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ABSTRACT

In this paper we propose exact likelihood-based mean-variance efficiency tests of the market
portfolio, allowing for a wide class of error distributions which include normality as a special case.
These tests are developed using multivariate linear regressions (MLR). It is well known however
that despite their simple statistical structure, standard asymptotically justified MLR-based tests are
unreliable. In financial econometrics, exact tests have been proposed for a few specific hypothe-
ses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial
Economics, 1987), Gibbons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance
1993)], most of which depend on normality. For the Gaussian model, our tests correspond to Gib-
bons, Ross and Shanken’s Capital Asset Pricing Model [CAPM] tests. In non-Gaussian contexts,
we re-consider mean-variance efficiency tests allowing for multivariate Student-t and normal mix-
tures errors. Our framework allows to cast more evidence on whether the normality assumption is
too restrictive when testing the CAPM. We provide exact multivariate diagnostic checks [including
tests for multivariate GARCH and multivariate generalization of the well known Variance Ratio
tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our
results [over five-year subperiods] show the following: (i) normality is rejected in most subperiods,
(ii) residual checks reveal no significant departures from thei.i.d. assumption, and (iii) the CAPM
is not rejected as frequently once it is allowed for the possibility of non-normal errors.
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1. Introduction

The capital asset pricing model (CAPM) is by far the most commonly used mean-variance model
in asset-pricing practice. Empirical tests of the CAPM conducted within the Multivariate Linear
Regression (MLR) framework may be traced back to Gibbons (1982). The associated empirical
literature which has evolved since Gibbons’ seminal work is enormous; recent references may be
found in Campbell, Lo and MacKinlay (1997) and Shanken (1996). The purpose of this paper is to
propose exact finite-sample tests for possibly non-Gaussian versions of the CAPM.

In this context, applying exact tests is important because test results that are only approximate
and/or do not take into account the non-normality of asset returns can cause spurious empirical
interpretations of the CAPM. These problems are due to serious discrepancies between asymp-
totic and finite-sample distributions or specification errors related to the hypothesized distribution
of fundamentals. Indeed, a number of studies from the econometrics and finance literature have
revealed that: (i) standard asymptotic theory provides a poor approximation to the distribution of
MLR-based tests [see Dufour and Khalaf (2002b) and the references cited therein], and (ii) as a
result, the conclusions of financial MLR-based empirical studies can be strongly affected, even if
sample sizes encountered in finance are typically large [see Campbell et al. (1997, Chapter 5) and
Shanken (1996, Section 3.4.2))]. These difficulties find their origin in the fact that the relevant null
distributions typically depend on unknown (nuisance) parameters -e.g. the error covariance matrix
- whose number increases rapidly with the dimension of the system.

Even though some exact tests have been proposed for a few specific hypotheses, all available
provably exact distributional results use the normality assumption, which is consistent with the
CAPM. Well known procedures include the exact market portfolio mean-variance efficiency test
proposed by MacKinlay (1987) and by Gibbons, Ross and Shanken (1989, henceforth GRS) for
the observable risk-free rate case. Specifically, to test the joint significance of the MLR-CAPM
intercepts, these authors use Hotelling-T 2 statistic, which may be transformed into anF -distributed
statistic. See also Stewart (1997) for more recent work on exactF tests in finance.

Nonetheless, it has long been recognized that financial returns do not exhibit normality [see
Fama (1965)]. Theoretical work on distributional assumptions consistent with the CAPM show that
elliptical distributions could be used to derive and test the model [see Ingersoll (1987))]. Zhou
(1993) reconsidered the GRS problem under elliptical distributions and provided simulation-based
test procedures which exploit exact invariance results for these distributions. Although nuisance
parameters are not completely accounted for by Zhou (1993), to the best of our knowledge, no other
non-asymptotic result is available which does not impose Gaussianity.

In this context, an important research question is whether imposing normality of stock market
returns is a restrictive assumption to test the CAPM. For instance, different authors have studied the
properties of GRS’s test using the empirical distributions of asset returns. Affleck-Graves and Mc-
Donald (1989) present simulation evidence which indicates that the multivariate tests are robust to
deviations from disturbance normality, except in periods of exceptional market variability. MacKin-
lay and Richardson (1991) report a sensitivity to conditional heteroskedasticity. On the other hand,
Zhou (1993) finds no important differences between test decisions using normal and elliptical dis-
tributions. A recent study by Groenwold and Fraser (2001) using Australian data reports similar
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results. It is evident that a decisive answer to this research question may not be reached, in the ab-
sence of a provably exact procedure in possibly non-Gaussian contexts. To present and apply such
a procedure is one of our objectives in this paper.

In a different vein, we have recently proposed several general exact test procedures for MLR
models [see Dufour and Khalaf (2002b)]. In particular, we considered the Wilks statistic, which
is defined as the ratio of the determinants associated with the constrained and unconstrained sum of
squared error matrices. This statistic is a monotonic transformation of the commonly used Gaussian
quasi-likelihood-ratio [QLR]. For a specific class of hypotheses on the regression coefficients which
take the Uniform Linear (UL) form, we proposed an exact simulation-based Wilks test without the
normality assumption.1 To do this, we showed, given a wide class of error distributions which
include normality as a special case, that the distribution of the Wilks statistic under UL hypotheses
does not depend on any unknown parameter including the error covariance. In this paper, we extend
these results to single and multi-beta portfolio mean-variance efficiency and CAPM tests, when
the risk free interest rate is observable. We also consider further inference problems not studied
by Dufour and Khalaf (2002b), including exact distributional lack-of-fit tests, and further exact
specification tests (e.g. tests for multivariate GARCH).

On these issues, this paper makes five main contributions. First, we extend exact portfolio
efficiency tests beyond the Gaussian model. Our statistical methodology holds given a general dis-
tributional hypothesis which includes the elliptical family as a special case. Primarily, we focus on
the multivariate Student-t distribution to conform with standard and recent mean-variance efficiency
theoretical setups. We next consider multivariate mixtures of normals which allow modelling more
extreme kurtosis.

Second, we propose a formal method to deal with unknown distributional parameters, namely:
the degrees-of-freedom in the case of the multivariate Student-t distribution, and the probability-
of-mixing and ratio-of-scale parameters for the mixtures of normals. To do this, we propose an
exact confidence set for the parameters in question, which is then used to obtain an exact Monte
Carlo [MC] test [see Dufour (2000)]. The MC test procedure yields an exact simulation-based
p-value whenever the parameters which intervene in the null distribution of the test statistic are
known. The fact that the relevant analytical distributions are complicated is not a problem: the
only requirement is the possibility of simulating the test statistic under the null hypothesis. In
the presence of unknown intervening parameters, it is shown in Dufour (2000) that if decision
is based on the largest simulated MCp-value for all nuisance parameter consistent with the null
hypothesis, then the associated MC test (called a “maximized MC [MMC] test”) controls the level
of the test for any sample size and any number of MC replications.2 Here we apply a two-stage
constrained consistent set MMC, as in Dufour and Kiviet (1996), to obtain the largest MCp-value
over a consistent nuisance parameter set estimator. We propose to obtain the latter set estimate

1Examples of UL hypotheses include: (i) identical transformations of the regression coefficients (within or across
equations) are equal to given values, (ii) the coefficients of the same regressor are zero across equations, and (iii) a single
parameter equals zero; see also Berndt and Savin (1977) and Stewart (1997).

2In nuisance parameter dependent problems, a test isα-levelexactif the largest rejection probability over the nuisance
parameter space consistent with the null hypothesis is≤ α. The MMC test is thus exact by construction; a formal proof of
exactness is provided by Dufour (2000). For applications on the MMC test in econometrics, see e.g. Dufour and Khalaf
(2001a) and Dufour and Khalaf (2001b).
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inverting a distributional goodness of fit (GF) test. In this way, we formally deal with the (often
ignored) problem of the joint characteristic of the null hypothesis which imposes distributional
constraints, in addition to the restrictions on the regression coefficients.

Third, we apply exact multivariate GF tests [see Dufour, Khalaf and Beaulieu (2001)]. As ex-
plained in Richardson and Smith (1993) who considered tests for departures from Gaussianity, it is
crucial in MLR-based financial models to consider multivariate tests of asset returns which explic-
itly take the error covariance into consideration. We propose an exact moments-based GF test of the
hypothesized error distributions (the multivariate normal; the Student-t error and the mixture of nor-
mals, with possibly unknown parameters).3 The test is based on comparing multivariate skewness
and kurtosis criteria to a simulation-based estimate of their expected value under the hypothesized
distribution and is implemented as a MC test. Although the GF test is used, as explained above, to
obtain a confidence set for the intervening distributional parameters, we note that the test is new and
to our knowledge, no other exact test for these distributions is available. Beside its relevance for
the present application, this test would be quite useful as a specification check in empirical finance,
given the popularity of the Student-t distribution.

Fourth, we conduct exact residual-based diagnostic tests for departures from the maintained
i.i.d. hypothesis [see Dufour, Khalaf and Beaulieu (2001)]. As with normality tests, concerns over
cross-correlations of portfolio returns has been the subject of several studies [e.g. Richardson and
Smith (1993) and Shanken (1990)]. For these problems, standard multivariate approaches [includ-
ing Richardson and Smith (1993) and Shanken (1990)] are asymptotic. In spite of the well known
problems associated with such an approach, reliance on asymptotics is not surprising in the absence
of applicable exact results.4 We first consider tests against multivariate GARCH effects, in the spirit
of those proposed in Shanken (1990). Our procedures differ from Shanken’s in two basic aspects.
First, our tests are based onstandardizedOLS residuals to ensure invariance to the error-covariance
[see Dufour, Khalaf and Beaulieu (2001)]. Second, we combine tests across equations using an ex-
act simulation-based procedure which does not call for Bonferroni treatment [see Dufour and Khalaf
(2002a)]. As is well known, and emphasized in Shanken (1990), Bonferroni-based combined tests
require one to divide the test’s significance level overall individual tests. Although this can provide
guarantees against certain types of specification errors [see Dufour and Torrès (1998)], it can also
yield utterly conservative tests if the MLR includes many equations (i.e., many portfolios), hence
large power reduction. Following the exact strategy we applied to test the significance of the CAPM
intercepts, we also impose multivariate Student-t errors and multivariate mixtures of normals with
possibly unknown parameters; this allows to test whether GARCH effects are still prevalent, even if
fat-tails are formally modelled into the error distribution. The second class of tests we consider are
multivariate generalization of the popular Variance Ratio tests. Using the same residuals standard-
ization and the same simulation-based combination strategy we proposed for the GARCH test, we

3Regarding normality tests, available empirical evidence for monthly data (on which we focus) is mixed. For instance,
whereas the results of Campbell et al. (1997) and Affleck-Graves and McDonald (1989) suggest that normality is not
rejected often at monthly frequencies, the tests conducted by Richardson and Smith (1993) provide more firm rejections.
Our exact test for multivariate normality will allow to conclusively solve such controversies.

4Indeed, this problem is not exclusive to financial applications: our review of the statistics and econometrics literature
has revealed that exact multivariate specification tests which take the error covariance explicitly into consideration are
quite rare; see Dufour, Khalaf and Beaulieu (2001).

3



show how these very useful tests can be applied exactly, in a multivariate perspective. We emphasize
that the usefulness of these new tests extends beyond our specific applications.

Finally, the tests proposed are applied to the CAPM with observable risk-free rates. We con-
sider monthly returns on New York Stock Exchange (NYSE) portfolios, which we construct from
the University of Chicago Center for Research in Security Prices (CRSP) 1926-1995 data base. Our
results allow to compare test results for asymptotic statistics and exact tests under normality. Fur-
thermore we can also compare exactp-values for different elliptical distributions. We explain why
Gaussian based non-rejections may formally be treated as conclusive from our viewpoint (recall, of
course, that we formally combine GF with efficiency tests here).

The paper is organized as follows. Section 2 describes the statistical framework studied. In
Section 3, we describe the existing test procedures and we show how extensions allowing for non-
normal distributions can be obtained. In Section 4, we present extensions to nuisance parameter
dependent error distributions. Exact GF and diagnostic tests are proposed in Section 5. In Section 6
we report the empirical results. Section 7 concludes and discusses extensions to other asset pricing
tests.

2. Framework

The fundamental finance problem we focus on involves testing the mean-variance efficiency of a
candidate benchmark portfolio. LetRit, i = 1, . . . , n, be returns onn securities for periodt,
t = 1, ... , T, andR̃Mt the returns on the market portfolio under consideration. The MLR statistical
model underlying the well known CAPM test [Gibbons et al. (1989)] takes the following form:

rit = ai + bir̃Mt + uit, t = 1, ..., T, i = 1, ..., n, (2.1)

whererit = Rit − RF
t , r̃Mt = R̃Mt − RF

t , RF is the riskless rate of return, anduit is a random
disturbance. In this context, the testable implications of the CAPM on the coefficients of this model
are:

HCAPM : ai = 0, i = 1, . . . , n, (2.2)

i.e. the interceptsai are jointly equal to zero.
The above model is a special case of the following MLR

Y = XB + U (2.3)

whereY = [Y1, ... , Yn] is T × n, X is T × k with rank k and is assumed fixed, andU =
[U1, . . . , Un] = [V1, . . . , VT ]′ is anT ×n matrix of error terms. In Appendix A.1, we summarize
general exact results from Dufour and Khalaf (2002b) regarding MLR-based hypotheses tests.
The hypotheses considered take theuniform linear(UL) form

H0 : HBE = D (2.4)

whereH is ah × k matrix of rankh andE is an × e matrix of ranke. This is relevant because
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HCAPM (2.2) is a special case of the latter. Indeed, rewriting (2.1) as in (2.3) with

Y = [r1, ... , rn] , X = [ιT , r̃M ] ,
ri = (r1i, ... , rTi)′ , r̃M = (r̃1M , , r̃T M)′ ,

it is easily seen that (2.2) yields(1, 0)B = 0, which corresponds to (2.4) whereE = In, D = 0
andH is the row vector(1, 0). For further discussion of the MLR model, the reader may consult
Dufour and Khalaf (2002b), Rao (1973, chapter 8), Anderson (1984, chapters 8 and 13), Kariya
(1985) and Berndt and Savin (1977).

As is well known, the CAPM imposes further restrictions on the error distributions. In particular,
the standard assumption consists in assuming thatV1, . . . , VT are i.i.d. multivariate normal. In
this paper, we consider the more general case where

Vt = JWt , t = 1, . . . , T , (2.5)

where J is an unknown, non-singular matrix and the distribution of the vectorw =
vec(W1, . . . , WT ) is either: (i) known (hence, free of nuisance parameters), or (ii) specified
up to an unknown nuisance-parameter. We callw the vector ofnormalized disturbancesand its
distribution thenormalized disturbance distribution. At this stage, we note that the Gaussian and
elliptical distributions underlying the standard CAPM are also consistent with (2.5). In our context,
we therefore focus on multivariatet-distributions and mixtures of normals, which we denoteF1(W )
andF2(W ) respectively, and define as follows:

W ∼ F1(W ; κ) ⇔ Wt = Z1t/(Z2t/κ)1/2 , (2.6)

whereZ1t is multivariate normal(0, In) andZ2t is aχ2(κ) variate independent fromZ1t;

W ∼ F2(W ;π, ω) ⇔ Wt = πZ1t + (1− π)Z3t, (2.7)

whereZ3t is multivariate normal(0, ωIn) and is independent fromZ1t, and0 < π < 1. As
mentioned in the introduction, we focus on these families of distributions for the following reasons:
(i) from an empirical perspective, financial return data typically displays spikes and fat tails [Fama
(1965)] and, (ii) on theoretical grounds, the multivariate Studentt and this specific mixture-of-
normals are return distributions consistent with expected utility maximization [Ingersoll (1987)].
For further reference, we shall use the following notation:

W ∼ Fi(W ; ν), i = 1, 2 (2.8)

where
ν = κ, if Wt satisfies (2.6),

= (π, ω), if Wt satisfies (2.7).
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3. CAPM tests with a known normalized disturbance distribution

In this section, we study the case where the nuisance parameterν is known. Extensions to unknown
ν are presented in Section 4 below. Note that no further regularity conditions are required for most
of our proposed statistical procedures, not even the existence of second moments. Yet the latter
hypothesis is typically maintained in CAPM contexts. In this case, the covariance matrix ofVt,
which is denotedΣ, is JJ ′and is invertible.

One of the most commonly used statistics to testHCAPM in (2.2) [indeed, to test any UL
hypothesis] is the Gaussian quasi maximum likelihood (QMLE) based criterion:

LR = T ln(Λ), Λ = |Σ̂CAPM |/|Σ̂| (3.9)

whereΣ̂ = Û ′Û/T , Û = Y − XB̂, B̂ = (X ′X)−1X ′Y and Σ̂CAPM is the Gaussian QMLE
underHCAPM . In TheoremA.1 of Appendix A.1, we provide the exact null distribution of the
latter statistic under (2.3) and (2.5) and the general UL hypothesis (2.4). Two results regarding this
distribution are worth noting.

First, under (2.5), the distribution does not depend onB andΣ and thus may easily be simulated
if draws from the distribution ofW1, . . . , WT are available. This entails that a Monte Carlo exact
test procedure [ Dufour (2000)] may be easily applied based onLR. The general simulation-based
algorithm which allows to obtain a MC size-correct exactp-value for all hypotheses conforming
with (2.5) is presented in Appendix B.1 and may be summarized as follows given (2.8). Conditional
on υ, generate, imposing (2.8),N i.i.d. draws from the distribution ofW1, . . . , WT ; these yield
N simulated values of the test statistic. The exact Monte Carlo p-value is then calculated from the
rank of the observedLR relative to the simulated ones.

Second, results specific to the Gaussian special case of (2.5) lead to theF -tests used by GRS.
Formally, ifmin(h, e) ≤ 2 whereh = rank (H) ande = rank(E), then a (monotonic) transforma-
tion of LR follows theF -distribution with known degrees-of-freedom; see (A.4) in Appendix A.1.
Obviously, this is relevant sinceHCAPM corresponds tomin(h, e) = 1.

For the CAPM problem, TheoremA.1 allows one to characterize the null distribution of LR for
all error distributions which satisfy (2.5), as follows.

Theorem 3.1 DISTRIBUTION OF THE QUASI-LR CAPM TEST STATISTIC. Under (2.1), (2.2)
and(2.5), the LR statistic defined by(3.9) is distributed like

T ln(
∣∣W ′MW

∣∣ /
∣∣W ′M0W

∣∣)

where

M = I −X(X ′X)−1X ′, M0 = M −X(X ′X)−1H ′[H(X ′X)−1H ′]−1H(X ′X)−1X ′,

H is the row vector(1, 0) andW = [W1, . . . , WT ]′ is defined by(2.5).

In the present case, we haveM0 = I−r̃M(r̃M
′r̃M)−1r̃M . Note that TheoremA.1 also allows one

to characterize the null distribution of LR in multi-beta efficiency tests problems. In other words,
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we can also use it to testHCAPM (2.2) in the context of

rit = ai +
s∑

j=1

bjir̃jt + uit, t = 1, ..., T, i = 1, ..., n, (3.10)

where r̃jt = R̃jt − RF
t and R̃jt, j = 1, ... , s are returns ons benchmark portfolios. In this

case, the null distribution of the statistic defined by (3.9) obtains as in Theorem3.1 whereX =
[ιT , r̃1, ... , r̃s], r̃j = (r̃1j , ... , r̃Tj)′, andH is the (s + 1) dimensional row vector(1, 0, ... , 0).

It is of interest to relate Theorem3.1 to the available non-asymptotic CAPM tests, i.e.: (i)
the GRS test, and (ii) the simulation-based test proposed by Zhou (1993). As formally stated in
Appendix A.1, Theorem3.1and (A.4) entail, when errors are Gaussian, that

(Λ− 1)
(T − s− n)

n
∼ F (n, T − s− n) ,

which yields the HotellingT 2 test proposed by MacKinlay (1987) and Gibbons et al. (1989). Specif-
ically, GRS suggest the following test statistic:

Q =
T â′

(
T

T−k Σ̂
)−1

â

1 + r′∆̂−1r
(3.11)

whereâ is the vector of intercept OLS estimates,TT−k Σ̂ is the OLS-based unbiased estimator ofΣ,

r and∆̂ include respectively the time-series-means and sample covariance matrix corresponding
to the right-hand-side portfolio returns. Under (2.2),Q follows theHotelling T 2(n, T − s − 1)
distribution or equivalently,

Q(T − s− n)
n(T − s− 1)

∼ F (n, T − s− n) (3.12)

where

Λ− 1 =
Q

T − s− 1
; (3.13)

see also Stewart (1997)). We thus see that GRS’s results follow from Theorem3.1under the special
case of normal errors.

To the best of our knowledge, the first study proposing useful finite-sample non-Gaussian
CAPM tests is due to Zhou (1993): the GRS problem is reconsidered in models with elliptical
distributions, and the multivariate Studentt and mixtures of normal distributions are included as
examples. In this context, Zhou demonstrates exact location/scale invariance of the GRS-type ef-
ficiency test statistic and exploits this property to derive simulation basedp-values; see also Zhou
(1991, Section 3). In both articles, the LR statistic is expressed in terms of the roots of a determi-
nantal equation which only depends on the constrained and unconstrained residual cross-products.
From there on, location-scale invariance is proved without the normal assumption. This is the same
approach underlying TheoremA.1 [see Dufour and Khalaf (2002b)], with the exception that the
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latter result is not restricted to asset pricing tests. The “Monte Carlo integration technique” pro-
posed by Zhou to obtain non-asymptoticp-values is highly related to our MC tests.

Our approach here first formalizes Zhou’s test strategy, which is presented rather heuristically, as
an exact procedure, [i.e. there is no formal proof for exactness, for any sample size and any number
of MC replications]. We show formally how the test size is exactly controlled when no unknown
parameter appears in the error distribution. For this hypothesis, our statistical framework includes
Zhou’s one as a special case. This serves to justify some of the results less explicated by Zhou, such
as: ellipticity is not the main reason why exact tests obtain; location-scale invariance is not restricted
to elliptical distributions (although, of course, the latter are important for the theory underlying the
CAPM). Furthermore, and perhaps more importantly, our results generalize beyondHCAPM as is
shown in Appendix A.1. Finally, it is important to emphasize that the nuisance parameter problem
is not completely dealt with by Zhou (1993). Indeed, if errors follow (2.8), Theorem 4.2 just ensures
location-scale invariance (i.e., invariance toB andΣ), which yields pivotality (thus exactness) for
knownν. It is thus evident that an unknownν would intervene in the null distribution of the CAPM
test statistic. We consider this case in the next section. Our empirical results which differ from those
Zhou (1993) (refer to section 6) illustrate the importance of formally accounting for the unknownν
case.

4. CAPM tests with an incompletely specified error distribution

In this section, we extend the above results to the unknown distributional parameter case for the
error families of interest, namely (2.8). At this stage, two points deserve notice. First, forν given,
the distributional hypothesis underlying (2.8) satisfies (2.5). Thus the MCp-values associated with
Theorem3.1are exact for a givenν. Secondly, whetherν is viewed (from an empirical perspective)
as a parameter of interest or a nuisance parameter, it is important, for the precision of the tests,
to devise a decision rule which takes this parameter explicitly into consideration. Otherwise, level
control is not assured.

4.1. Two-stage constrained maximized Monte Carlo test

Here we propose a solution based on the finite-sample test approach proposed by Dufour and Kiviet
(1996). The method involves two stages: (1) an exact confidence set is built forν, and (2) the MC
p-value presented above is maximized over-all values ofν in the latter confidence set. We will refer
to the latter test as a maximized MC [MMC] test. It is important to note that if an overallα-level test
is desired, then the pre-test confidence set and the MMC test should be applied with levels(1−α1)
andα2, respectively, so thatα = α1 + α2. In the empirical application considered next, we use
α1 = α2 = α/2.

For any confidence set with level(1− α1) for ν which we will denoteC(Y ) whereY refers to
the return data (as in e.g. (2.3)), the maximized MC algorithm proceeds as follows.∀ν ∈ C(Y ),
and applying Theorem3.1 and the MC algorithm in Appendix B.1, one obtains the MCp-values
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p̂N (Λ0|ν) [see (B.1), in Appendix B.1]. Let

QU (ν) = sup
ν ∈ C(Y )

p̂N (Λ0|ν), (4.1)

then the critical region
QU (ν) ≤ α2 (4.2)

has exactly levelα1 + α2. The associated test is conservative in the following sense: if indeed
QU (ν) ≤ α2 for the sample at hand, then the test is most certainly significant.

Since a procedure to derive an exact confidence set forν is not available, we provide one in what
follows. The maximized MC procedure just presented is however not specific to our proposed con-
fidence set. Observe that, in principle,C(Y ) may be unbounded. For proofs and further references,
see Dufour (1990), Dufour and Kiviet (1996) and Dufour (2000).

4.2. Confidence set for error distribution parameters

In this section, we discuss the set estimation method we propose to obtainC(Y ). Given the re-
cent literature documenting the dramatically poor performance of asymptotic Wald-type confidence
intervals [see for example Dufour (1997), Staiger and Stock (1997), Wang and Zivot (1998)], we
prefer to build a confidence set by “inverting” a test for the null hypothesis (2.8) whereν = ν0 for
knownν0.

Since a procedure to derive an exact test for the distributions (2.8) is not available, we provide
a moment-based one in Section 5.1. Our proposed set estimate forν is however not specific to the
latter test, so we present it in terms of anyα1 level test of (2.8) based on a given criterion denoted
T (Y ) whereY refers to the return data (as in e.g. (2.3)). InvertingT (Y ) formally implies the
following. Let T0(Y ) denote the value of the statistic computed from the observed sample. Obtain
thep-valuep̂(T0(Y )|ν0) conforming with (2.8). For the moments-based test we propose below, this
is achieved on applying MC test techniques. The confidence set forν corresponds to the values of
ν0 for which p̂(T0(Y )|ν0) > α1.

It is useful to compare our confidence set MC test with Zhou (1993)’s test. This author considers
the multivariate skewness and kurtosis criteria proposed by Mardia (1970) and argues that these cri-
teria may serve to test for departures from (2.8), if cut-off points are appropriately “approximated”,
e.g. by simulation, imposing (2.8) errors. In view of this, he estimatesν as follows: a few values are
retained by trial-and-error techniques (no further details are provided); then skewness and kurtosis
tests are applied which confirm that the values retained do not yield significant lack-of-fit.

Although concerns regarding the possible conservative character of our inference procedure
may not be ruled out, our proposed confidence set is definitely an improvement over available trial
and error methods. From the results of our empirical application, we do observe that the estimated
confidence sets are wide, yet the associated efficiency test decision is not adversely affected.
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5. Exact diagnostic checks

In this section, we focus on multivariate specification tests including distributional lack-of-fit tests,
and checks for departures from thei.i.d. errors hypothesis. We present in turn, exact multivariate
GF tests, tests for multivariate GARCH effects and multivariate variance ratio (VR) tests. The
proposed tests are formally valid for any parametric null hypothesis which takes the general form
(2.5). Conforming with our empirical model, we focus on (2.8) with possibly unknown parameters.

5.1. Goodness-of-fit tests

The null hypothesis of concern here is (2.8) with unknownν. We will solve the unknownν prob-
lem by applying a MMC strategy, as follows. We propose a GF criterion which is pivotal ifν is
known, which allows to easily obtain a MCp-value givenν. The GF test is considered significant if
the largest MCp-value overall relevant values ofν is less than or equal to the desired significance
level. The MMC approach allows to (jointly) assess whether e.g. Student distributions with dif-
ferent degrees of freedom are empirically relevant; this leads to a formal estimate for the Student
distributions which best fit the data. The argument holds for multivariate mixtures.

The GF test statistics we propose use the same multivariate skewness and kurtosis criteria con-
sidered by Zhou (1993):

SK =
1
T 2

T∑

t=1

T∑

i=1

d̂3
ii , (5.1)

KU =
1
T

T∑

t=1

d̂4
tt , (5.2)

whered̂it are the elements of the matrix̂D = Û(Û ′Û)−1Û ′. The latter statistics were introduced
by Mardia (1970) to assess deviations from multivariate normality, in models where the regressor
matrix reduces to a vector of ones. Zhou (1993) observes that cut-off points consistent with (2.8)
[with knownν] can be obtained for these criteria, using the same Monte Carlo integration technique
proposed for the mean-variance efficiency test of the market portfolio. A note explains that the
ensuing procedure is notstrictly exactbecause it is based on residuals. We next show that this
problem can be solved easily by recognizing the pivotal character ofD̂ and applying the MC test
methodology.

Proposition 5.1 DISTRIBUTION OF THE MULTIVARIATE SKEWNESS AND KURTOSIS TEST

STATISTICS. Under (2.3), and for all error distributions compatible with(2.5), the multivariate
skewness and kurtosis criteria(5.1) and(5.2) are distributed, respectively, like1

T 2

∑T
t=1

∑T
i=1 d3

it

and 1
T

∑T
t=1 d4

tt, wheredit are the elements of the matrixMW (W ′MW )−1 W ′M , M = I −
X(X ′X)−1 X ′, W is defined by(2.5).

The proof is given in Appendix B.2. In the literature on multivariate normality tests, this prop-
erty is recognized (under Gaussianity) in models where the regressors reduce to a vector of ones.
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Proposition5.1entails that nuisance parameter invariance holds even though residuals (rather than
observable variables) are used to construct the skewness and kurtosis statistics. This implies that
our testing strategy is valid for all distributions compatible with (2.5), including the normal.

The fact remains that the skewness and kurtosis tests are designed to estimate the moments of
the multivariate normal distribution. The above invariance property does not strictly ensure their
usefulness as GF tests beside the normal errors case. We thus propose the following modification:
we consider alternative measures of skewness and kurtosis in excess of expected values consistent
with (2.8). Forν given, our modified tests are pivotal under the null hypothesis which justifies an
MMC test technique, maximizing overallν. We next propose an exact combined skewness-kurtosis
test. Our proposed modified statistics take the following form:

ESK(ν0) =
∣∣SK−SK(ν0)

∣∣ , (5.3)

EKU(ν0) =
∣∣KU−KU(ν0)

∣∣ , (5.4)

whereSK(ν0) andKU(ν0) are simulation-based estimates of the expectedSK andKU given (2.8).
These may be obtained, givenν0, by drawingN0 samples ofT observations from (2.8), then com-
puting the corresponding average measures of skewness and kurtosis; see Appendix B.2.1.5

To obtain an exact test based on these criteria, we apply the MC technique [as described in
Appendix B.1]. Note that the observed and simulated statistics have to be obtained conditional on
the sameSK(ν0) andKU(ν0); see Appendix B.2.2 for further details. This ensures that they remain
exchangeable, which provides, along with Proposition5.1, the necessary conditions for the validity
of the MCp-values in B5; see Dufour (2000).

This procedure allows to obtain size correct individualp-values for each test statistic. The
problem of combining the skewness and kurtosis tests remains unanswered. To avoid relying on
Boole-Bonferroni rules, we propose the following combined test statistic, which may be used for
all null hypotheses underlying proposition5.1:

CSK = 1−min {p̂(ESK(ν0)|ν0), p̂(EKU(ν0)|ν0)} (5.5)

where the subscriptM (previously used in the notation for the individual MCp-values) is withheld
to simplify notation. The intuition underlying this combined criterion is to reject the null hypothesis
if at least one of the individual tests is significant; for convenience, we subtract the minimump-value
from one to obtain a right-sided test. The MC test technique may once again be applied to obtain an
test based on the combined statistic; details of the algorithm can be found in Appendix B.2.3. For
further reference on such combined tests, see Dufour and Khalaf (2002a), Dufour, Khalaf, Bernard
and Genest (2001) and Dufour and Khalaf (2001c).

5.2. Multivariate tests for GARCH and variance ratio tests

In this section we consider tests for departure from i.i.d. errors, specifically, tests for GARCH
and variance ratio tests. If one pursues a univariate approach, these standard tests may be applied
to each equation in the system (2.1). For instance, the Engle GARCH test statistic for equation

5For the Gaussian case, one may useSK = 0 andKU = n(n + 2); see Mardia (1970).
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i, which we will denoteEi is given byTR2
i , whereT is the sample size,R2

i is the coefficient of
determination in the regression of the equation’s squared OLS residualsû2

it on a constant and̂u2
(t−j),i

(j = 1, . . . , q); see Engle (1982) and Lee (1991). Lee and King (1993) proposed an alternative
test which exploits the one-sided nature ofHA. The test statistic is

LKi =

(
(T − q)

T∑
t=q+1

[
(û2

it/σ̂2
i − 1)

] q∑
j=1

û2
(t−j),i

)
/

T∑
t=q+1

(
(û2

it/σ̂2
i − 1)2

)1/2

(
(T − q)

T∑
t=q+1

( q∑
j=1

û2
(t−j),i

)2 − ( T∑
t=q+1

( q∑
j=1

û2
(t−j),i

))2)1/2
(5.6)

whereσ̂2
i = 1

T

∑T
t=1 û2

it, and its asymptotic null distribution is standard normal. The variance ratio
test statistic is [Lo and MacKinlay (1988), Lo and MacKinlay (1989)]

V Ri = 1 + 2
J∑

j=1

(1− j

l
)ρ̂ij (5.7)

where

ρ̂ij =

∑T
t=j+1 ûitûi,t−j∑T

t=1 û2
ti

, j = 1, ..., J, (5.8)

are empirical residual autocorrelations. The latter statistic estimates the ratio

V (ûit − ûi,t−J)
JV (ûit)

whereV (ûit − ûi,t−J) is the variance of the lag differencesûit − ûi,t−J , andV (ût) is the residual
variance. In a single equation perspective, underi.i.d. errors,V (ûit − ûi,t−J) is J timesV (ûit),
hence deviations from a ratio of one are considered evidence against the null hypothesis. The
asymptotic null distribution of this statistic is

(V Ri − 1)
asy∼ N(0, 2(2J − 1)(J − 1)/3J). (5.9)

In Dufour, Khalaf, Bernard and Genest (2001), we show that Engle and Lee-King’s test criteria are
nuisance-parameter-free under the homoskedasticity null hypothesis, in a single equation setting.
We establish the same property in the case of the variance ratio test in Dufour and Khalaf (2001c).
This ensures that the MC versions of these tests are valid univariate tests (and preferred to the
asymptotic tests). However, it is well known that such univariate tests may not be applicable to
a multivariate regression. This is mainly due to two statistical problems. First, as pointed out
above, the error covariance, which intervenes as a nuisance parameter, is typically not taken into
consideration if a series of univariate tests are applied. Second, the problem of combining test
decisions overall equations is not straightforward, since the individual tests are not independent.
For further useful insight on this problem in finance, see Shanken (1990).

In view of this, we consider the following multivariate modification of these tests [see Dufour,
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Khalaf and Beaulieu (2001)]. Let̃Wit denote the elements of thestandardized residualsmatrix

W̃ = Û
(
Û ′Û

)−1/2
(5.10)

where
(
Û ′Û

)−1/2
refers to the inverse of a Cholesky-type decomposition ofÛ ′Û . Obtain standard-

ized versions of the univariate Engle, Lee-King and variance ratio test, denotedẼi, L̃Ki andṼ Ri,
replacingûit by W̃it in the formula for these statistics. In Dufour, Khalaf and Beaulieu (2001) we
show that for all error distributions compatible with (2.5),̃W has a distribution which is completely
determined by the distribution ofW givenX. Hence any statistic which depends on the data only
throughW̃ has a distribution which is invariant toB andΣ, under (2.5). It follows that under (2.5),
the joint (across equations) null distributions ofẼi, L̃Ki andṼ Ri do not depend onB andΣ.

To obtain combined inference across equation, we propose a combination method similar to the
one we used in Section 5.1. Consider the following combined statistics:

Ẽ = 1− min
1≤i≤n

[
p
(
Ẽi

)]
(5.11)

L̃K = 1− min
1≤i≤n

[
p
(
L̃Ki

)]
(5.12)

Ṽ R = 1− min
1≤i≤n

[
p
(
Ṽ Ri

)]
(5.13)

wherep
(
Ẽi

)
, p

(
L̃Ki

)
andp

(
Ṽ Ri

)
refer top-values; these may be obtained applying a MC test

method, or using asymptotic null distributions [to cut execution time]. Then apply an MMC test
procedure to the combined statistic imposing (2.8); refer to Appendix B, where we provide a MMC
test algorithm for any criterion which is a pivotal function ofX andW , where the distribution ofW
depends on the parameterν. We use the same confidence set forν as in the MMC efficiency test.
The overall procedure remains exact even if approximate individualp-values are used, if thep-value
of the combined test is obtained applying the MMC technique. Indeed, the property underlying
exactness is joint pivotality, which was achieved by using standardized residuals.

6. Empirical Analysis

Our empirical analysis focuses on mean-variance efficiency tests of the market portfolio [formally,
tests of (2.2) in the context of (2.1)] with different distributional assumptions for stock market re-
turns. We use nominal monthly returns over the period going from January 1926 to December
1995, obtained from the University of Chicago’s Center for Research in Security Prices (CRSP).
As in Breeden, Gibbons and Litzenberger (1989), our data include 12 portfolios of New York Stock
Exchange (NYSE) firms grouped by standard two-digit industrial classification (SIC). Table 1 pro-
vides a list of the different sectors used as well as the SIC codes included in the analysis.6 For each
month the industry portfolios comprise those firms for which the return, price per common share and

6Note that as in Breeden et al. (1989), firms with SIC code 39 (Miscellaneous manufacturing industries) are excluded
from the dataset for portfolio formation.
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Table 1. Portfolio definitions

Portfolio number Industry Name Two-digit SIC codes
1 Petroleum 13, 29
2 Finance and real estate 60-69
3 Consumer durables 25, 30, 36, 37, 50, 55, 57
4 Basic industries 10, 12, 14, 24, 26, 28, 33
5 Food and tobacco 1, 20, 21, 54
6 Construction 15-17, 32, 52
7 Capital goods 34, 35, 38
8 Transportation 40-42, 44, 45, 47
9 Utilities 46, 48, 49
10 Textile and trade 22, 23, 31, 51, 53, 56, 59
11 Services 72, 73, 75, 80, 82, 89
12 Leisure 27, 58, 70, 78, 79

Note _ This table presents portfolios according to their number and sector as well as the SIC codes included
in each portfolio using the same classification as Breeden et al. (1989).

number of shares outstanding are recorded by CRSP. Furthermore, portfolios are value-weighted in
each month. In order to assess the testable implications of the asset pricing models, we proxy the
market return with the value-weighted NYSE returns, also available from CRSP. The risk-free rate
is proxied by the one-month Treasury Bill rate, also from CRSP.

Our results are summarized in Tables 2-3. All MC tests where applied with 999 replications.
As usual in this literature, we estimate and test the model over intervals of 5 years.7 We report in
columns (1)-(3) of Table 2, thep-values of the exact multi-normality tests based onESK, EKU
andCSK (see Section 5.1). These tests allow us to evaluate whether observed residuals exhibit
non-Gaussian behavior through excess skewness and kurtosis. For most subperiods, normality is
rejected. These results are interesting since, although it is well accepted in the finance literature that
continuously compounded returns are skewed and leptokurtic, empirical evidence of non-normality
is weaker for monthly data; for instance, Affleck-Graves and McDonald (1989) reject Gaussianity
in about 50% of the stocks they study. Our results, which are exact (i.e., cannot reject spuriously),
indicate much stronger evidence against normality. This also confirms the results of Richardson and
Smith (1993) who provide evidence against multivariate normality based on asymptotic tests; see
also Fiorentini, Sentana and Calzolari (2000). Of course, this evidence further justifies our approach
to test the CAPM under non-Gaussian errors.

In columns (4)-(7) of Table 2, we present the LR and its asymptoticχ2(n − 1) p-value (p∞),
the Gaussian based and the largest Student-t based MCp-value associated with LR (respectively,
pN and QU ). The confidence set forκ (C(Y )) appears in column (8). These results allow us
to compare rejection decisions across different distributional assumptions for the returns of the
12 portfolios. Similarly in columns (1)-(5) of Table 3, we report our set estimates ofπ andω;

7Note that we also ran the analysis using ten year subperiods and that our results were not significantly affected.
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Table 2. Normality Tests and Tests of the CAPM

Normality tests Tests ofHCAPM

(1) (2) (3) (4) (5) (6) (7) (8)
Sample SK KU CSK LR p∞ pN QU C(Y )
1927-30 .001 .001 .001 16.104 .1866 .364 .373 3-15
1931-35 .001 .001 .001 16.257 .1798 .313 .322 2-8
1926-40 .001 .001 .001 16.018 .1904 .319 .333 4-23
1941-45 .004 .004 .013 25.869 .0112 .045 .049 ≥ 4
1946-50 .001 .001 .001 37.196 .0002 .003 .004 4-26
1951-55 .001 .002 .001 36.510 .0003 .004 .005 4-34
1956-60 .024 .022 .032 43.841 .0000 .002 .002 ≥ 4
1961-65 .594 .453 .588 39.098 .0001 .002 .002 ≥ 7
1966-70 .011 .003 .004 36.794 .0002 .003 .003 ≥ 4
1971-75 .001 .002 .001 21.094 .0490 .120 .129 4-24
1976-80 .001 .001 .001 28.373 .0049 .023 .026 3-17
1981-85 .001 .001 .001 27.189 .0073 .033 .035 4-31
1986-90 .028 .030 .038 35.747 .0007 .003 .005 ≥ 4
1991-95 .177 .326 .244 16.752 .1592 .299 .305 ≥ 9

Notes _ Numbers in columns (1)-(3) representp-values for multinormality tests: numbers in (1)-(2) pertain
to the null hypothesis of respectively no excess skewness and no excess kurtosis in the residuals of each
subperiod. Thep-values in column (3) correspond to the combined statisticCSK designed for joint tests of
the presence of skewness and kurtosis; individual and joint statistics obtain applying (5.4), (5.4) and (5.5)
given multivariate normal errors.p-values are MC pivotal statistics based. Column (4) presents the quasi-LR
statistic defined in (3.9) to testHCAPM [see (2.2)]; columns (5), (7) and (8) are the associatedp-values
using, respectively, the asymptoticχ2(n) distribution, the pivotal statistics based MC test method imposing
multivariate normal regression errors, and an MMC confidence set based method imposing multivariatet(κ)
errors which yields the largest MCp-value for allκ within the specified confidence set. The latter is reported
in column (9). See Section 4.2 for details on the construction of the confidence set: the values ofκ in this
set are not rejected by the joint test GF test associated with (5.5) under multivariate Student-t errors. See
Appendix B for description of MC tests. January and October 1987 returns are excluded from the dataset.
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Table 3. Tests of the CAPM given multivariate mixture of normals

Confidence set forπ, ω LR
(1) (2) (3) (4) (5) (6)

Sample π =.1 π =.2 π =.3 π =.4 π =.5 QU

1927-30 ≥1.7 1.6-1.8 1.6-2.5 1.6-2.5 1.6-3& ≥10 .382
1931-35 2.1-5.5≥100 1.9-3.0 1.9-3.0 2.0-3.5 ≥2.2 .313
1966-40 1.5-3.5 1.5-2.3 1.4-2.1 1.5-2.2∪ ≥20 1.5-2.4∪ ≥100 .328
1941-45 1.5-3.0 1.3-2.1 1.3-2.0 1.3-2.0∪ ≥20 1.3-2.3∪ ≥10 .043
1946-50 1.5-3.5 1.4-2.3 1.4-2.1 1.4-2.3∪ ≥20 1.4-2.5∪ ≥10 .003
1951-55 1.4-3.0 1.3-2.1 1.3-2.1 1.3-2.1∪ ≥20 1.4-2.3∪ ≥10 .003
1956-60 1.0-2.8 1.0-2.0 1.0-2.0 1.0-1.9∪ ≥20 1.0-1.9∪ ≥100 .002
1961-65 1.0-2.2 1.0-1.7 1.0-1.6 1.0-1.5∪ ≥20 1.0-1.6∪ ≥100 .002
1966-70 1.3-2.8 1.3-2.0 1.3-2.0 1.3-1.8∪ ≥20 1.2-2.0∪ ≥100 .002
1971-75 1.5-3.5 1.4-2.2 1.4-2.1 1.4-2.2∪ ≥20 1.4-2.6∪ ≥ 9.5 .128
1976-80 1.6-3.5 1.5-2.5 1.5-2.3 1.5-2.4∪ ≥20 1.6-2.9∪ ≥ 7.5 .022
1981-85 1.4-3.5 1.4-2.3 1.4-2.1 1.4-2.1∪ ≥20 1.4-2.4∪ ≥10 .030
1986-90 1.0-3.0 ≤2 ≤1.9 1.0-1.9∪ ≥50 1.0-2.0∪ ≥50 .004
1991-95 1.0-1.9 ≤1.6 ≤1.4 1.0-1.4∪ ≥100 1.0-1.3∪ ≥200 .306

Note _ Numbers in columns (1)-(5) represent a confidence set for the parameters(π, ω) [respectively, the
probability of mixing and the ratio of scales] of the multivariate mixtures-of-normal error distribution. See
Section 4.2 for details on the construction of the confidence set: the values of(π, ω) in this set are not
rejected by the joint test GF test associated with (5.5) under multivariate mixture errors. The maximum of
thep-value occurs in the closed interval forω. Column (6) presents a MMCp-value relative to the quasi-LR
statistic defined in (3.9) to testHCAPM [see (2.2)]; the observed values of this statistic are reported in Table
2, column (4). The MMCp-value is the largest MCp-value for all(π, ω) within the reported confidence set.
The maximum of thep-value occurs in the closed interval forω. See Appendix B for description of MC tests.
January and October 1987 returns are excluded from the dataset.
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for presentation ease, the confidence region is summarized as follows: we give the confidence
set forω corresponding to five different values ofπ namely .1, .2., 3., .4 and .5. Column (6) of
Table 3 present the largest mixture-of-normals based MCp-values associated with the efficiency
LR statistic (which we reported in column (4) of 2). Our empirical evidence shows that asymptotic
p-values are quite often spuriously significant (e.g. 1941-55). Furthermore, the maximalp-values
exceed the Gaussian-basedp-value. It is “easier” to reject the testable implications under normality.
Conversely, recall that the Gaussian model obtains withκ →∞. So, ifpN exceeds the significance
level, then the largestp-valuea fortiori also exceeds the significance level. Thus the decision implied
by a non-significant Gaussianp-value is exactly conclusive (i.e. there is no need to re-consider
t-basedp-values ifpN fails to reject). For instance, at the 5% level of confidence, we find ten
rejections of the null hypothesis for the asymptoticχ2(11) test, nine for the MCp-values under
normality, six for the MC under the Student-t distribution and, as shown on the last column of Table
3 seven under the mixtures of normal distributions.8 These results differ from Zhou’s (1991) which
showed no change in rejection rates of mean-variance efficiency using elliptical distributions other
than the normal. This difference can be explained by the fact that Zhou did not account explicitly
for nuisance parameters.

Our results indicate clearly that GRS-type tests are sensitive to the hypothesized error distri-
bution. Of course, this observation is relevant when the hypothesized distributions are empirically
consistent with the data. Focusing on the t-and mixtures distributions with parameters not rejected
by proper GF tests, we see that the decision of the MMC CAPM test can change relative to the
F -based test.

Figures 1-28 illustrate how thep-value varies overallC(Y ) for the t-distribution. Although
C(Y ) is quite wide, it is evident from Figures 1-14 that restricting this set further does not have a
strong influence on the decision. Specifically, thep-values do not seem to fluctuate a lot throughout
C(Y ), at least in this application.

It is usual, in this literature to aggregate the efficiency test results overall subperiods, in some
manner. For instance, Gibbons and Shanken (1987) propose two aggregate statistics which, in terms
of our notation, may be expressed as follows:

GS1 = −2
∑14

j=1 ln(pN [j]) GS2 =
∑14

j=1 Ψ−1(pN [j]) (6.1)

where[j] refers to the sub-periods, andΨ−1(.) provides the standard normal deviate correspond-
ing to pN [j]. If the CAPM null hypothesis holds across all subperiods, thenGS1 ∼ χ2(2 × 14)
whereasGS2 ∼ N(0, 14). It is worth noting that the same aggregation methods can be applied
to our test problem even under (2.8) by replacing, in (6.1),pN [j] with QU [j], the MMC p-values
obtained imposing (2.8). Indeed, as is observed by Gibbons and Shanken (1987), the F-distribution
is not necessary to obtain the null distribution of these combined statistics. All what is needed is a
continuous null distribution (a hypothesis satisfied given normal, student-t or mixture errors) and,

8Our tests for MC p-values under the Student and mixtures of normals distributions are joint tests for nuisance param-
eters consistent with the data and the mean-variance efficiency hypothesis. Since we have attributed a level of 2.5% to the
construction of the confidence set, to establish a fair comparison with the MC p-values under the normality assumption or
the asymptotic p-values, we must refer the p-values for the efficiency tests under the Student and the mixtures of normals
distributions to 2.5%.
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Note _ Using the Student-t distribution, each figure represents the Monte Carlo probability of rejecting the
hypothesis thatHCAPM : ai = 0, i = 1, ..., n associated with the degrees of freedom on the confidence set
with the continuous line. The dash line represents the Monte-Carlop-value of rejectingHCAPM using the
normality assumption.
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of course, independence across subperiods. Our results, under normal, student-t and mixture errors
respectively, are:GS1 = 102.264, 101.658 and 105.464 andGS2 = 28.476, 28.397 and 28.476; all
associated p-values are< .0000. If independence is upheld as in Gibbons and Shanken (1987), this
implies that the CAPM is jointly rejected with our data.9

Finally, Table 4 presents the results of our multivariate exact diagnostic checks for departures
from thei.i.d. assumption, namely our proposed multivariate versions of the Engle, Lee-King and
variance ratio tests; we use 12 months-lags.10 The results show very few rejections of the null hy-
pothesis both at the 1% and 5% level of significance. This implies that, in our statistical framework,
i.i.d. errors provide an acceptable working assumption.

7. Conclusion

We have shown that in Gaussian or non-Gaussian contexts, the exact test procedure proposed in
Dufour and Khalaf (2002b) may be used to perform a mean-variance efficiency test of the market
portfolio. We have specifically illustrated how to deal in finite samples with Student-t errors and
multivariate mixtures of normals, with possibly unknown parameters.

Our empirical results are important for assessing the reliability and empirical performance of
the CAPM. It appears that the normality assumption is too restrictive given the observed financial
return data, even with monthly data. First, while our exact multivariate GF tests conclusively reject
normality, Student-t or mixtures-of-normals are consistent with our data. Furthermore, we show
that CAPM exact tests which formally take these non-normal distributions into consideration fail
to reject the CAPM for 3 out of 9 subperiods for which the Gaussian-based test is significant. It
appears that the distributional setup is crucial when testing the CAPM. This suggest that more
work is needed from a theoretical perspective to better circumscribe the necessary and sufficient
distributional hypotheses underlying fundamental asset pricing models.

Although we focused on CAPM tests, it is worth emphasizing that our proposed methodol-
ogy applies to several interesting asset pricing tests including many problems where the Hotelling
test [exploited by GRS and MacKinlay (1987)] and Rao’sF test [see Stewart (1997) and (A.4) in
Appendix A.1] have been used. Although, in view of its fundamental importance, mean-variance ef-
ficiency is one of the first and very few MLR-based problems which have been approached from an
exact perspective, a few authors have recognized that hypotheses dealing with the joint significance
of the coefficients oftwo regression coefficients across equations can also be tested exactly applying
Rao’sF test. Examples include inter-temporal asset pricing tests in Shanken (1990)); see footnote
18. Furthermore, as discussed in Shanken (1996), econometric tests of spanning fall within this
class. Indeed, spanning tests [see Jobson and Korkie (1989), Kan and Zhou (2001)] may be written
in terms of a model of the GRS form. The hypothesis is however more restrictive, in the sense that

9Note that even if one questions independence and prefers to combine using Bonferroni-based criteria, the smallest
p-value is .002 which when referred to.025/14 ' .002 comes close to a rejection. In the context of a MC with 999
replications, the smallest possible p-values are .001, .002 and so on so forth. To allow a fair Bonferroni test, it is preferable
to consider the level.028/14 = .002. This means that in every period, the pre-test confidence set should be applied with
α1 = 2.2% to allow 2.8% to the CAPM test. The results reported in the above Tables are robust to this change of levels.

10We have also run univariate diagnostic checks. For space considerations, we only report the multivariate results.
Note that the univariate test results are available upon request.
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Table 4. Multivariate diagnostics

Normal errors Student t-errors Mixtures errors
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Sample Ẽ L̃K V̂ R Ẽ L̃K Ṽ R Ẽ L̃K Ṽ R

1927-30 .001 .356 .004 130 .333 .004 .155 .335 004
1931-35 .022 .748 .069 124 .659 .066 .208 .671 080
1926-40 .075 .612 .855 124 .594 .867 .208 .596 866
1941-45 .824 .979 .163 843 .982 .177 .831 .979 175
1946-50 .003 .804 .063 017 .780 .068 .039 .778 072
1951-55 .139 .353 .111 189 .338 .119 .242 .328 120
1956-60 .987 .628 .093 994 .628 .095 .996 .633 099
1961-65 .339 .207 .577 375 .195 .584 .425 .207 592
1966-70 .027 .274 .821 067 .278 .847 .098 .288 846
1971-75 .280 .224 .218 316 .212 .224 .390 .207 220
1976-80 .004 .011 .165 031 .013 .183 .038 .009 184
1981-85 .027 .103 .208 075 .103 .217 .105 .095 223
1986-90 .033 .453 .346 077 .442 .366 .110 .455 357
1991-95 .803 .236 .088 821 .237 .096 .816 .252 950

Note _ Numbers shown arep-values associated with the combined testsẼ, L̃K, andṼ R, defined by (5.11),
(5.12) and (5.13).Ẽ andL̃K are multivariate versions of Engle’s and Lee and King’s GARCH tests and
Ṽ R is a multivariate version of Lo and Mackinlay’s variance ratio tests; see Section 5.2. In columns (1)-(3),
thep-values are MC pivotal statistics based;p-values in columns (4)-(9) are MMC confidence set based. The
relevant 2.5% confidence set for the nuisance parameters is reported in Table 2, column (8) for the multivariate
Student t-distribution, and in Table 3, columns (1)-(5) for the multivariate mixture-of-normals distribution.
See Appendix B for description of MC tests. January and October 1987 returns are excluded from the dataset.
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over and above the restriction on the intercepts, the betas for each regression are required to sum to
one. These hypotheses fit into our UL framework. The results in this paper extend available exact
tests of these important financial problems beyond the Gaussian context.

The fact remains that the results presented in this paper are specific to UL hypotheses. Recall
that not all linear hypotheses may be cast in this form. We study extensions to non-linear problems
including tests of Black’s version of the CAPM in Beaulieu, Dufour and Khalaf (2001). Finally,
we note that an apparent shortcoming of our exact tests comes from the fact that right-hand-side
benchmarks are possibly observed with errors. The development of exact tests which correct for
error-in-variable problems is an appealing idea for future research.

21



Appendix

A. Finite-sample distributional properties

The results in this Appendix pertain to any asset pricing model which may be cast in terms of the
MLR given by (2.3) and (2.5).

A.1. General uniform linear restrictions tests

This section relates to testing constraints on regression coefficients of the UL form (2.4). On observ-
ing that (2.4) corresponds to(E′ ⊗H) vec(B) = vec(A), it is clear that not all linear hypotheses
can be cast in the UL form. The associated Gaussian quasi-LR statistic is:

LR = T ln(Λ) , Λ = |Σ̂0|/|Σ̂| (A.1)

whereΣ̂0 is the constrained MLE ofΣ. The statisticΛ corresponds to the inverse of the well known
Wilks statistic. The following exact distributional results are proved in Dufour and Khalaf (2002b).

Theorem A.1 DISTRIBUTION OF THE QUASI-LR UNIFORM-L INEAR HYPOTHESIS TEST

STATISTIC. Under(2.3), (2.5) and(2.4), the statistic

Λ = |Σ̂01|/|Σ̂| (A.2)

is distributed like ∣∣E′W ′MWE
∣∣ /

∣∣E′W ′M0WE
∣∣ (A.3)

whereΣ̂01 andΣ̂ are the constrained and unconstrained MLE ofΣ,

M0 = M −X(X ′X)−1H ′[H(X ′X)−1H ′]−1H(X ′X)−1X ′ ,
M = I −X(X ′X)−1X ,

andW = [W1, . . . , Wn] is defined as in(2.5).

For certain values ofh ande and normal errors, the null distribution reduces to theF distribu-
tion. For instance, ifmin(h, e) ≤ 2, then

[
(Λ1/τ − 1)

] ρτ − 2λ

he
∼ F (he , ρτ − 2λ) (A.4)

where

λ =
he− 2

4
, ρ = T − k − (e− h + 1)

2
,

τ =

{ (
(h2e2 − 4)/(h2 + e2 − 5)

)1/2

1
, if h2 + e2 − 5 > 0
, otherwise

.

22



Further, the special caseh = 1 leads to Hotelling’sT 2 criterion which is a monotonic function ofΛ.
If h > 2 ande > 2 , then the distributional result (A.4) holds asymptotically [Rao (1973, Chapter
8)]. Stewart (1997) provides an extensive discussion of these specialF tests. Of course, these
results are restricted to UL hypotheses of the form (2.5). However, beside this specific hypothesis
class, the null distribution of the LR statistic is not nuisance-parameter-free.

A.2. Invariance of lack-of-fit tests

Proof of Proposition5.1. On observing that̂U = MU andU = WJ ′, it is straightforward to see
that

Û(Û ′Û)−1Û ′ = MU(U ′MU)−1U ′M
= MU(J−1)′J ′(U ′MU)−1JJ−1U ′M

= MU(J−1)′
[
(J−1)U ′MU(J−1)′

]−1
J−1U ′M

= MW
(
W ′MW

)−1
W ′M.

Since (2.5) entails thatW has a known distribution, it follows that̂U(Û ′Û)−1Û ′ (and consequently
SK andKU) are completely determined by the distribution ofW (given X). This is the same
method of proof which led to TheoremA.1.

B. Monte Carlo tests

The Monte Carlo (MC) test procedure goes back to Dwass (1957) and Barnard (1963). Dufour
(2000) analyzes formally the nuisance-parameter-dependent case. Here we summarize the under-
lying methodology (given a right tailed test), as it applies to the test statistics we consider in this
paper.

B.1. General method

Let us first consider the pivotal statistics case, i.e. the case where the statistic at hand, sayS(y, X)
can be written as a pivotal function ofW (in (2.5)), formally

S(y, X) = S (W, X) ,

whereW is defined by (2.5), and the distribution of the rows ofW is known. This is the case where
the conditional distribution ofS(y, X), givenX, is completely determined by the matrixX and
the conditional distribution ofW givenX.

1. LetS0 denote the observed test statistic.

2. By Monte Carlo methods, drawN i.i.d. replications ofW : W j = [W j
1 , . . . , W j

n], j =
1, ..., N , conforming with (2.5).
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3. From each simulated error matrixW j , compute the statistics

Sj = S(W j , X), j = 1 , . . . , N.

For instance, in the case of the QLR statistic underlying TheoremA.1, calculate
|W j′M̃W j |/|W j′M̃0W

j | , j = 1 , . . . , N.

4. Compute the MCp-value

p̂N (S0) =
NĜN (S0 ) + 1

N + 1
, (B.1)

where

ĜN (x) =
1
N

N∑

j=1

I[0,∞] (Si − x) , IA(x) =
{

1, if x ∈ A,
0, if x /∈ A.

.

In other words,NĜN (S0) is the number of simulated criteria≥ S0 and R̂N (S0) = N −
NĜN (S0) + 1 gives the rank ofS0 in the seriesS0, S1, ... , SN .

5. The MC critical region is
p̂N (S0) ≤ α, 0 < α < 1. (B.3)

If α(N + 1) is an integer,
P(H0) [p̂N (S0 ) ≤ α] = α. (B.4)

The above algorithm is valid for any fully specified distribution ofW . Consider now the case
where the distribution ofW involves a nuisance parameter as in (2.8). In this case, givenν, (B.1)
yields a MCp-value which we will denotêpN (S0|ν) where the conditioning onν is emphasized for
further reference. The test defined byp̂N (S0|ν) ≤ α is exactly size correct(in the sense of (B.4))
for knownν. Treatingν as a formal nuisance parameter, the test based on

sup
ν ∈ Φ0

[p̂N (S0|ν)] ≤ α (B.5)

whereΦ0 is a nuisance parameter set consistent withH0, is exact at levelα; see Dufour (2000).
Note that no asymptotics on the numberN of MC replications is required to obtain the latter result;
this is the fundamental difference between the latter procedure and the (closely related) parametric
bootstrap method, which in this context would correspond to test based onp̂N (S0|ν̂0), whereν̂0 is
anypoint estimate ofν. In Dufour and Khalaf (2001a)-Dufour and Khalaf (2001b), we call the test
based on simulations using a point nuisance parameter estimate alocal MC (LMC) test. The term
local reflects the fact that the underlying MCp-value is based on a specific choice for the nuisance
parameter. Furthermore, we show that LMC non-rejections areexactlyconclusive in the following
sense: if̂pN (S0|ν̂0) > α, then the exact test MMC test is clearly not significant at levelα.
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B.2. MC skewness and kurtosis tests

B.2.1. Estimating expected skewness and kurtosis

A1. Draw N0 i.i.d.replications,W j = [W j
1 , . . . , W j

n], j = 1, ..., N0, conforming with the
hypothesized distribution withν = ν0.

A2. From each simulated error matrixW j , compute

MW j
(
W j′MW j

)−1
W j′M,

j = 1 , . . . , N0. These provideN0 replications ofsk andku, applying (5.1) and (5.2),
namelyskj andkuj .

A3. Then calculate

SK(ν0) =
∑N0

j=1 skj /N0, KU(ν0) =
∑N0

j=1 KUj /N0

Two questions arise at this stage: (i) how to obtain exact cut-off points for (5.3) and (5.4),
and (ii) how to obtain a size-correct simultaneous test which combines (5.3) and (5.4). Let us first
address the individualp-values issue, which may be run as in Appendix B above.

B.2.2. Individual excess skewness and kurtosis tests

B1. LetESK0 andEKU0 denote the observed test statistics.

B2. For a given numberM of replications, and independently from the simulation performed to
obtainSK(ν0) andKU(ν0) (i.e. step A1 above), drawWm = [Wm

1 , . . . , Wm
n ], m =

1, ...,M, conforming with (2.6).

B3. From each simulated error matrixWm, compute

MWm
(
Wm′MWm

)−1
Wm′M,

m = 1 , . . . , M. Conformably, derive, applying (5.1) and (5.2),M replications ofSK and
KU, SKm andKUm.

B4. Conditioning onSK(ν0) and KU(ν0) (generated only once as in steps (A1-A3)), obtain,
applying (5.3) and (5.4),M replications ofESK andEKU, ESKm andEKU m.

B5. Obtain (respectively) the ranks of ESK0 and EKU0 in the series
{ESK0, ESK1, . . . , ESKM} and {EKU0, EKU1, . . . , EKUM} respectively; these
yield the MCp-values (applying B.1)̂pM(ESK0 |ν0) andp̂M(EKU0 |ν0).
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B.2.3. Combined excess skewness and kurtosis test

C1. Derive the observed value of the test statistic from (5.5), which we will denotecsk0. To do
so, run steps B1-B5 (of the preceding section).

C2. Obtain a simulated value foresk andeku, which we will denoteESK01, EKU01 using the
same value forSK(ν0) andKU(ν0). Run steps B2-B5, using the same simulated series in B2
and replacingESK01, EKU01 for ESK0, EKU0. This would yield one simulated value of the
combined statistic.

C3. Repeat step C2 to complete the simulated series. To do so, drawESK0m, EKU0m, m =
2, 3, ..., maximum number of replications desired.

C4. Obtain the rank of the observed statisticCSK0, within the simulated series, and derive the
correspondingp-value, which we will denotêp(CSK0 |ν0).
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