
Economics 815 Winter 2015

Macroeconomic Theory Thorsten Koeppl

Answer Key for Assignment 4

Answer to Question 1:

This question was postponed from Assignment 3.

1. I chose parameters like the ones in Gali. They are as follows

• θ = 0.66 – prices on average reset every three quarters1

• σ = η = 1 – log utility and quadratic costs for labour

• β = 0.99 – about 4% per cent risk-free rate

• ε = 6 – from literature

• α = 2/3 – standard benchmark.

The parameters for the AR(1) process can be taken from the Solow residual estimation

in the first half. I have assumed here ρa = 0.9 and have used a 1% deviation from steady

state as a shock.

Remark: Calibrating parameters should be done with care in general. However, there

is no standard way of carrying this out. Of course, this means that the key parameters

like θ or η involve a lot of judgement.

2. For the impulse response function associated with these parameters, see the notes for

Lecture XIV.

3. For θ close to 1 (larger price stickiness), the output gap becomes larger as firms cannot

adjust their prices. However, higher θ implies lower κ and, hence, lower inflation. As

a consequence, the response of policy (nom. interest rates) is muted to the technology

shock for the specified Taylor rule.

1The expected time to reset is given by
∑∞
t=0

(
2
3

)n n
2 = 3.
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4. For ε close to 1, the output gap is unaffected. However, κ increases. Hence, inflation

responds more strongly to the fixed change in the output gap. The incentive to change

prices aggressively has increased for firms that are able to do so, since there (local)

monopoly power is larger. This implies that also the nominal interest rate will respond

more strongly, even though there are no changes in the output gap.

Answer to Question 2:

1. We first derive the total public demand for good i which is given by

Gt(i) =

(
Pt(i)

Pt

)−ε
Gt.

The derivation is identical to the one given in the lecture notes for private demand. Total

lump-sum taxes T in nominal terms are taking the place of private nominal expenditures

Zt in the derivations. Since taxes are lump-sum, none of the analysis changes.

Total demand for good i is then given by C(i) +G(i).

2. Define aggregate output by using the following aggregate across demand (and, hence,

output) for individual goods

Yt ≡
(∫ 1

0

Yt(i)
ε−1
ε di

) ε
ε−1

.

From the individual demand functions it follows that

Yt =

∫ 1

0

[(
Pt(i)

Pt

)−ε
(Ct +Gt)

] ε−1
ε

di


ε
ε−1

= (Ct +Gt)

(∫ 1

0

(
Pt(i)

Pt

)1−ε

di

) ε
ε−1

= (Ct +Gt)

(
1

Pt

)−ε(∫ 1

0

(Pt(i))
1−ε di

) −ε
1−ε

= Ct +Gt

where we have used the definition of the price index Pt =
(∫ 1

0
Pt(i)

1−εdi
) 1

1−ε
.
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Now log-linearize around the steady state YSS = CSS +GSS. We obtain

YSS log

(
Yt
YSS

)
= CSS log

(
Ct
CSS

)
+GSS log

(
Gt

GSS

)
.

Changing notation and dividing by YSS, we obtain

ŷt =
CSS
YSS

ĉt +
GSS

YSS
ĝt = scĉt + sgĝt

where sc and sg are shares of private and public consumption in steady state.

3. We have that ĉt = 1
sc
ŷt − sg

sc
ĝt. Using this in the IS equation, we obtain

1

sc
yt −

sg
sc
gt = Et[

1

sc
yt+1 −

sg
sc
gt+1]−

1

σ
(it − Et[πt+1]− ρ)

where we have used the fact twice that x̂t = xt − xSS.

Multiplying by sc and rearranging yields

yt = Et[yt+1]−
sc
σ

(it − Et[πt+1]− ρ)− sgEt[gt+1 − gt].

Define now rnt = ρ + σ
sc
Et[y

n
t+1 − ynt ]. Then, we obtain the IS equation in terms of the

output gap and the natural rate of interest as

xt = Et[xt+1]−
sc
σ

(it − Et[πt+1]− rnt )− sgEt[gt+1 − gt].

Suppose first that gov’t spending does not fluctuate across time. This implies that there

are no shocks to the IS equation other than through the effect on rnt . Of course the fact

that private consumption is only a fraction sc of total demand moderates the impact of

shocks on the IS equation.

Suppose now that gov’t spending can fluctuate over time. From a positive perspective,

this can be interpreted as an additional source of shocks that influence private demand.

Holding everything else fixed, expected changes in gov’t spending will lead to changes

in the output gap in the same direction. To the contrary, from a normative perspective,

varying gov’t expenditure – e.g. for a fixed it = ῑ = ρ – can perfectly stabilize the

output gap (see below).
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4. The household solves the problem

max
(Ct,Nt,Bt)

E0

∞∑
t=0

βt
(
χtC

1−σ
t

1− σ
+

(1−Nt)
1−η

1− η

)
subject to

PtCt +QtBt ≤ WtNt +Bt−1 + Tt.

Note that Pt and Ct are aggregates as defined in the Lecture Notes. Furthermore, the

price of a one-period nominal (discount) bond with zero coupon is given by Qt. Note

that χt is a preference shock that changes aggregate demand.

To show once again clearly how to derive the Euler equation, I assume that uncer-

tainty can be described by probabilities over states in each period. Denote π(st) as the

probability of the history of states (s0, s1, . . . , st).

The FOCs are given by

π(st)βtC(st)−σχ(st) = λ(st)P (st)

π(st)βt(1−N(st))−η = λ(st)W (st)

−λ(st)Q(st) +
∑
st+1

λ(st+1|st) = 0,

where the last one is with respect to B(st) and the summation is over successor states

st+1 of history st.

We obtain that

Q(st)π(st)βt
C(st)−σ

P (st)
χ(st) =

∑
st+1

π(st+1)βt+1C(st+1)−σ

P (st+1)
χ(st+1)

or

1 = Et

[
β

(
χt+1

χt

)(
Ct
Ct+1

)−σ
Pt
Pt+1

1

Qt

]
.

5. It is useful to define the inflation rate Πt+1 = Pt+1

Pt
and the nominal interest rate Qt =

1
1+it

. Thus, we have that

1 = Et

[
β
χt+1

χt

(
Ct
Ct+1

)−σ
1

Πt+1

(1 + it)

]
.
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Denote x̂t = logXt − logXSS = xt − xSS. Log-linearizing both sides of the equation –

use the rules from the lecture – we obtain

−σĉt + χ̂t = Et

[
−σĉt+1 + χ̂t+1 − π̂t+1 + ̂1 + it

]
.

In steady state, we have that Ct = Ct+1 = CSS and χt = χSS so that the Euler equation

is given by
1

β
= ΠSS(1 + ῑ)

or defining ρ = − log β,

ρ = πSS + log(1 + ῑ).

Rewriting the log-linearized Euler equation we get

−σct + log(χt) = Et[−σct+1 + log(χt+1)− (πt+1 − πSS) + (log(1 + it)− log(1 + ῑ)].

Using the SS relationship and noting that log(1 + it) ' it we obtain

ct − Et[ct+1] =
1

σ
(log(χt)− Et[log(χt+1)])−

1

σ
(it − Et[πt+1]− ρ) .

From the previous part of the question, we can now use that ĉt = 1
sc
ŷt− sg

sc
ĝt. Substituting

into the equation above, we obtain

yt − Et[yt+1] =
sc
σ

(log(χt)− Et[log(χt+1)])−
sc
σ

(it − Et[πt+1]− ρ)− sgEt[gt+1 − gt].

Define now rnt = ρ + σ
sc
Et[y

n
t+1 − ynt ]. Then, we obtain the IS equation in terms of the

output gap and the natural rate of interest as

xt − Et[xt+1] =
sc
σ

(log(χt)− Et[log(χt+1)])−
sc
σ

(it − Et[πt+1]− rnt )− sgEt[gt+1 − gt].

6. Since there are no technology shocks, we have that ynt+1 − ynt = 0, so that rnt = ρ. This

implies that the Euler equation becomes

xt − Et[xt+1] =
sc
σ

(log(χt)− Et[log(χt+1)])−
sc
σ
Et[πt+1]− sgEt[gt+1 − gt].

We guess and verify a solution (see below for more on this). Set

gt = − sc
sgσ

log(χt).
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for all t. Since χt is the only shock, we have that xt = 0 and πt = 0 for all t satisfies

both the NKPC and the IS equation. Hence, we have an equilibrium. Government

expenditures exactly offset fluctuations in private demand. If aggregate private demand

increases (falls), government expenditures fall (increase).

Remark: Even though we have found an equilibrium with no output gap and zero

inflation, this equilibrium will not be unique. From the NKPC, we have that a zero

output gap for all t yields

πt = βEt[πt+1] = β2Et[Et+1[πt+2]] = . . . .

In principle, this admits many solutions, so that we have indeterminancy. We simply

picked the solution that has πt = 0 for all t. A similar problem would occur for the

IS equation, where any process with Et[xt+1] = 0 would lead to indeterminancy with

respect to the output gap, but not with inflation which would be pinned down by the

exogenous variations in the output gap according to

πt = κxt + κ
∞∑
k=1

βkEt[xt+k] = κxt.

To avoid such a problem of indeterminacy, we would need to formulate again how fiscal

expenditure reacts to variations in xt and πt.

7. We have that deviations in output yt are identical to deviations in the output gap xt,

since rnt = ρ and ynt is constant due to the absence of technology shocks. The output

shows the rest of the variables for a 1% increase in χ. The responses are as expected. We

have an increase in consumption and, hence, a positive output gap. Inflation increases

with a positive response in nominal interest rates (see Figure 1 below).

8. The responses are the same as in part (e) except for consumption. Higher gov’t ex-

penditures crowd out private consumption. The strength of this effect depends on your

calibration of sg, which I set to 30% of output (see Figure 2 below).

9. Increasing φπ makes the policy response to demand shocks more aggressive. As a re-

sult, both inflation and the output gap are more stabilized. This shows that with
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Figure 1: IRFs for Taste Shock

demand shocks there is no trade-off between inflation and output stabilization. React-

ing very strongly to inflation achieves the lowest variability in both variables – and,

hence, the highest welfare as pointed out in class (see Figure 3 below). This is often

referred to as the divine coincidence of monetary policy in NK economics.
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Figure 2: IRFs for Gov’t Spending Shock – φy = 0.125
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Figure 3: IRFs for Gov’t Spending Shock – φy = 0
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Answer to Question 3:

1. Plug the interest rate equation into the IS equation and the NKPC to obtain xt

πt

 =
σ

σ + κφπ

 1 1−βφπ
σ

κ β + κ
σ

 Et[xt+1]

Et[πt+1]

+
σ

σ + κφπ

 1 −φπ
σ

κ 1

 εt

ut

 .

Bonus: To obtain a stable solution to this system of equations, we need to look at

the eigenvalues or roots of the matrix of coefficients for Et[xt+1] and Et[πt+1] and the

number of jump (or control) variables. There are no state variables and, thus, two

control variables. Hence, there always must be a stable solution. If both of the roots

in absolute values are less than 1, we have a unique stable solution. To ensure this

condition, we need to impose that φπ > 1 (for details see the Lecture Notes and Gali’s

book).

2. Solving this matrix equation for the vector of control variables zt = (xt, πt) and vector

of shocks ηt = (εt, ut) forward, we obtain

zt = AEt[zt+1] + Bηt

= Bηt + AEt[AEt+1[zt+2] + Bηt+1]

= Bηt + ABEt[ηt+1] + A2Et[zt+1]

= Bηt −BE[η] +
∞∑
s=0

AsBE[η] + lim
s→∞

AsEt[zt+s]

= Bηt +
[
[I−A]−1 − I

]
BE[η]

where we have used the law of iterated expectations, that ηt is iid and the fact that A

is a stable, invertible matrix.

Setting the expected value of the shocks equal to 0, the solution is simply given by xt

πt

 =
σ

σ + κφπ

 1 −φπ
σ

κ 1

 εt

ut

 .
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3. The optimization problem is given by

min
φπ

E0

[
∞∑
t=0

βt
(
αx2t + π2

t

)]
subject to

xt = fx(εt, ut)

πt = fπ(εt, ut)

Note that E0[εt] = E0[ut] = 0 so that the objective function can be rewritten as

L =
∞∑
t=0

βt(αE0[x
2
t ] + E0[π

2
t ]) =

1

1− β
(αV ar[xt] + V ar[πt]) .

Hence, we need to determine the variance terms for the matrix equation we have found

in part (b). Since the shocks are uncorrelated and the means for xt and πt are normalized

to 0, we have

V ar(xt) =

(
σ

σ + κφπ

)2

σ2
ε +

(
φπ

σ + κφπ

)2

σ2
u

V ar(πt) =

(
σκ

σ + κφπ

)2

σ2
ε +

(
σ

σ + κφπ

)2

σ2
u.

Neglecting constant terms, the problem can thus be rewritten as2

min
φπ

(
1

σ + κφπ

)2 [
α(σ2 + σ2κ2)σ2

ε + (φ2
π + σ2)σ2

u

]
.

The first-order condition yields3

φ∗π = σκ

[
1

α
+

(
α + κ2

α

)(
σε
σu

)2
]

.

4. The parameter α is a welfare weight on output gap (“unemployment”) relative to infla-

tion variability. The lower this weight, the more aggressive is the response to inflation

differing from 0. Inflation targeting can be seen as a low weight α and, thus, the

prescription for such a regime is to respond aggressively to inflation.

2Note that σ is a preference parameter (intertemporal elasticity of substitution), whereas σε and σu refer

to the standard deviation of the two shocks.
3One can easily verify that at this value of φπ the second-order condition is strictly positive.
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Note that only the relative variance of the two shocks matters for given α. If demand

shocks (ε) increase, the prescription is to react more strongly. However, for supply shocks

(ut), exactly the opposite is the case: one should not respond strongly in situations where

supply shocks are relevant (i.e. their variance is high).

Finally, κ is inversely related to θ, the degree of price stickiness. If θ is high – say close

to 1 – firms cannot change their prices. Hence, inflation pressures are low. In such a

case, κ will be low which implies that the reaction coefficient φπ should also be set low.
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