 1.99 0.5754
25 4.70 1.32 0.0737 | 5.43 2.05 0.8767
30 4.63 1.19 0.0128 | 5.43 2.25 0.1494
31 4.63 1.26 0.0047 | 7.41 3.51 0.3155

Table 12: Value-at-Risk violations and HIT regression results for DJIA stocks for an equally

weighted and a minimum variance portfolio

No. of Assets % HIT at 5% Pr. Independent % std. resid. in CI % failing LJ-Q
DCC RiskMetrics DCC RiskMetrics | DCC  RiskMetrics DCC RiskMetrics
2 4.83 5.43 | 0.0048 0.0098 100 0 | 0.0000 0.0000
3 4.57 4.70 | 0.0030 0.0034 100 0 | 0.1667 0.3333
4 4.04 4.43 | 0.0309 0.0391 100 0 | 0.2000 0.3000
5 4.04 4.63 | 0.0004 0.2611 100 0 | 0.0667 0.2000
6 4.17 5.36 | 0.0177 0.0059 100 0 | 0.0476 0.0476
7 3.90 5.16 | 0.0468 0.0160 100 0| 0.0714 0.2143
8 4.10 5.43 | 0.1013 0.0210 100 0| 0.1111 0.1389
9 4.37 5.43 | 0.0445 0.0042 100 0 | 0.1333 0.2444
10 4.57 5.29 | 0.0222 0.0727 90 0 | 0.1818 0.3273
15 4.63 5.10 | 0.0212 0.0315 93 0 | 0.1750 0.2500
20 4.30 4.96 | 0.0014 0.0064 90 0] 0.1714 0.2048
25 4.43 5.10 | 0.0132 0.0816 88 0 | 0.1508 0.2523
50 4.17 5.29 | 0.0002 0.0457 86 0 | 0.1490 0.3137
75 4.30 5.29 | 0.0002 0.0688 90 0] 0.1312 0.4277
100 4.04 5.36 | 0.0009 0.0283 90 0 | 0.1628 0.4157

Table 13: Comparison of the DCC GARCH estimated covariances and RiskMetrics estimated

covariances using the S&P 500 Sector Indices
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No. of Assets % HIT at 5% Pr. Independent % std. resid. in CI % failing LJ-Q
DCC RiskMetrics DCC RiskMetrics | DCC  RiskMetrics DCC RiskMetrics
2 3.97 4.63 | 0.5241 0.5788 100 0 | 0.0000 0.0000
3 4.30 5.03 | 0.2116 0.8779 100 0 | 0.1666 0.5000
4 4.43 5.03 | 0.1374 0.0525 100 0 | 0.2000 0.5000
5 3.90 4.43 | 0.0162 0.0305 100 0 | 0.2667 0.4000
6 3.84 4.63 | 0.6381 0.4369 100 0 | 0.1429 0.3333
7 3.90 4.43 | 0.1130 0.1628 100 0| 0.1786 0.3214
8 3.84 4.37 | 0.4277 0.4865 100 0| 0.1111 0.2500
9 3.97 4.43 | 0.3687 0.6460 100 0| 0.1111 0.2222
10 4.10 4.70 | 0.7277 0.7494 100 0 | 0.0909 0.1818
15 4.24 4.57 | 0.0684 0.0847 100 0 | 0.0667 0.1500
20 4.10 4.77 | 0.0757 0.0252 100 0 | 0.0667 0.1429
25 4.70 4.70 | 0.0737 0.1274 100 0 | 0.0646 0.1600
30 4.63 4.43 | 0.0128 0.4364 100 0 | 0.0495 0.1441
31 4.63 4.43 | 0.0047 0.4367 96 0 | 0.0665 0.1472

Table 14: Comparison of the DCC GARCH estimated covariances and RiskMetrics estimated

covariances using the Dow Jones Industrial Average Stocks
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9 Appendix

Proof of Proposition 1:

Assume A is positive definite. Further, B = A*V AA*1 where A* is as defined in section 2. Since
A is real, symmetric and positive definite, we know there exists a cholesky factorization A = P'P

where P is upper triangular. Rewriting
B— A*fll‘P/PA*fl _ (PA*fl)/(PA*fl)

Finally, we know that (PA*™1) has full rank as it is the product of a diagonal matrix and a
triangular matrix,both with non-zero diagonal elements, and will necessarily be a triangular matrix
with nonzero diagonal elements. Using a familiar result form Linear Algebra, that X'X is positive
definite if and only if the X has full rank, thus B is positive definite. The proof assuming B is real,
symmetric and positive definite follows directly replacing A with B and A*~! with A*.

Proof of Proposition 3:

[y

T
QLao(ry) = 52 klog(2m) + 2log |Ds| + log(|Ry|) + (+}D; 'Ry 1Dy ry)
t=1

Differentiating @ Lo with respect to the parameter vector (¢1, ¢o, ..., dx)’, we have

0QLy  0QLy OH,
¢ OH, 0¢

where H, is a k by 1 vector (hys hot ... hit)'. Rewriting,

T T
1 1 1
QL = —QT]C log(2m) — B ;:1 log(h1t) — 3 ;:1 log(hat) +

T
1
-3 g log(hyt) — -3 E (log(|R¢|) 1Rt e rt))
t=1

-

2

Making a change of variables u;; = hzt , with U; a column vector of u;, the likelihood becomes

T T
1 1 _ 1 _
QLy = —§Tk log(2m) — 5 Zlog(ulf) -5 Zlog(u2t2) +
t=1 t=1
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T T
1 - ~ — ~
9 Z log(uy,’) + Z(Utrt)Rt HUry)
=1

t=1

where 7; is a diagonal matrix with ith element 7. Differentialting this with respect to U;, we have

0Q Lo

o, = 2U; ! — 27, R MU

where U denotes an element by element inverse of U;. And differentiating with respect to H;

_3 T LT .3 _1 7
hy* 0 0 h3, hy* 0 ... 0 hy?
_3 1 _3 _1
0QLo OU, 0 hy? 0 h3y 0 hy? 0 _ o1 | et
=t _9 -9 R
aUt aHt : : Tedvy T
_3 1 3 _1
0 oo 0 Ryt hi, 0 oo 00 Ryt hy,’
And since we have Et,l(rizt) = h;;, we can rewrite as
[ ] w0 |
L hat 0 hyt
QL OU; _ o M2t | 1t AR el
oU, OH, : : : : :
| 0 ... 0 hy |

by dividing the r; by h;. Now that R; is an estimate of the correlation between standardized
residuals, and from scoring conditions on the estimate of R;, we have E;_1(é&:R, 1elt) = 1, and

finally differentiating with respect to 8, we have

hi! hyt 0
0QLy 0U 0Hy _ | | ha' | | O ha om
L h | L0 0 Ryt
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