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Pricing Options under Stochastic Volatility:
An Empirical Investigation

Abstract

In this paper, I investigate the empirical properties of two stochastic volatility
diffusion models using data on both S&P 500 returns and option prices. I find
that a negative relationship between returns and volatility innovations is critical
for fitting the pronounced asymmetry in the patterns of options’ implied volatilities
and the skewness in index returns. Variance risk is priced in the S&P500 option
market. I find a risk premium that is not only statistically significant, but also has
an economic impact on option prices. A non-zero premium reduces pricing errors
considerably. Also, it fattens the tails of the state-price densities (SPDs) and changes
the implied volatilities obtained from option prices using either of the two stochastic
volatility models. The performance of the option pricing model is very sensitive to
the underlying returns variance. I compare return- and option-based estimates of
volatility and find that the latter provide the best results in reducing option pricing
errors. Moreover, considerable discrepancies are found between return- and option-
based variance estimates. This result is indicative of the presence of inconsistencies
in the joint model for option prices and index returns. Finally, the analysis of option
pricing errors, SPDs and other model diagnostics indicate that the two stochastic
volatlity diffusions considered in this paper perform similarly.



1 Introduction

Even though routinely used to price European options, the Black-Scholes model is well
known for its pricing biases. Practitioners are familiar with the “volatility smile.” Before
the 1987 crash, equity options that were deeply in- and out-of-the-money had higher
implied volatilities than at-the-money contracts. This phenomenon became accentuated
after 1987. Since the crash, out-of-the-money puts and in-the-money calls have had higher
implied volatilities than have other contracts, and the “smile” has assumed the asymmetric
shape of a “smirk”; see, e.g., Rubinstein (1994).

The qualitative pattern observed in implied volatilities can be reconciled with the
empirical evidence on stock returns. Equity returns exhibit excess skewness, leptokur-
tosis and pronounced conditional heteroskedasticity, all characteristics at odds with the
assumptions underlying the Black-Scholes model; see, e.g., Bollerslev, Engle and Nelson
(1994) and references therein. The presence of outliers, captured by the excess of kurtosis
and conditional heteroskedasticity, and the asymmetry in the returns distribution is quali-
tatively consistent with the higher prices of out-of-the-money options and the pronounced
asymmetry of the volatility smirk. Consequently, different extensions of the Black-Scholes
model have been suggested to account for the salient features of the data. In particular, a
number of studies have investigated the continuous-time stochastic volatility model. This
specification avoids many of the shortcomings of the constant variance diffusion assumed
by Black and Scholes, and may still be cast within the class of representative agent models
which allow for derivative pricing via equilibrium arguments; see, e.g., Bakshi, Cao and
Chen (1997, 2000), Bates (1996a,b, 2000), Chernov and Ghysels (2000), Chernov et al.
(1999, 2000), Eraker (2000), Eraker, Johannes and Polson (2001), Pan (2001), and Jones
(1999).

In this paper, I present estimates of two common stochastic volatility diffusion models,
one with a log-variance specification (see, e.g., Melino and Turnbull (1990)) and the other
with a square-root specification (see, e.g., Heston (1993)), and compare them based on
goodness-of-fit criteria for both S&P 500 returns and derivative prices. In my application,
I use a two-stage estimation procedure. In the first stage, I use a time series of daily S&P
500 returns and a simulated method of moments (SMM) procedure (see, e.g., Duffie and
Singleton (1993)) to estimate the structural parameters of the model. More specifically,
I obtain moment conditions from an implementation of the efficient method of moments
(EMM) procedure of Gallant and Tauchen (1996), which provides a convenient setting
for consistent continuous-time estimation and analysis of the model specifications. In the
second stage, I use a simulation methodology and a sample of S&P 500 option prices to

estimate the risk adjustment which is necessary for derivative pricing. This procedure



relies on the first-stage EMM estimates of the stochastic volatility parameters.

The presence of stochastic volatility makes it natural to ask whether there is a premium
for volatility risk embedded in observed option prices. There is at present no consensus
about the magnitude of the premium, even though there have been several attempts to
measure it. One of the contribution of this paper is to develop an estimation procedure,
also described in detail below, for estimating that premium using S&P 500 option prices
and returns. Another is the development of the asymptotic properties of the two-stage es-
timator, which are used to assess the statistical significance of the volatility risk premium.
Moreover, I develop diagnostics which make possible an understanding of the economic
importance of the estimated premium. Finally, I provide a number of goodness-of-fit
criteria that allow me to compare and assess the (mis)pricing of the two diffusion-based
specifications.

In my analysis, I investigate continuous-time stochastic volatility models within and
outside the affine class. However, I do not incorporate jumps in my specifications. There is
a mounting evidence in support of the presence of jumps in S&P 500 returns and possibly
in their volatility; see, e.g., Andersen, Benzoni and Lund (2001) and Eraker, Johannes
and Polson (2001). However, a number of contributions have pointed out that jumps are
only of second-order importance in fitting option prices, in comparison with stochastic
volatility, except possibly for the shortest lived options; see, e.g., Bakshi, Cao and Chen
(1997) and Eraker (2000). Therefore, since the focus of this paper is on option pricing, I
decide to concentrate on pure stochastic volatility models. More specifically, I investigate
the economic and statistical implications of such specifications. In the present context,
adding jumps would make the empirical analysis considerably more difficult and possibly
complicate the interpretation of results.

I deliberately choose a two-stage estimation procedure. Even though it is not fully
efficient, there are, however, several advantages in using it. First, my two-step approach
allows me to combine a very large sample of index returns with a relatively small sample
of option prices. Trading of derivative contracts started only relatively recently, and an
estimation procedure which uses simultaneously the two data sets would limit the length
of the underlying returns sample used in the estimation. This would be a considerable
limitation, because a large sample of returns is crucial for precise estimation of the mod-
els. In particular, it is important for capturing the dynamics of the strongly persistent
volatility process and for pinning down the coefficient of correlation between shocks to
volatility and shocks to returns. As is discussed below, this model parameter turns out
to be critical for fitting important characteristics of the S&P 500 returns and option
prices. Second, a joint estimation using two data sets together would involve additional

computational problems and, as a practical matter, limit analysis to affine model spec-



ifications, which deliver closed-form option pricing formulas. In contrast, my two-step
estimation methodology allows me to also investigate the option pricing properties of the
non-affine log-variance model and compare them to those of the more commonly used
square-root specification. The procedure provides a natural setting for the application of
the EMM technique, which delivers efficient and consistent estimates for the continuous-
time stochastic volatility models, and offers powerful model diagnostics and specification
tests. Third, my two-stage approach delivers diagnostics for the models estimated directly
under the “physical” probability measure, in addition to characterizing the “risk neutral”
dynamics. It is therefore possible to identify the presence of potential specification prob-
lems in the underlying return dynamics and disentangle them from other issues arising
from the characterization of the model risk premia.

I find that the log-variance stochastic volatility model provides a much better fit for
S&P 500 returns and option prices than that produced by standard one-factor diffusion
models. More specifically, the correlation between shocks to volatility and shocks to the
underlying returns captures nicely the negative skewness observed in returns. The results
of the EMM estimation are indicative of the presence of strong asymmetries, and the
analysis of option prices confirms that evidence.

Variance risk is priced in the S&P 500 option market. I find a risk premium that
is not only statistically significant, but also has an economic impact on option prices.
A non-zero premium reduces pricing errors considerably. Such a premium also fattens
the tails of the state-price densities (SPDs) and changes the implied volatilities obtained
from option prices using the stochastic volatility model (“SV implied volatilities”). More
specifically, when the premium is set equal to zero, SV implied volatilities increase to
compensate for the unaccounted volatility risk.

I find that the performance of the option pricing model is very sensitive to the un-
derlying returns variance. I compute estimates of volatility from index returns using the
Kalman filter and the reprojection method of Gallant and Tauchen (1998), and from
derivative prices by minimizing the deviations between market and stochastic volatility
option prices. In-sample, return-based estimates of variance do not provide nearly as
good results as the SV implied volatilities evaluated from same-day option prices, which
in comparison with Black-Scholes reduce the squared pricing errors by a factor of 2-3.
Similar conclusions are obtained from the out-of-sample analysis. In this case, day-before
SV implied volatilities are used to evaluate derivative prices; this reduces the squared pric-
ing errors by a factor of 2 in comparison with Black-Scholes. The Heston model performs
similarly; the square-root specification delivers EMM diagnostics which are in line with
the log-variance representation, and produces comparable in- and out-of-sample option

pricing errors.



A direct examination of the SV implied volatilities across different levels of option
“moneyness” suggests that the incorporation of a stochastic volatility factor lessens but
does not eliminate the volatility smile. Other diagnostics reveal the existence of consid-
erable discrepancies between the time series of return-based estimates of variance and
SV implied volatilities, and those discrepancies are indicative of inconsistencies in the
stochastic volatility model for both option prices and stock returns.

Finally, the analysis of SPDs at different points in time is used to highlight the main
characteristics of stochastic volatility option prices. SPDs exhibit a fatter left tail at
longer maturities, compared to Black-Scholes. On the other hand, they do not show signs
of asymmetry and leptokurtosis close to expiration. This evidence suggests that further
extensions of the model, e.g., allowing for jumps, may improve the pricing of very the
shortest term options.

The remainder of the paper is organized as follows. In Section 2, I set out the stochastic
volatility specifications to be analyzed, and in Section 3 I discuss the estimation methodol-
ogy, stressing how it contrasts with other procedures in the relevant literature. In Section
4, I report the results of the EMM estimation of the stochastic volatility models and the
associated specification tests. Then, in Section 5, I set up the derivative pricing model
and discuss the strategy for estimating option prices and the premium for variance risk.
The asymptotic properties of the estimator are developed in Section 6, and in Section
7 1 report the empirical option pricing results. In Section 8, I offer some concluding

observations.

2 Model Specification

A common extension of the Black-Scholes model incorporates a stochastic volatility factor:

ds
?t:( + Vi) dt+ Vi dWy,, (1)
t

where the (log-)variance process is assumed to exhibit mean-reversion, as in
dlnV; = (a—BInV,)dt + ndWy,, (2)

or

AV, = (o — BV,)dt + V'V dWs, (3)

with W; and W, standard Brownian motions. Stochastic volatility induces excess kurtosis
in the return process. Its level is largely determined by the volatility parameters a;, 5 and
7. Moreover, the model allows for correlation between shocks to volatility and shocks to

index returns induced by the coefficient p = corr(dW, s, dWs,). This makes it possible to



capture the negative skewness (asymmetry) observed in equity returns. In the rest of the
paper, I refer to the special case of p = 0 as the “symmetric” stochastic volatility model
and to the general case of p # 0 as the “asymmetric” model. Finally, I allow the volatility
factor to enter the mean coefficient, and therefore rule out arbitrage opportunities when
the variance takes a (near) zero value.'

The square-root specification (3) provides a tractable setting for derivative pricing:
Heston (1993) obtains a closed-form solution for the option premium when the underlying
returns obey (1) and (3). The log-variance specification (2) is inspired by the EGARCH
model of Nelson (1991), which has been used successfully for fitting equity returns and is
more in line with discrete-time stochastic volatility models that have been studied. Also,
the model (1) and (2) is easily converted to state-space form, which, as illustrated in
Appendix A, delivers a simple estimate of the unobservable variance process. (Alternative
estimates of the variance process based on both equity returns and option prices are
discussed below.) Nevertheless, no closed-form solution is available for model (1) and
(2), so that numerical methods must be used to obtain option prices; see, e.g., Melino
and Turnbull (1990). It is strictly an empirical issue to determine which one of the two
models, (1) and (2) or (1) and (3), provides the better fit for index returns and option
prices. It is therefore important to rely on an estimation procedure which can be used
for both specifications and delivers the diagnostics necessary to assess the performances

of the two models.

3 Estimation Methodology

When equity returns are described by a continuous-time model with latent variables, a
closed-form expression for the discrete-time transition density of the process is generally
not available, and standard estimation techniques, such as maximum likelihood (ML),
cannot be used. In some cases, an approximate likelihood function can be computed by
first discretizing the model. But there is a risk of inconsistent estimates; see, e.g., Lo
(1988). Even when ML is in principle feasible, empirical applications are computationally
challenging if the latent variables have to be integrated out of the likelihood function—as
is typically necessary in the presence of stochastic volatility.

Alternative techniques for the estimation of continuous-time models have been devel-
oped in recent years: among others, those of Ait-Sahalia (1996), Bandi and Phillips (1998),

IThis specification prevents the occurrence of a positive risk premium when the variance is zero and,
with g = r —d, yields the risk-neutral dynamics in (22). The ¢ coefficient captures the volatility-in-mean
effect. But the existence of such effect is problematic (see Glosten, Jagannathan and Runkle (1993),
Nelson (1991) and references therein), so that it should not be surprising if this coefficient is found to be
statistically insignificant.



Bandi and Nguyen (2000), Conley at. al. (1997), Hansen (1995), Jiang and Knight (1997),
Johannes (1999), and Stanton (1997), who suggest a number of (semi-)nonparametric
procedures. Unfortunately, they are all difficult to apply in the presence of unobserv-
able factors such as, for example, stochastic volatility. Simulation-based procedures are
computationally more intensive, but offer more flexibility. As an example, there is the
Monte Carlo Markov Chain method used by Elerian, Chib and Shephard (1998), Eraker
(2001), Jacquier, Polson and Rossi (1994), Jones (1998) and Kim, Shephard and Chib
(1998). More recent work along these lines is also found in Johannes, Kumar and Polson
(1998) and Eraker, Johannes and Polson (2001), who explore a pure jump model and a
square-root stochastic volatility jump-diffusion. The advances in Duffie, Pan and Single-
ton (2000) have inspired new methods based on empirical characteristic functions; see,
e.g., Singleton (2001), Chacko and Viceira (1999), Jiang and Knight (1999) and Carrasco
et al. (2001). However, these new approaches cannot be easily extended to the log-variance
specification.

In my application, I use the EMM procedure of Gallant and Tauchen (1996), a sim-
ulated method of moments technique. This approach offers the flexibility necessary for
estimating non-affine models with latent variable, of which model (1) and (2) is an ex-
ample. The SMM procedure of Duffie and Singleton (1993) matches sample population
moments with simulated moments. The EMM technique refines this approach by using
different moment conditions, obtained from the expectation of the score of an auxiliary
model which closely approximates the distribution of the data. One of the primary advan-
tages of the technique is that EMM estimates achieve the same degree of efficiency as the
ML procedure when the score of the auxiliary model asymptotically spans the score of the
true model. It also delivers powerful specification diagnostics that provide guidance in the
model selection. Andersen, Benzoni and Lund (2001) also conduct an EMM application
that relies on a sample of S&P 500 index returns. However, this paper differs significantly
from that of Andersen et al.. In Andersen et al. the emphasis is on fitting the underlying
return dynamics, while in this paper the focus is on the option pricing implications of the
model. Other EMM applications can be found in, e.g., Chernov and Ghysels (2000), and
Chernov et. al. (1999, 2000).?

In most of the studies mentioned so far, only samples of returns are used, and models

are estimated under the “physical” probability measure. (A notable exception is Chernov

2More work on continuous- and discrete-time estimation of stochastic volatility models using asset
returns and method-of-moments type procedures can be found in, among other papers, Andersen and
Lund (1996, 1997), Bollerslev and Zhou (2001), Gallant, Hsu and Tauchen (1999), Ho, Perraudin and
Sgrensen (1996), Jiang and van der Sluis (1999), Liu and Zhang (1997), Meddhai (2001), Melino and
Turnbull (1990), Pastorello, Renault and Touzi (1994), and van der Sluis (1997). Other estimation
techniques for stochastic volatility models are surveyed by Ghysels, Harvey, and Renault (1998).



and Ghysels (2000), which is discussed below in more detail.) But there are a number of
authors who advocated the use of option prices, and as a result estimated the model under
the “risk-neutral” probability measure. Bates (1996a, 2000) extends the model (1) and
(3) by allowing for (multiple) stochastic volatility factors and jumps in the return process.
He uses a sample of option prices only to simultaneously estimate the model parameters
and the variance process V' by minimizing the sum of squared residuals (SSR) between
market and stochastic volatility prices. Bakshi, Cao and Chen (1997) use a square-root
specification with stochastic volatility, jumps and stochastic interest rates and provide
extensive comparisons of the full model, simpler special cases and the benchmark Black-
Scholes model. The estimation is based on the minimization of the SSR and makes use
of only a sample of option prices.

The mounting evidence in support of stochastic volatility has generated interest in
the possible existence of a volatility risk premium. Buraschi and Jackwert (2001) reject
the pricing restrictions of a deterministic volatility specification and conclude that models
need to incorporate priced risk factors to price and hedge derivatives. Bakshi and Kapadia
(2001) and Coval and Schumway (2001) investigate the returns on a number of derivative
investment strategies and provide indirect evidence in support of a negative volatility
risk premium. Jones (2001) conducts a factor analysis of option expected returns, and
concludes that factors other than the return on the underlying security contribute to these
expected returns, although factor-based models appear to be insufficient to explain their
magnitude. The implications for optimal investment decisions in the presence of volatility
and jump risks are studied in, e.g., Liu and Pan (2001).

There are several recent contributions in which both primitives and derivatives data are
used to make inference about option prices. This approach has the advantage of delivering
direct estimates of the model risk premia, the premium for variance risk included. Chernov
and Ghysels (2000) fit the Heston model using EMM and both equity-index returns and
Black-Scholes implied volatilities. They find that the best pricing and hedging results
are achieved when the model is estimated using a univariate approach and just S&P 500
option prices, rather than a multivariate approach and both primitives and derivatives
data. Interestingly, they do not find the correlation between shocks to volatility and
equity returns to be important in describing S&P 500 returns and option prices. Pan
(2001) estimates a square-root stochastic volatility jump-diffusion process similar to the
one found in Bates (2000) using GMM and both S&P 500 returns and option prices. She
emphasizes the importance of jump risk premia in reconciling the dynamics implied by the
two data samples and in explaining the asymmetry in option prices. Eraker (2000) uses
the MCMC approach and both S&P 500 returns and option prices. He finds that jumps

to returns and volatility are an important element of the underlying dynamics. Jones



(2000) exploits the VIX implied volatility index and daily S&P 100 returns to estimate
a stochastic volatility diffusion with constant elasticity of variance (CEV) that extends
the Heston (1993) representation. He concludes that the CEV extension generates more
realistic crash probabilities and values of skewness and kurtosis much more consistent
with their sample values than the square-root specification does. Jiang and van der Sluis
(1999) fit a discrete-time log-variance model with a stochastic interest rate using EMM
and a sample of interest rates and equity returns data. They perform an out-of-sample

analysis estimating the premium for variance risk with day-before option prices.?

4 EMM Estimation of the Stochastic Volatility Model
for S&P 500 Returns

In this section, I report on the estimation of the parameters in (1) and (2) and (1) and
(3), and provide a comparison of the two models using a goodness-of-fit criterion based
on S&P 500 daily returns. In Section 4.1, I discuss the selection and the quasi-maximum
likelihood estimation of a semi-nonparametric (SNP) model for the S&P 500 daily returns.
Moment conditions are then obtained from the expectation of the SNP scores and are used

for the continuous-time EMM estimation, as explained in Section 4.2.

4.1 The SNP Auxiliary Model

The key to a successful application of EMM is the choice of an auxiliary model which
closely approximates the conditional returns distribution. Gallant and Long (1997) show
that when the score function of the auxiliary model asymptotically spans the score of the
true model, EMM is asymptotically efficient. They also show that SNP densities are a
good choice for this task.

Quasi-maximum likelihood estimation is performed on the SNP family of conditional

[Pr (22, 1) ) ¢(z)

densities

Jr[Pr (21, 21) o (u)du \/Et 7

where v is a small constant (fixed at 0.01), ¢(.) is the standard normal density, r; is the

fre(rea; §) = (V +(1-v)x

time-t index return, x; is a vector of lagged return observations,

Tt — e
vh
3Investigations of the volatility risk premium can also be found in, e.g., Guo (1998), Melino and
Turnbull (1990), Poteshman (1998), and Kapadia (1998). Related work can be found in the empirical
literature on the bias in volatility forecasts computed using option prices; see, e.g., Chernov (2000),
Christensen and Prabhala (1998), Day and Lewis (1992), Lamoureux and Lastrapes (1993), Poteshman
(2000) and Santa-Clara and Yan (2001).

2t




pe = ¢o+chy+ Z(f)ﬂ”t—i + Zfszft—i )
i=1 i=1

p
lnht = w+25ilnht_i+(1+a1L+...+aqu)[912,5_1—1—92 (b(Zt_l)—\/2/7T)],
=1
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j is a multi-index vector, 2/ = (x{l, . ,x{%) and 7| = XM j.. As in Andersen and

Lund (1997), b(z) is a smooth (twice-differentiable) function, with K = 100, that closely
approximates the absolute value operator in the EGARCH variance equation.

An ARMA term, extended with volatility-in-mean effects, is the natural specification
for the conditional mean. Gallant and Long (1997) show that some non-Markovian score
generators are valid auxiliary models. This makes the EGARCH specification of Nelson
(1991) an ideal choice for the conditional volatility. Besides being more parsimonious than
ARCH forms, it readily accommodates an asymmetric response of returns innovations to
volatility shocks and makes non-negativity constraints on the volatility parameters un-
necessary. The mixture appearing in the conditional density fx (r|z;; &) is introduced to
avoid stability problems in the EMM estimation.* Within this SNP family, the main task
of the semi-nonparametric polynomial expansion in the conditional density is to capture
any excess kurtosis in the return process and, to a lesser extent, any asymmetry not ac-
commodated by the EGARCH leading term. It therefore provides a parsimonious and yet
accurate representation of the return process. In practice, the polynomial representation
Py is given by Hermite orthogonal polynomials. I allow for heterogeneity in the polyno-
mial expansion (K, > 0); but when the model is confronted with the data, these terms
are insignificant, which suggests that the EGARCH leading term suffices to capture this
source of heterogeneity.

My application makes use of daily S&P 500 returns from 1/3/1953 to 12/31/1996, a
sample of 11,076 observations. Descriptive statistics for the data are provided in Table 1.
According to the results of a Dickey-Fuller non-stationarity test, also provided in Table 1,
the unit-root hypothesis is convincingly rejected for the returns sequence. A time series
plot of the price and return process is provided in Figure 1.

S&P 500 returns exhibit autocorrelation that cannot be readily incorporated in the
standard diffusions of this paper. Also, it is likely that a significant portion of this

autocorrelation may be spurious, induced by non-synchronous trading in the stocks of the

4P (2, x;) may equal zero for a given simulated trajectory, and a zero value causes numerical problems
when evaluating the score function. This was pointed out by Qiang Dai of NYU.
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index; see, e.g., Lo and MacKinlay (1990). Such autocorrelation is thus of questionable
economic significance. Finally, and most importantly, it is of much less importance for
option pricing than are volatility fluctuations. The inference for the variance process is
largely unaffected by the specification of the mean dynamics—a result documented in
Andersen, Benzoni and Lund (2001). For the forgoing reasons, filtering the data seems
reasonable. A relatively high-order AR form is necessary to model the predictability in
the sample of returns considered in this application. But a parsimonious MA(1) does the
same more effectively. Hence, I estimate an MA(1) model for the S&P 500 daily returns
and rescale the residuals to match the sample mean and variance in the original data set.
The rescaled residuals are then used in the estimation of the SNP model as the original
data set. On the other hand, I do not model day-of-the-week, week, month and year
effects explicitly. My approach falls somewhere in between that found in Gallant, Rossi
and Tauchen (1992), who prefilter the data extensively, and that found in other studies,
e.g., Chernov and Ghysels (2000), Chernov et al. (2000), and Pan (2001), in which raw
returns are used.

Within the above SNP family, the Bayesian (BIC) and Hannan and Quinn (H-Q)
information criteria are used for model selection. (Actual values of the statistics are not
reported.) This selection strategy yields an ARMA(0,0)-EGARCH-M(1,1)-Kz(8)-Kx(0),
the same specification as that used in Andersen, Benzoni and Lund (2001). Parameter
estimates and the associated standard errors are given in Table 2. Ljung-Box tests (not
reported) for the autocorrelation in the residuals confirm that the selected specification

successfully removes the systematic first- and second-order dependencies in the data.

4.2 The Continuous-Time Stochastic Volatility Model

In this section, I outline the EMM estimation of the continuous-time stochastic volatility
models (1) and (2) and (1) and (3), and discuss the results of the associated specification
tests.

Let {r,(¢)}7)) denote a sample of S&P 500 returns simulated from the stochastic
volatility model using the parameter vector ¢ = (pu, a, 5, n, p); let {xt(w)}f:({“ be a
sequence of variables containing lagged S&P 500 returns from the identical simulation.
The EMM estimator of v is then defined by

T/A)N = arg mwin MT(N) (T/), é)' Wy mT(N)(wa é) )

where mT(N)(z/),é) is the expectation of the score function, evaluated by Monte Carlo

integration at the quasi-maximum likelihood estimate of the auxiliary model parameter
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f, ie.

1 T(N)alan(Tt(¢)|xt(¢)§é)
T & o |

and the weighting matrix Wy is, as in Gallant and Tauchen (1996), a consistent estimate

mry (1, ) =

of the inverse asymptotic variance matrix of the score function. In simulating the return
sequence {ry(v)), xt(d))}tl({v), two antithetic samples of 75,000 x 10 + 5,000 rates of return
are generated from the stochastic volatility model at time intervals of one-tenth of a day.’
The first 5,000 observations are discarded to eliminate the effect of initial conditions.
Finally, a sequence of 7 (N) = 75,000 daily returns is obtained by summing the elements
of the simulated sample in groups of 10.

The results of the estimation of the model (1) and (2) are reported in Table 3. Pa-
rameter estimates are expressed in percentage form on a daily basis (dt = 1). First, the
simulation is performed imposing the restriction p = 0. That constraint is subsequently
relaxed, so that the model can capture the asymmetries in the stock returns and variance.
The resulting estimate of p, —0.5778, is significant and, as expected, negative. Moreover,
an unconstrained p dramatically improves the fit of the model; the value of the chi-square
statistic drops from 116.98 to 31.53. This is indicative of the presence of negative skewness
in stock returns, which is readily captured by the asymmetric stochastic volatility factor,
and is qualitatively consistent with the asymmetry observed in option prices. A negative
correlation of this magnitude has also been documented in studies of stock returns and
associated implied volatilities. Among others, Dumas, Fleming and Whaley (1998) find
that the correlation in the first differences of prices and Black-Scholes implied volatilities
is —0.57, a figure almost identical to the estimate of p reported in Table 3. Similarly,
Bakshi, Cao and Chen (1997) estimate p from a set of S&P 500 option prices, obtaining
a comparable result. Still, the model is rejected.® Andersen, Benzoni and Lund (2001)
provide further model diagnostics; as they report, the stochastic volatility model is unable
to accommodate the excess kurtosis observed in the S&P 500 returns.

For an interpretation of the remaining parameter estimates, notice first that the pos-
itive § rules out non-stationarity in the variance process. Also, § provides an indirect
measure of the persistence in the (log-)variance process. Based on the estimates for the
model (1) and (2), exp{—/} = 0.985, which indicates a strong daily persistence in (log-
Jvariance. This finding is in line with the results reported in the discrete-time literature;

see, e.g., Bollerslev, Engle and Nelson (1994) and references therein.

>The Euler scheme is used in the simulation; see, e.g., Kloeden and Platen (1992). EMM estimation
with two antithetic simulated samples of 150,000 x 10 + 10,000 returns produce the same results.

6This finding is in line with those in other empirical studies on stochastic volatility models in discrete
and continuous time; see, e.g., Chernov and Ghysels (2000), Gallant, Hsieh and Tauchen (1997), Gallant
and Tauchen (1997), Liu and Zhang (1997) and van der Sluis (1997).



12

Next, I turn to the model (1) and (3), which is estimated with and without the
restriction p = 0. The results, reported in Table 3, are qualitatively similar to those
obtained for the log-variance specification (1) and (2).” The value of the chi-square
statistic is equal to 30.74 in the case of p # 0. The p-value is comparable to the one
obtained for the log-variance model. Other model diagnostics (not reported) show that
this candidate model also fails to accommodate the excess of kurtosis observed in the S&P
500 returns.

Based on the analysis conducted above, the specifications (1) and (2) and (1) and
(3) seem to perform about the same in fitting stock returns. Neither model passes the
specification tests: Andersen, Benzoni and Lund (2001) conclude that continuous-time
models must incorporate both stochastic volatility and discrete jumps in order to provide
an adequate characterization of equity returns.® However, a number of contributions have
pointed out that jumps are only of second-order importance in fitting option prices, in
comparison with stochastic volatility, except possibly for the shortest lived options; see,
e.g., Bakshi, Cao and Chen (1997) and Eraker (2000). Therefore, the stochastic volatility
models (1) and (2) and (1) and (3) may serve as a good starting point for explaining
option prices. In the present context, adding jumps would make the empirical analysis

considerably more difficult and possibly complicate the interpretation of results.

5 Option Pricing Methodology

In this section, I develop the empirical methodology used to estimate the premium for
variance risk and compute derivative prices under stochastic volatility. I focus on the
log-variance specification (1) and (2), which is more challenging than the square-root
representation (1) and (3) because no closed-form solution for the derivative price is
available. The methodology developed below is then extended to the Heston model in

Section 7.

5.1 The Pricing Model

Suppose that the underlying stock price S obeys the SDEs (1) and (2) and generates
a constant dividend yield d. Consider a derivative on the security S with expiration

date 7', the price f of which depends only on S and the underlying returns variance V:

"To facilitate a comparison with the empirical option pricing literature it may be helpful to convert
parameter estimates for the square-root model to decimal form on a yearly basis. They become a =
0.0514, 8 = 3.9312, n = 0.1971 and p = —0.5973.

8GSee also Chernov et al. (1999), Eraker (2000), Eraker, Johannes and Polson (2001), Pan (2001).
Alternatively, more general volatility specification have been advocated for fitting the index returns’
leptokurtosis. See, e.g., Chernov et al. (2000), Jones (1999), and Meddahi (2001).
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f=Af(S;,Vi,7),t € [0,T]}, where 7 =T — t is the time to maturity. Also, let h(St)
denote the derivative’s payoff at expiration, and ¢(S;, 7) its instantaneous pay-out rate.
An application of It6 calculus and standard equilibrium arguments for a representative

agent economy (see, e.g., Cox, Ingersoll and Ross (1985)) yield:

Lf(sa V7 7_) = _G(Sa 7_) ) (4)
where
of 0 f 0’ f o’f
Lf=—7"+ (V52852 Vi 2 SV3/2858V)—rf+ (5)
+ (r—d)sg—é—v(mnVH( )/V—a——n)g—{;

the function A(V}) is the premium for variance risk and G(S,7) = ¢(S,7)f(S,V,7). The
initial condition

F(S,V,0) = h(S), (6)

and (4) characterize the price f.
Additional assumptions are required for computational tractability. Bates (1996a)
points out that a no-arbitrage condition is A(V; = 0) = 0 and so suggests assuming that

the premium for variance risk is proportional to V;. Here, as in Melino and Turnbull
(1990), \(V) = AnpV.

5.2 Estimation Strategy

The derivative pricing problem (4) and (6) admits a unique solution; see, e.g., Benzoni
(2001). In particular, the price of a European call option solves (4) with G(S,7) = 0 and
the initial condition

h(St) = max{0, Sp — K }. (7)

The objective is to compute the time-t option price which solves (4) and (7). Note that

the solution to this problem is a function
F(SuVi,m50,8,m,p, A K) « RFXRTx[0,T] - R,

The stock price S; and the strike price K are observable at time ¢, but the true values of
the parameters («, 3, 1, p) and A are unknown; also unknown is the time-t variance V;.
Therefore the pricing of an option contract necessarily involves the estimation of these
inputs.

To obtain those estimates, I exploit the information contained in equity returns and

option prices in a multi-stage procedure. In a first stage, a sample of daily stock returns
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is used to estimate the parameter vector v, as explained in Section 4. In the second step,
the premium for variance risk is estimated using a sample of option prices and the EMM
estimate of 1.2 I develop the asymptotic properties of the multiple-step estimator and
test the statistical significance of the risk premium coefficient \.

In the following sections, I provide the details of the methodology for estimating A.
Two strategies are presented. The first follows a simulated method of moments approach;
the second is based on the largely diffused practice of minimizing the SSR. Both methods
make use of an econometric model for option pricing errors, which is described in the next

section.

5.3 An Econometric Model of Option Pricing Errors

No-arbitrage and equilibrium arguments are central to the theoretical option pricing litera-
ture and are commonly used to value derivative securities. The option pricing implications
of these models are, however, often inconsistent with the data, and model prices do not
match derivative prices exactly. Market microstructure effects, e.g. non-synchronous trad-
ing and price discreteness, measurement errors and other market frictions, in addition to
possible model specification errors, play an important role in explaining such mispricing.

Of course, by arbitrarily increasing the number of factors one can always duplicate
perfectly the observed paths of option prices. Alternatively, Rubinstein (1994) suggests
the use of implied binomial trees to obtain a perfect in-sample fit for derivative prices.
Dumas, Fleming and Whaley (1998) develop a deterministic volatility function option
valuation model that has the potential for fitting any observed cross-section of option
prices exactly. These approaches, though, are sensitive to over-fitting problem. The
same specification which obtains a perfect in-sample fit can perform poorly out-of-sample.
This is documented by, e.g., Dumas et al. (1998), who find that an ad-hoc Black-Scholes
implementation consistently outperforms the deterministic no-arbitrage model, even if
the in-sample fit of the latter is quasi perfect. (See also Jacquier and Jarrow (2000) and
Renault (1996).)

To avoid these problems, I assume

frK)  f(S, V159, A K)
St = St +€t, (8)

where f(T, K) is the observed option price for a given strike price K and 7 days to
maturity, f(S;, Vi, 7;¢, A, K) is the price predicted by the stochastic volatility model,

9 Ait-Sahalia (1996) adopts a similar approach in estimating the term structure of interest rates and in
pricing interest rates derivatives. A nonparametric estimation of the continuous-time model is performed
first, and an interest rate risk premium is computed in a second stage, conditional on the estimates
obtained in the first stage.
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and the error process ¢ = {&,t € [0,T]} is assumed to be stationary and ergodic with
zero mean. Note that, to simplify notation, I suppress the arguments K and 7 of the
error term €.

Given the model for the option pricing errors, in the following sections I illustrate the

estimation of the market price for variance risk.

5.4 Estimating the risk premium by SMM

The assumption that the error term in (8) has zero mean yields the moment condition'”

f(T7K) f(Sta‘/taT;wa)VK)
El St ]_E[ St

—0. 9)

For any given strike price K, only a small sample of option prices is available. Indeed,
since the exercise price is set by the Chicago Board Option Exchange (CBOE) as a
function of the underlying index level, options with a given strike K are only traded over
a relatively brief period. Of course, these moments are matched for different strike prices
K. However, if options with different exercise prices are used in estimating E[f(r, K)/S}],
the same strike price pattern in market prices should be replicated in the simulated sample
used to approximate E[f (S, Vi, 751, A\, K )/S;]. To circumvent these problems, I exploit
the homogeneity property of option prices; see, e.g., Merton (1973). Together with (9),

homogeneity implies

E[f(%f()] —Elf(l,W,T;w,A,K/St)l = 0.

If, at any maturity, options with a strike K = +.S;, where v is a constant, are traded,

then the previous equation simplifies to

s, ] —E[f(l%,T;@D,A,v)] = 0. (10)

It is easy to show that the normalized option price process {f(r,7S;)/Si,t € [0,T]},
is stationary. Hence, one can estimate the population moment in (10) using a set of
observations f(7,7S,)/S:,, n=1,...,N, on option contracts sampled at times ,, n =
1,..., N, having time to maturity 7 and strike price S, , where v is fixed throughout
the sample.

An obvious criticism of this approach is that exercise prices take only discrete values.
For S&P 500 contracts, the strike price interval is 5 points, and thus, since f(T, K)/S; #

f(r,7vSy) /S, assuming K = vS; introduces a measurement, error.

10Bakshi, Cao and Chen (2000) exploit similar moment conditions to estimate a square-root stochastic
volatility jump-diffusion, using only a sample of option prices.
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To avoid this problem, I select, for given values of v and 5}, the traded contract having

exercise price K, nearest to vS;. Setting v; = K, /S, I consider the econometric model

f(r, K7)
St

where the error process ¢ = {¢;} satisfies the same regularity properties as in (8). From

= f(L, Vi, m30,7 ) + &y (11)

(11), I obtain a moment condition which can be used in the SMM estimation of A:
f(r K7)

E[—]—E[fa,v;,w,x,v:) _ 0. (12)
Sy

To exploit condition (12), E[f(r, K;)/S;] is approximated by the average of a sequence
{f(T, K} )/S:, }0_, of option contracts sampled at times t,, n = 1,..., N, each having
time to maturity 7, with K} chosen to be the strike price closest to vS;,, where 7 is fixed
throughout the sample. The approach is operational, and uses the entire span of option
prices, going back to the year of the introduction of the S&P 500 contract.

The expectation E[f(1,V,7;1,A,v;)] is computed by simulation. I use numerical
methods to calculate the stochastic volatility price which appears in the expectation.
The parameter vector ¢ is replaced by the EMM estimate z/; For S; = 1 and a fixed time
to maturity 7, I create a fine grid of call option prices, each a function of A\, K, and the
variance process V;, by numerically solving the partial differential equation (4) with initial
condition (7). Using the finite differencing method discussed in Appendix B, I compute
the option price on the grid of possible strike price and variance values for a given value
of \.

Once the entire grid of option prices is available, it is straightforward to compute the
expectation E[f(1,V;, 75, A,/ )] by simulation. First, I simulate a sample {S;,,V;, }ZSIV)
using model (1) and (2). Then, I construct a sequence of strike prices {7 }ZSIV), where
Vi, = K{ /St,, and K} is the strike price nearest to vS;,. Finally, I extract a sequence
{f(l,%n,T;@/A),)\,yz‘n )}HTSIV) from the grid of option prices. Using this sample, the ex-
pected value of the stochastic volatility price appearing in the moment conditions (12) is
approximated by 1/7(N) =78 (1, Vi, 739, A, 77, ).

In this approach, (12) is approximated by

N F s T(N)
-%Zfﬁf”—T&%;f@wﬂn&xﬁ>%tx (13)

n=1

Selecting different values of v and 7, I obtain a set of sample moment conditions which is
then used to compute a consistent SMM estimate A

Finally, the time-t option price is computed by solving numerically the pricing partial
differential equation (4) with its initial condition (7), using A and the EMM estimate

b= (aBip).
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5.5 [Estimating the risk premium by minimizing the SSR

The SMM method outlined above delivers consistent estimates of A. Also, it provides
a setting for assessing the statistical significance of the volatility risk premium and con-
structing a Chi-square statistic for testing the over-identifying restrictions. However, it is

silent about the economic properties of the stochastic volatility option pricing model.

To gain some knowledge of these properties, I also consider an estimate of A that
minimizes the SSR for the market and stochastic volatility prices. Given a set of n =
1...N contracts having 7, = T" — t,, days to maturity and strike price K;, 1 =1,...,1,

the estimated market price of variance risk A is

5\ _ argm)\ing:i{f(stna‘/tnaTn;z/)aAaKi) - f(TnaKZ)} , (14)

where V; is an estimate of the time-t variance. The option price f(Ss,, ‘A/tn, Tni U, A, K;),
as a function of A, is computed solving (4) and (7) numerically. The specific details of

the numerical algorithm are given in Appendix B.

The choice of the conditional variance estimate V; is critical for the performance of
the option pricing model. In the following application, three estimates are considered.
Two are computed using stock returns only. One is obtained applying the Kalman filter
to the discrete version of model (1) and (2) (for details, see Appendix A); the other is
obtained using the reprojection method (see, e.g., Gallant and Tauchen (1998), Chernov
and Ghysels (2000), Chernov et al. (2000), and Jiang and van der Sluis (1999)). The

third estimate of V;, makes use of the information contained in option contracts: it is

N
n=1

given by the sequence {th that, simultaneously with A, minimizes the SSR between
market and stochastic volatility prices.!' In what follows, the option-based estimates are
called “SV implied volatilities” to distinguish them from the more commonly used Black-
Scholes implied volatilities. A comparison of the conditional variance estimates, based
on the performance of the option pricing model, addresses the extensively debated issue
of which source of information should be used to price options, and provides a basis for

testing the internal consistency of the model.

UThis approach is also followed by Bates (1996a) and Bakshi, Cao and Chen (1997). SV implied
volatilities will produce a smaller SSR between market and stochastic volatility prices than Kalman filter
estimates. Actually, the use of implied volatilities could bias the results, since by design this approach
directly minimizes the SSR over V;. This and related issues are addressed in Section 7.
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6 Asymptotic Properties of the Estimators

The solution to the option pricing problem involves a sequential estimation procedure,
which makes a direct derivation of the estimator’s asymptotic properties cumbersome.
The problem is better handled by writing the multiple-step estimation in a “method
of moments” form, so that standard asymptotics from GMM and SMM theory can be
applied.!?

The following proposition summarizes the asymptotic properties of the estimator;
additional details are provided in Appendix C. Under the assumptions and the regularity
conditions discussed in Duffie and Singleton (1993) and Gallant and Tauchen (1996), we
have the following

Proposition 1 Suppose N/T(N) — £ as N — oo. The asymptotic distribution of the

sequential estimator (¢ \) is

l \é_%((‘i 3 f)) ] 2 N(0, H). (15)

The expression for H depends on the estimation method of A that is adopted (see Appendix
C).

The price of an option with a given strike price K satisfies
VN [£(S.Viridh, A) = F(S, V.73, A)] % N(0,A'HA) (16)

where A = Dy \f(S,V, 7351, A), i.e. A is the vector of the derivatives of the option price

with respect to the parameter vector (1 \).

Proof: See Appendix C. O

7 Empirical Option Pricing Results

In this Section, I apply the procedure discussed above to estimate A\, the market price
for variance risk, assess its statistical significance and discuss its economic relevance for
the pricing of European call options on the S&P 500 index (SPX). I also compare the
performances of the log-variance model (1) and (2), the square-root specification (1) and
(3), and the Black-Scholes benchmark. In- and out-of-sample diagnostics are used to high-
light the main features of the different specifications. Additional model diagnostics based

on SV implied volatilities are then provided. First, I check for the presence of possible

12Gee Newey (1984) for a discussion of a method of moments interpretation of multiple-step estimators,
and Heaton (1995) for an application of this methodology.
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patterns, one being the Black-Scholes smile. Then I compare SV implied volatilities and
return-based estimates of the variance process, which have been obtained using either
the Kalman filter or the reprojection method of Gallant and Tauchen (1998). Finally,
stochastic volatility SPDs are used to compare and interpret the (mis)pricing produced

by the different specifications.

7.1 Option pricing when the risk premium is estimated by SMM

In this section, I report on the SMM estimation of A\, based on the methodology discussed
in Section 5.4. The choice of v and 7 in the moment condition (12) is guided by the
characteristics of the option contracts traded in the market. It is well known that call
options deep in-the-money are often very illiquid, as compared to at- and out-of-the-
money contracts; hence I set 7 equal to one. With regard to time-to-maturity, there are
two issues. The presence of stochastic volatility is generally more important for options
that are far from maturity than for contracts close to expiration. On the other hand, at
longer maturities the option contracts are relatively illiquid. Because of this trade-off,
I set 7 equal to 3, 4 and 5 weeks, thus obtaining 3 moment conditions. The nominal
risk-free interest rate is fixed at 6%; also, a constant 2% dividend yield is assumed in
this application and hereafter. Option prices are computed numerically from the pricing
equation (4).

The results are provided in Table 4. Standard errors are consistently estimated from
the asymptotic variance matrix (27). Note that the risk premium is statistically significant
(the coefficient’s t-ratio is —3.8), which confirms the conjecture that variance risk is priced
by the market. This conclusion is supported by the results of a likelihood ratio test, which
rejects the null A = 0. Further model diagnostics are provided by a test for over-identifying

restrictions: the p-value for the Chi-square statistics is 5%.

7.2 Option pricing when the risk premium is estimated mini-
mizing the SSR

In order to provide better economic insights into the performances of the stochastic vola-
tility models, I also estimate the market price of variance risk A by minimizing the SSR
of market and stochastic volatility prices, as discussed in Section 5.5. I use a sample of
S&P 500 options expiring in March 1997; daily observations from December 30, 1996 to
March 14, 1997 are from the CBOE tapes. From here on, the nominal risk-free interest
rate is fixed at 5.1%.

A number of alternative estimates for the variance process are investigated here. First,

I consider return-based methods and value options using the Kalman filter estimate of
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the daily conditional variance V;. Initially, I set A = 0 and compute the corresponding
value of the SSR, reported in Table 5. I then minimize the SSR over the coefficient .
The squared option pricing errors drop significantly in comparison with the A\ = 0 case
(Table 5). This also confirms the existence of a non-zero premium for variance risk. This
finding is consistent with those in Melino and Turnbull (1990) and Jiang and van der Sluis
(1999). However, the estimate of A obtained with this method is relatively imprecise; the
SMM approach discussed in Section 7.1 (Table 6) provides a better estimate.!® Standard
errors are computed by plugging the estimates (1/; 5\) and V into the asymptotic variance
matrix (28).

This analysis provides a first diagnostic of in-sample model performance based on the
comparison of the SSRs produced by the stochastic volatility model and the Black-Scholes
benchmark. In drawing this comparison, two estimates of Black-Scholes volatility are
considered. The first is obtained estimating the diffusion coefficient in the Black-Scholes
model by EMM, as in Andersen, Benzoni and Lund (2001). The second is the value of
the implied volatility which minimizes the SSR of Black-Scholes and market prices. The
results are reported in Table 5: for both estimates of the Black-Scholes volatility, the
log-variance model delivers a smaller SSR. However, the improvement is not as large as
one might have expected. Little difference in the performances of the Black-Scholes and
stochastic volatility models is also suggested by the comparison of the average absolute

pricing error produced by the two, which is approximately $1 in both cases (Table 5).

To shed some light on the last result, I investigate the effect of different variance
estimates on option pricing errors. As an alternative to the Kalman filter method, I
consider now the reprojection technique of Gallant and Tauchen (1998) (See also Chernov
and Ghysels (2000), Chernov et al. (2000) and Jiang and van der Sluis (1999)). I simulate
a sample of returns from the stochastic volatility model using the parameter estimates
in Table 3, and fit an SNP conditional density fx(r¢|z;; &) on the simulated sequence of
returns. The family of SNP densities considered for this application is the one used in
Section 4.1. The simulated sample consists of 75,000 daily returns. Based on standard
specification tests I select an ARMA(0,0)-EGARCH-M(1,1)-Kz(4)-Kx(0) representation.
This model is readily used in the estimation of the conditional variances of S&P 500

returns:

Brles€) = [y filvlee)dy, (a7)

13The formal inference about A is based on the results reported in Section 7.1, since estimates of A
obtained from the minimization of the sum of squared residuals are not consistent. Nevertheless, the
analysis based on option pricing errors illustrated in this section provides additional economic insights
into the performance of the two stochastic volatility models.
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Var(rdes €) = [y Blyles ) fr(yles€) dy, (18)

where r; denotes the actual S&P 500 return and x; is a vector of lagged actual returns.
I use these variance estimates for computing option prices. First, I evaluate the SSR at
A = 0. Then, [ minimize the SSR over A. The results, reported in Table 5 under the
heading “reprojection method” are very similar to those obtained using the Kalman filter
method. So also are the average absolute price deviations.

The two return-based estimates of V; do not do well in eliminating the mispricing of
options. Hence, I turn now to option-based measures of variance, and use SV implied
volatilities, obtained using the procedure described in Section 5.5, to assess the model
performance. As indicated in Table 5, the change to SV implied volatilities results in
quite a sharp decrease in the SSR, to a value which is dramatically smaller than that of
the Black-Scholes benchmark. This improvement is also reflected in the average absolute
pricing deviation, which is only $0.59 or alternatively 6.51%. One possible interpretation
of the changes in pricing errors produced by the use of SV implied volatilities is that
a reliable estimate of the conditional variance is critical for getting at correct option
prices. Same-day SV implied volatilities obtained from option prices may contain more
information than do return-based estimates obtained from stock returns only, and thus be
a more reliable measure of volatility for the purpose of derivative pricing. It is also true,
though, that using implied volatilities may bias results, since by design this approach
directly minimizes the SSR over V;. It is also worth noting that the SSR computed at the
optimal value of A is only marginally smaller than when A is set equal to zero (Table 5).
The market premium for variance risk affects option prices by changing the unconditional
mean of the variance process. When A is set equal to zero, the value of the implied
volatility obtained from option prices is significantly higher than that found when A is
fixed at its estimated value. This offsets the difference in the values of A, and reduces
option pricing errors. To resolve the issue of whether SV implied volatilities bias results,
it is advisable to investigate further the time series properties of the sequence of implied
volatilities, in order to uncover possible inconsistencies between the time series of returns
and option prices. Moreover, to assess whether a non-zero A is necessary to fit option
prices, it is also important to evaluate the out-of-sample performance of the model and
to examine the impact of A on SPDs. These issues are explored in the following sections.

To conclude this subsection, I consider the importance of the asymmetry parameter
p for option pricing. More specifically, I compute the SSR corresponding to the EMM
estimates for the symmetric model (p = 0), and compare the pricing errors to those
obtained using the preferred asymmetric specification (p # 0). The results for the log-

variance representation are reported in Table 5; no matter what variance estimate is used



22

in computing option prices, the asymmetric model performs remarkably better than the
symmetric model. This confirms the findings reported in Section 4.2: a strongly negative
asymmetry coefficient p is crucial not only to fitting the underlying returns dynamics, but

also the characteristics of option prices.

7.3 The Heston model

In this section, I compare the log-variance option pricing model (1) and (2) to the al-
ternative specification (1) and (3) considered by Heston (1993). As in the log-variance
case, appropriate adjustments are made to account for the presence of non-diversifiable
volatility risk. For a representative agent economy, this is achieved by writing the model

in “risk-neutral” form:

dS,

? == (T — d)dt + \/Vt dWl,t, (19)
t
AV, = (a— BV, = AXVp))dt+ V'V, dWsy,, (20)

where W, and W, are standard Brownian Motions under a “risk-neutral” probability
measure and corr(dWy,,dWs,) = p. For tractability, the premium for variance risk is
assumed to be proportional to the conditional variance, i.e. A(V;) = AV;. With this
specification, a closed-form formula, provided in Appendix D, is available for computing
option prices.

For a comparison with the log-variance model, I estimate A by minimizing the SSR
between Heston and market prices, as in Section 7.2. As in the log-variance case, the
EMM estimate ¢ is used in (14). In evaluating option prices, I approximate the condi-
tional variance with those SV implied volatilities that minimize the SSR for market and
stochastic volatility prices, computed at the optimal value of A. The optimal value of A
is -0.0278 in this case. Under the risk-neutral distribution, the persistence parameter of
the variance process is  + A. The estimated value of A implies that the variance process
is non-stationary under the risk-neutral distribution, a result consistent with what Pan
(2001) finds using a different estimation method. Interestingly, this does not happen in
the case of the log-variance specification. The value of the SSR appears in Table 5. Also
in this respect the Heston model performs similarly to the log-variance specification, and

dramatically out-performs the Black-Scholes benchmark.

7.4 Out-of-sample results

Model diagnostics are obtained evaluating the out-of-sample SSR for market and stochas-

tic volatility prices. 1 use a data set of European call options on the S&P 500 index
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expiring in June 1997; closing prices are sampled daily from March 31, 1996, to June 13,
1997. The sum of squared residuals is computed as in (14), using the in-sample estimates
of 1/3, )\, and 6 given in Section 7.2.

I start with the log-variance representation and use the Kalman filter to estimate the
variance process. The results are reported in Table 7. Interestingly, the model does not
perform as well as the Black-Scholes benchmark. Next, I reproject V; using (17)-(18),
but without getting any improvement. The results appear in Table 7 under the heading
“reprojection method.” Much better performance is obtained instead when option prices
are evaluated at day-before SV implied volatilities. The SSR decreases by a factor of
approximately 2 in comparison with Black-Scholes. In Table 7 T also report the SSR
obtained using same-day implied volatilities, which, given the model parameters estimates,
provide a lower bound for pricing errors.

The results for the Heston representation are similar; the value of the SSR evaluated
at day-before SV implied volatilities is only slightly bigger than that obtained in the
log-variance case (Table 7).

In summary, the analysis in this subsection confirms that the choice of the return
volatility estimate is critical for option pricing. Specifically, variance estimates obtained
from derivative prices dominate those computed by filtering stock returns, and they reduce

considerably Black-Scholes pricing errors.

7.5 SV Implied Volatilities

Since the choice of the conditional variance estimate is critical for the purpose of derivative
pricing, it is important to investigate further the properties of SV implied volatilities
obtained from option prices and those of return-based estimates of variance.

First, I use the stochastic volatility model to compute a volatility estimate based on
option prices for contracts with different degrees of moneyness. In doing this, I fix the
error term in (8) at zero, and solve for the value of the variance which makes market
and model prices equal. I use options expiring in April 1997 with up to two months to
maturity. The SV implied volatilities are computed solving (4) numerically and are given
in Figure 2.

Allowing for the presence of stochastic volatility flattens but does not eliminate the
volatility smile. For example, on March 21, 1997, the values of the standard deviations
implied by the stochastic volatility model are concentrated in a 1.2% range for at- and
out-of-the-money calls (2.3% for Black-Scholes). The pattern of Black-Scholes implied
volatilities, also in Figure 2, is a strong asymmetric smile. The pattern of the esti-

mates implied by the log-variance model is less strong; it appears to be more a scatter
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around some central value. However, in-the-money calls exhibit significantly higher im-
plied volatilities than do other contracts. This indicates that stochastic volatility is unable
to explain fully in-the-money call and out-of-the-money put prices.

Next, I investigate the time series properties of volatilities. Specifically, I regress SV

implied volatility over return-based variance estimates, as in
Imp. Vol. = by + by x Vol. Est. + ¢,

where the independent variable is initially given by Kalman filter estimates, and then by
reprojected volatilities. This application uses data from the sample period from December
30, 1996 to March 21, 1997. The results are reported in Table 8. Overall, there are
considerable discrepancies between return and option based estimates of volatility. This
finding is consistent with the difference in option pricing errors produced by the two
volatility estimates, and is indicative of inconsistencies in the joint model for option prices

and stock returns.'*

7.6 State-price densities

It is well known that in a stochastic volatility setting the price of a derivative with a single

liquidating payoff h(St) is given by
f(Sta‘/;;T;w?)\) = e_TT/ h(ST)’/T(STavT:T; Sta%7w7A)d5TdVT7 (21)
R+ xRt

where 7(Sy, Vi, 7; Sy, Vi, 0, A) denotes the SPD conditional on the time-t stock price S,
and the variance V;.

The SPD 7 summarizes the characteristics of derivative prices and can therefore be
used to compare alternative pricing models. To facilitate the contrast with Black-Scholes,

it is convenient to integrate out the terminal variance V; from 7 and introduce
7 (Sty 73 S Ve A) = [ (S, Vi 5 S0, Vi, A) V.

Different methods deliver an estimate of 7*(Sy, 75 S;, Vi, ¥, A).'5 In this application,

I rely on Monte Carlo integration. First, I simulate a sequence of terminal stock prices

using
d _
% = (r—d)dt+VV,dW,, (22)
t
dinV; = (& —BInV;)dt +ndWs,, (23)

14Bates (1996a) and Bakshi, Cao and Chen (1997) also find internal inconsistencies in the joint model
of option prices and underlying returns.

15Gee, e.g., Ait-Sahalia and Lo (1998), Ait-Sahalia et al. (2001) and Breeden and Litzenberger (1978).
Closed-form solutions are available for the Black-Scholes and Heston models (see, e.g., Bakshi, Cao and
Chen (2000)) but not for the log-variance representation.
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where & = o — An, and Wl and Wg are Standard Brownian Motions under a risk neutral
probability measure. Then I obtain a nonparametric estimate of the SPD by fitting a
kernel to the simulated sample of prices.

To develop some initial feel for the behavior of the stochastic volatility SPDs, I set
A = 0. Tuse SV implied volatilities obtained from same-day option prices as a proxy for the
time-t variance V;, and substitute its EMM estimate for 1. I compute stochastic volatility
SPDs for both the log-variance and Heston models and compare them to the Black-Scholes
benchmark. Figure 3, top panel, depicts the March 21, 1997, SPD estimates relative to
option contracts expiring in April 1997. At first glance, the plots reveal that, as compared
to Black-Scholes, the stochastic volatility SPDs exhibit excess skewness and kurtosis. This
is consistent with the empirical evidence about option prices after the 1987 crash, which
is summarized by the asymmetric smile in the Black-Scholes implied volatilities; see, e.g.,
Rubinstein (1994). It is also of interest that there is no apparent difference between the
SPDs implied by the log-variance and Heston models. This confirms that the derivative
pricing implications of the two representations are very similar.

Next, I compute SPDs assuming a non-zero market price of variance risk: A is set
equal to the estimates obtained in the previous subsections. SPDs are evaluated at a new
value of the implied volatility, calculated using A = —0.1335 in the log-variance model
and A = —0.0278 in the square-root model. The results are reported in Figure 3, bottom
panel, and do not differ significantly from those obtained with A\ = 0. This finding is
consistent with the results discussed in Section 7.2. The difference in the value of the
A coefficient is offset by the new implied volatility estimate, so that in both cases the
estimated SPDs fit very closely the risk-neutral density implicit in option prices. Hence
the similarity in the patterns of the two panels.

In order to investigate the impact of A on SPDs, it is therefore important to isolate
the effect of A on the volatility estimate. To this end, I evaluate SPDs using return-based
estimates of the variance obtained using both the Kalman filter and the reprojection
methods, which are independent of the market price of variance risk. Figure 4 illustrates
the impact of a non-zero A on the log-variance model SPDs, and compares them to those
of Black-Scholes. This analysis reinforces the conclusion that the premium for variance
risk is not only statistically but also economically significant. That is, the presence of a
non-zero A fattens considerably the tails of the risk-neutral distribution of stock prices.

The final question is how SPDs change over time compared to the Black-Scholes bench-
mark. The answer is given in Figure 5, in which are depicted the SPD estimates based
on option contracts expiring in April 1997, evaluated at different maturities. Differences
are more remarkable the longer the time to expiration. At longer maturities, stochastic

volatility risk-neutral densities become more leptokurtic and have a fatter left tail. This
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is not surprising; the stochastic volatility model generates outliers mainly over longer ma-
turities because of the continuity of the return and volatility sample paths. The patterns
in the Figure suggest a potential limitation of the model. To generate excess kurtosis at
the shortest maturities, it is necessary to further generalize the model, for example, by

incorporating a jump component.'

8 Conclusions

In this paper the Black-Scholes model for equity returns is generalized to a continuous-time
stochastic volatility setting. Specifically, two common stochastic volatility diffusion mod-
els, the log-variance (Melino and Turnbull (1990)) and the square-root (Heston (1993))
specifications, are compared using as a criterion the fit for S&P 500 index returns and
option prices.

Stochastic volatility improves the fit of S&P 500 returns considerably. However, both
models fail the EMM specification tests, which suggests that further extensions are neces-
sary for modeling equity index returns, and, indeed, Andersen et al. (2001) conclude that
continuous-time models must incorporate both stochastic volatility and discrete jumps in
order to provide an adequate characterization of S&P 500 returns. Similar conclusions
are reached by Chernov et al. (1999), Eraker (2000), Eraker, Johannes and Polson (2001),
and Pan (2001).

Stochastic volatility also greatly enhances the performance of the option pricing model
by flattening the volatility smile and reducing considerably option pricing errors. The
analysis demonstrates the high sensitivity of stochastic volatility prices to the level of the
return volatility. Return-based estimates of the variance process, obtained using either the
Kalman filter or the reprojection method of Gallant and Tauchen (1998), produce large
pricing errors. The mispricing is considerably reduced when option prices are evaluated
using SV implied volatilities obtained from a cross-section of option prices. Also, large
discrepancies are observed across return- and option-based measures of volatilities, sug-
gesting the existence of inconsistencies in the joint model for equity returns and derivative
prices.

Volatility risk is priced in the S&P 500 option market; the risk premium coefficient is
statistically significant. Analysis of SPDs, options implied volatilities and pricing errors
confirms this finding and shows the relevant economic impact that the risk adjustment
has on derivative prices.

Finally, the examination of SPDs suggests that the stochastic volatility model is able

16This conclusion is in line with those in, e.g., Bakshi and Cao and Chen (1997), Eraker (2000), and
Das and Sundaram (1998).
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to generate skewness and leptokurtosis in the return process over relatively long time
horizons, but not so much over the shortest maturities. This evidence indicates that
further extensions of the model, e.g., incorporating a jump factor, may improve the model

pricing of the shortest term options.

Appendices

A Kalman Filter Estimate of the Variance Process

In order to compute the Kalman Filter estimates of the variance process, I write the log-variance
stochastic volatility model in state-space form. First, time is made discrete. So the model is

re = /j,At + \/VtAWLt )
InV, —InVi_1 = (a—FInVi_1)At+nAWy,,
where r, = As—ft. Note that when the joint errors distribution is symmetric, the state-space
form has uncorrelated disturbances; see Harvey and Shephard (1996). Second, the observation
equation is linearized:
Ly = WVi+InAt+ En(Z7,)] +&,
InV, = alAt+(1-BAY) IV, +nVAtZyy,

where L; = In(ry — pAt)?, & = ln(Zit) - E[ln(Zit)], Zy and Zy; are distributed N(0,1).
The Kalman filter then yields

InVy;, = alAt + Ty (L — aAt — In At + 1.27) + (1 — BAL) (1 =Ty) InV,_qp_y
where T'; is recursively defined by

Aty + 72 /2 3y
N2 Aty + 722z + 72 /27
yo = 1+ (1=BA)* (1 —Ty1)” g,
pe = Ti (1= BAY)? + (1 -T0)*(1 = BA? x40,

Iy

withyy =1e z1 =0.

The parameter vector (4 o 8 ) is replaced by the EMM estimates (4 & 3 7)) computed in
the first stage; the sample variance of continuously compounded rate of returns is used as initial
condition for the recursion. The daily variance sequence is constructed using a sample of S&P
500 returns from January 1983 to March 1997; the first part of the sequence is then discarded,
to eliminate the effect of the initial condition.

B Numerical Solution to the Option Pricing Partial Differential
Equation

In this Appendix, I discuss the application of finite differencing methods to solve the pricing
differential equation (4).
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In the SMM procedure of Section 5.4 a stochastic volatility option price must be computed
for each simulated strike v; , n = 1,..., T (V). Since the initial condition for (4) depends on
the exercise price, this application entails solving numerically a partial differential equation for
each simulated strike—a task which is computationally not feasible. In practice, though, this
problem is avoided by using the homogeneity property of the option price. At each simulated
point, the option’s value in (13) can be computed as:

f(lavtnaﬂlﬁa)\,’)’:n):’)’; f(l/")/;(n,Vin,T;’l/J,A,l),

where f(1/7; ,Vi,,T;%,,1) is the solution to (4) for an option having strike equal to unity.
Thus, the initial condition to (4) is identical for each simulated point, and I only have to solve
the partial differential equation once, with a huge saving in computer time.

As in Ait-Sahalia (1996), the following changes of variables further simplify the problem:

CIS CZV
S = e —
1+CiS 1+ GV
where C7 and Cy are positive constants chosen to over-represent the range of stock prices and
variance estimates in the sample. I set g(s,v,7) = f(S,V,7), so that % = %, % = %g—g,

92f _ 9%g[ds]? | 0g.d%s i of o2y
7957 = 352 |qe| T 3sqg2, and similarly for 57> and 57%.

It is easy to check that g(s,v,7) : [0,1] x [0,1] x [0,7] — R™ solves a parabolic equation
similar to (4). To compute its numerical solution, I use two partitions of the interval [0, 1],

and v

0=s1<s9<...<sy=1 and O=vi<wv<...<vr=1,
with constant subintervals Aj and Ai, and a partition of the interval [0,7],
O=ti<te<...<tyy =T,

with constant subinterval At. For ease of notation, I identify the points of these partitions with
the indexes 7, + and m, and construct the 3-dimensional grid

(1,2,...,Jy x{1,2,..., I} x {1,2,..., M}. (24)

Since diffusive problems are usually best treated with implicit schemes, I use the Crank-Nicolson
algorithm. The numerical solution is computed on the 3-dimensional grid from the recursive,
implicit equation:

6297 4 62g™ ! 629" 4 62g™ ! S5 g™ + Ospg™ !
—brgffs+ Dy (G,) S py () LTy () 2 TS
m oy gm—1 5.q™ + 6.t 5, q™ 4+ 8, gL
_,rg]ﬂ' g]az +D4(],’L) sg]al sg]:l + D5(],’L) vg]ﬂ/ vg]:l — 0’ (25)
2 2 2
where:

5.a™m — g(],z,m)—g(],z,m—l)

7955 = At )

6gm — g(]+1,z,m)—g(]—1,z,m)

S 75t 2A] 9

52 mo g(]+1727m)_2g(]727m)+g(]_1727m)

ngri - A]Z )

) gm _ g(]+1,z+1,m)—g(]+1,z—1,m)—g(j—l,z—i—l,m)—i—g(j—l,z—l,m)

0950 = .

ANGAG
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The terms Di(4,1),...,D5(j,%) are the coefficients of the parabolic equation that characterizes
g, evaluated at the pomts of the grid. The numerical derivatives d,g]"; and 62¢™ are computed
in a similar fashion.

vg]z

The option price is computed recursively from (25); for any m = 1,..., M — 1, the set of
prices {g(j,i,m +1),j =1,...,J,i = 1,...,I} is obtained as a function of the prices in the
previous period, {¢g(j,4,m),j =1,...,J,i =1,...,I}. Convergence of the numerical solution to

the actual solution of the pde is guaranteed as Aj — 0, A7 — 0 and At — 0; see, e.g., Ames
(1977).

C Proof of Proposition 1

Asymptotic results are obtained writing the estimation problem of the vector (i \), ¢ =
(b @ B n p), in a Method of Moments form, so that standard asymptotics from GMM and
SMM theory can be applied. See, e.g., Newey (1984) for a discussion of a method of moments
interpretation of multiple-step estimators, and Heaton (1995) for an application of this method-

ology.
In the first step of the estimation, ¢ is obtained via EMM from a set of moment conditions

Q1(4) = 0.

On the other hand, two different methods are used to estimate .

In the first approach, ) is obtained by minimizing the SSR between market and stochastic
volatility option prices, as indicated in (14). Hence, (¢» \) satisfies the first order condition
Q2(1h, ) = 0, where

Of (S, Vi, Tn; s A, K % F
ZZ 1 (St L DAL (48, Vo o\ ) — Frs K0)) 152,
n=1:i=1

In the second approach discussed above, A is instead estimated via SMM from the moment
condition @Q2(¢, \) = 0, where Q2(1, ) is obtained in this case stacking the moment condition
(12) for different values of the constant v and 7 € [0, T.

Let us then denote with Q(¢,\) the vector obtained by stacking the moment conditions

Q1(¢) and Q2(th, A):
_ | @Qi(%)
Q, ) = [ Qs (1, \) ] :

Qi1 Qo
Q=
[ My O ]

and let

be the variance matrix of Q(v, \), partitioned according to the decomposition Q1-Q2. Finally,
let D be the matrix of the derivatives of () with respect to ¢ and A:

Diy 0
Doy, Doy |’

where th = D¢Q1('[/)), D2¢ = D¢Q2(Z/), )\) and Dz)\ = D)\Qg(l,b, )\)
Then, the sequential estimator (1) A) solves:

D

An QN (9, A) =0,
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where Q™ (¢, \) is the sample counterpart of the vector of moments Q(t,\) and the matrix
Ap selects the moment conditions which are set equal to zero. Assume that Ay converges to a
matrix A with probability one as N — oo; given the nature of the multiple-step problem, the
matrix A has the structure
A 0
A=
AR

where A; is the matrix used to select the moment conditions in the EMM estimation of the
stochastic volatility model, and A, selects the moment conditions used in the second step of
the estimation. In particular, As is equal to 1 in the case that we use the approach discussed
in Section 5.5, since in this case Ay coincides with the bottom right element of A and sets the
last component of () equal to zero. Otherwise, Ay is chosen efficiently, as discussed in Hansen
(1982).

Under the assumptions and regularity conditions discussed in Gallant and Tauchen (1996)
and Duffie and Singleton (1993),

VN@—9) | p
[\/]V(S\—A)]%N(O’H)’

with H = (1+€) (AD) 'AQA'(AD)~1’, where the multiplicative factor (1+¢), & = limy_, %,

summarizes the effect of the simulation; see, e.g., Gallant and Tauchen (1996) and Gourieroux,
Monfort and Renault (1993).

Computing explicitly the elements of the matrix H, we get
Hyp = (146 (A1D1y) " A1 Q1A (A1 D)™

The matrix A; was chosen optimally in the EMM estimation of 1, and, as discussed in Hansen
(1982), was set equal to D’MQI_II. Substituting into H;;, we get

Hiy = (1+€) (D1, Diy) ',

which is the EMM asymptotic variance matrix of ¢, as in Gallant and Tauchen (1996).
Consider first the case where A is estimated by SMM, as discussed in Section 5.4. Then,
substituting A; = D’lﬂpQﬁ1 into Hoo and Hyy, we get

Hy = (14¢) (A2Da))~" Ag[—Day + Q10001 D1y ] (D142 Dig) ™", (26)
Hy = (1+¢) (A2Doy) 1A, A (AsDyy) Y,
with

Q2 = [Dw(D'wQﬁlDlw)_lDéqp - 9'129;11D1w(DIwQﬁlDlw)_lDIw -
D2¢(D,h/}Qflthp)lelw)QiIQlQ + Q99] .

The efficient choice of moments in the second step estimation is obtained by setting A, =
D, Qs substituting into (26) we obtain

Hy = (1+¢) (DIZ)\Q;ID%)ilDIZAQ;l[_D??P+Q,1291_11D1¢](D,h/;Ql_lthﬁ)ila
Hy = (14&) (D5 'Dyy)~".



31

Suppose next that A is estimated as discussed in Section 5.5. In this case we have:
Hy = V1+E (A2D2\) ™" Ao[=Doy + Q0 Dig)(D}y Q' Diy) ™", (27)
Hy = (A2D2,\) P45, Ay (AsDoy) !
Substituting A = 1 into (27) we get
Hy = 1+E& Dyl [=Day + o' Dy ] (D12, Diy) ™", (28)
Hyy = Dy Q.
Furthermore, by the mean value theorem we have:

VNS,V 73, 3) = F(S, Vo736, 0] = Dy (S, V735, 3) [ \\%((f:;/})) ]

where 0 < ¢ < ¢, 0 < X < A, and Dy 2f(S,V,7;1,A) denotes the vector of derivatives of the
option price with respect to the parameter vector (¢ \).
Consistency of the (4 A) estimator yields that, with probability 1,

Dyaf(8, V.75, X) = Dyaf(8,V, 759, 0) = A
as N — oo. Therefore, by Slutsky theorem we conclude that:

VN [F(S,V, 739, 5) = £(S, V739, 0)] B N(0, A/HA).

D The Heston formula

Given the risk-adjusted model (19)-(20), Heston (1993) obtains the following closed-form formula
for the European call option price:

f(Su Vi, 7 K) =e 7S, Py +e7"TKP;y,

where

11 — () (X V7 ®
Pj(Xa‘/aT;ln(K)) = §+—/ Real(e ]( 7‘/77-7 ) d@,
T™Jo

7P
F;(X,V,1;®) = exp{C(1;®)+D(1;®)V +idX},

— gelT
C(r;®) = T(I)iT—F%{(,Bj—pn‘I)’L--l-’}’)T—an(il 9¢ >},
n

l—g
- — on®i R
D(T,(I)) = BJ 10772 IL_’_’Y ( © > ;
n I —ger
g = Bj —pm®i+~
Bj — pn®i —

v = \/(m?‘I)Z Bj)? = n*(22;®i — ©2),
n=1/2, 2p=—1/2, Br=B+A—pn, fo=F+A X =In(e"Ss),

and r, d are respectively the instantaneous risk-free interest rate and dividend yield on the
underlying stock.
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Tables and Figures

Table 1: Summary statistics. Data on daily rates of return of the S&P 500 index,
01/02/1953 to 12/31/1996 (N=11,076 observations). All figures expressed on a daily
basis in percentage form.

Mean 0.0301
Std. Dev. 0.8324
Skewness -2.0353
Kurtosis 60.6019
Autocorrelation of Returns:
1st 2nd 3rd 4th oth 6th
0.1240 -0.0320 -0.0084 -0.0056 0.0222 -0.0131

Augmented Dickey Fuller test for the presence of unit roots. The test is based on the

regression:
12

AXt =W —+ (St + ’th,1 + Z w]Athj + Et-

Jj=1

SEP 500 daily prices SE€P 500 daily returns

Augmented D. F. 2.85 -29.65
5% critical value -3.41 -3.41
1% critical value -3.96 -3.96
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Table 2: SNP model estimates. Data on daily rates of return of the S&P 500 index,
01/02/1953 to 12/31/1996, filtered using an MA(1) model (N=11,076 observations). Pa-
rameter estimates are expressed in percentage form on a daily basis and refer to the
following model:

[Pk (21, ) ]? ) () v =0.01,

Jr[Pr (20, ) o (u)du \/Et ,

where ¢(.) is the standard normal density,

fre(rilz; §) = (u +(1—v)x

Tt — Mt
Vhy

e = ¢o+chy,
p

lnht = u)—i—ZBilnht,i—F(1+041L+...+Oéqu)[912t,1+92(b(2t,1)—\/2/71')],
=1

b(z) = |z

Pr(z,2) = ) ai(x)z' =) (Z az‘jxj) Z, ago = 1.

i=0 i=0 \|j|=0

Zt =

for |z| > /2K, b(z) = (7/2 —cos(Kz2))/K for|z| <n/2K, K =100,

Parameter Estimate Standard Error
0o 0.0546 0.0394
c 0.0315 0.0331
w 3.5526 1.4211
Q -0.4367 0.0624
ot 0.9880 0.0028
0, -0.1407 0.0304
0y 0.3003 0.0269
alo -0.0489 0.0495
a20 -0.2480 0.0314
a3o -0.0021 0.0242
aso -0.0177 0.0161
a60 -0.0504 0.0100
arg 0.0087 0.0100

aso 0.0509 0.0097
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Table 3: EMM estimates of the continuous-time, stochastic volatility models. Estimates
are for the sample period 01/02/1953 to 12/31/1996. Standard errors are reported in
brackets. Parameter estimates are expressed in percentage form on a daily basis, and
refer to the following models:

ds
?t = (u+c‘/})dt+\/\7tdW1,t,
t
log—variance :
dlnV, = (a—pInV,)dt+ndWsy,,
square—root :

AV, = (a—BV,)dt+nVV,dWyy,
corr (dWy 4, dWa ) = p.

Parameter log-variance: square-root:

p=0 p#0 p=0 p#0

0.0900 0.0252 0.0913 0.0202
a (0.0182) (0.0117) (0.0172) (0.0126)

. -0.1446 0.0149 -0.1484 0.0256
(0.0551) (0.0255) (0.0523) (0.0282)

. -0.0076 -0.0136 0.0027 0.0081
(0.0037) (0.0030) (0.0012) (0.0016)

0.0074 0.0160 0.0068 0.0156
b (0.0034) (0.0030) (0.0031) (0.0032)
0.0524 0.1206 0.0308 0.0782
g (0.0115) (0.0093) (0.0065) (0.0074)
-0.5778 -0.5973
P (0.0433) (0.0448)
X2 [d.f] 116.98 [10] 31.53 [9] 116.21 [10] 30.74 [9]

(p-value) (< 1079) (0.00024) (< 1079) (0.00033)
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Table 4: SMM estimate of A. The estimation is performed using 3 moment conditions,
corresponding to the maturities of 3, 4 and 5 weeks on European call options on the S&P
500 index, sampled from 1986 to 1996.

A (Standard Error)
20.3493 (0.0926)

Test for over-identifying restrictions x3, (p-value):

4.58 (0.1013)

Table 5: In-sample pricing errors based on stochastic volatility and Black-Scholes prices.
Data on European call options on the S&P 500 index expiring in March 1997. Black-
Scholes prices are evaluated at the EMM estimate of the returns standard deviation,
ormm, and at the implied standard deviation which minimizes the sum of squared resid-
uals between Black-Scholes and market prices, oj,. Stochastic volatility prices are eval-
uated for both the log-variance and the Heston model. Variance estimates are obtained
from S&P 500 returns (Kalman filter and reprojection method) and option prices (SV
implied volatilities.) Pricing errors are computed in the form of sum of squared residuals,
normalized by the index level (SSR), average dollar absolute deviation from market prices
(DEYV), average dollar absolute deviation from market prices, normalized by the option
market prices (DEVY%).

SSR DEV DEVY%
Black-Scholes, opyu 10.34x10~* $1.12 11.08%
Black-Scholes, 0y 9.41x10~* $1.05 11.59%
SV log-v Model, Kalman Filter, A =0 31.10x10~* $2.16 22.73%
SV log-v Model, Kalman Filter 9.35x10~* $1.03 13.66%
SV log-v Model, reprojection method, A =0 37.54x10~* $2.36 23.45%
SV log-v Model, reprojection method 10.98x10~* $1.06 13.10%
SV log-v Model, Implied Volatilities, A =0 3.65x10~* $0.59 6.55%
SV log-v Model, Implied Volatilities 3.63x10~* $0.59 6.51%
SV log-v Model, p =0, Kalman Filter 14.84x1074 $1.40 14.77%
SV log-v Model, p = 0, reprojection method 15.73x10* $1.32 16.18%
SV log-v Model, p =0, Implied Volatilities 4.50x10~* $0.70 8.00%
SV Heston Model, Implied Volatilities, A = 0 3.74x10* $0.60 6.54%

SV Heston Model, Implied Volatilities 3.67x10~* $0.59 6.53%
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Table 6: Estimate of A obtained minimizing the sum of squared residuals between market
and stochastic volatility prices. Data on European call options on the S&P 500 index
expiring in March 1997, closing option prices sampled daily from December 30, 1996, to
March 14, 1997. Variance estimates are obtained from S&P 500 returns (Kalman filter
method).

A (Standard Error)
20.1372 (0.1418)

Table 7: Out-of-sample pricing errors based on stochastic volatility and Black-Scholes
prices. Data on European call options on the S&P 500 index expiring in June 1997.
Black-Scholes prices are evaluated at the EMM estimate of the returns standard devia-
tion, ogaa, and at the implied standard deviation which minimizes the sum of squared
residuals between Black-Scholes and market prices, ojmy,. Stochastic volatility prices are
evaluated for both the log-variance and the Heston model. Variance estimates are ob-
tained from S&P 500 returns (Kalman filter and reprojection method) and option prices
(day-before and same-day SV implied volatilities.) Pricing errors are computed in the
form of sum of squared residuals, normalized by the index level (SSR), average dollar ab-
solute deviation from market prices (DEV), average dollar absolute deviation from market
prices, normalized by the option market prices (DEV%).

SSR DEV DEVY%
Black-Scholes, opym 15.56x10~* $1.51 15.55%
Black-Scholes, iy 12.05x10~* $1.33 17.02%
SV log-v Model, Kalman Filter 24.74x107* $1.94 31.63%
SV log-v Model, reprojection method 24.55%x10* $1.93 47.94%
SV log-v Model, Day-Before Imp. Vol. 5.99x10* $0.86 11.01%
SV log-v Model, Same-Day Imp. Vol. 3.06x10* $0.54 8.13%
SV Heston Model, Day-Before Imp. Vol. 6.57x10~* $0.92 11.09%

SV Heston Model, Same-Day Imp. Vol. 3.74x107* $0.64 7.01%
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Table 8: Linear projection of the log-variance SV implied standard deviations over the
return-based estimates of volatilities: Kalman filter estimates (K F') and reprojected vo-
latility (RP.J). Standard errors, robustified for the presence of heteroskedasticity and

autocorrelation, in brackets.

Imp. Vol. = b; + by x Vol. Est. + ¢.

Volatility Estimate

Parameter
KF RPJ
) 0.0614 0.0829
! (0.0151) (0.0183)
) 0.5062 0.3507
2 (0.1147) (0.1555)
R? 0.20 0.09
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Figure 1: S&P 500 prices and returns: 01/02/1953 to 12/31/1996.
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Figure 2: SV and Black-Scholes implied volatilities. Daily standard deviations are con-
verted to an annual frequency multiplying by v/252. Log-variance SV implied volatilities
are computed numerically assuming a market price for variance risk A = —0.1335. Implied
volatilities are computed using call options expiring in April 1997.
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Figure 3: State-price densities on March 21, 1997, relative to options expiring in April
1997. Black-Scholes, log-variance and square-root models. In the log-variance and square-
root models, SPDs are evaluated at the same-day SV implied volatilities. The risk pre-
mium for variance risk is first set equal to zero (top panel), and then to its estimated
value (bottom): A = —0.1335 (log-variance model), A = —0.0278 (square-root model).
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Figure 4: State-price densities on March 21, 1997 relative to options expiring in April 1997.
Black-Scholes and log-variance models. The market price of variance risk is set equal to 0
first, and then to its estimated value. In the log-variance model, SPDs are evaluated using
variance estimates based on the Kalman filter (top panel) and the reprojection method
(bottom).
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