Assignment 3

(Due: Monday, March 23 – in class)

1. Consider a basic RBC model without labor-leisure choice. In every period, the utility function for households is given by

$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$

with the household's endowment of time being normalized to 1. Future utility is discounted according to $\beta \in (0, 1)$. The production function is given by

$$y = zk^{\alpha}n^{1-\alpha}$$

where $\log z$ follows an AR(1) process with coefficient ρ and the innovations being normally distributed with zero mean and variance σ^2 .

Capital is owned by the household, but is costly to adjust. For investment x_t , the resource costs are given by

$$\left(1+\frac{\phi}{2}\frac{x_t}{k_t}\right)x_t,$$

where $\phi \geq 0$. Capital evolves according to the law of motion

$$k_{t+1} = k_t(1-\delta) + x_t.$$

- (a) Set up the decision problem for the household. [Hint: Use both the budget constraint and the law of motion of capital.]
- (b) Define q_t as the ratio of Lagrange-multipliers on the budget constraint and the law of motion on capital. Derive the first-order condition that describes the optimal choice of investment, consumption and capital for the household in terms of q_t . When is investment positive?

- (c) Find the intertemporal Euler equation in terms of q_t and q_{t+1} .
- (d) Characterize the steady state for this economy. How does it differ from the standard model where $\phi = 0$?

Choose parameters from your earlier calibration and set $\phi = 1$.

- (e) Using DYNARE compute impulse response functions for i_t , c_t , k_t , y_t and q_t for a positive technology shock.
- (f) Compare your impulse response functions to the case where $\phi = 0$ and where $\phi >> 1$. Explain the difference.
- 2. Consider the New Keynesian Phillips Curve

$$\pi_t = E[\pi_{t+1}] + \kappa(y_t - y_t^n).$$

where π_t is inflation, $E[\pi_{t+1}]$ is expected inflation next period and $y_t - y_t^n$ is a measure of the output gap.

(a) Describe which data (and at what frequency) you are using for inflation, expected inflation and the output gap.

Naive Approach

(b) Express the New Keynesian Phillips curve as a regression equation and estimate it directly. Why is this approach "naive"?

Rational Expectations Approach

(c) Express the New Keynesian Phillips curve as a regression equation taking into account that expectations are rational and estimate it. [Hint: The explained variable is now changes in inflation $\pi_{t+1} - \pi_t$ with the residuals being interpreted as a forecast error.]

Extended Model – Partially Backward-looking

Consider now the extended version of the Phillips curve given by

$$\pi_t = (1 - \nu) E_t[\pi_{t+1}] + \nu \pi_{t-1} + \kappa (y_t - y_t^n).$$

- (d) Express the extended model again as a regression equation with rational expectations and estimate it.
- 3. Consider the New Keynesian model described by the equations

$$\pi_t = \beta E_t[\pi_{t+1}] + \kappa (y_t - y_t^n)$$

$$y_t - y_t^n = -\frac{1}{\sigma} (i_t - E_t[\pi_{t+1}] - r_t^n) + E_t[y_{t+1} - y_{t+1}^n]$$

$$i_t = \rho + \phi_\pi \pi_t + \phi_y (y_t - y_t^n).$$

Set the policy parameters so that $\phi_{\pi} = 1.5$ and $\phi_y = 0.125$. Assume that productivity follows an AR(1) process given by

$$a_t = \rho_a a_{t-1} + \epsilon_t.$$

For the parameters of the productivity process (ρ_a, σ_a) use the values that you have estimated before.

The natural level of output associated with flexible prices is given by

$$y_t^n = \psi a_t - \xi,$$

where $\psi = \frac{1+\nu}{\sigma\alpha+\nu+(1-\alpha)}$ and $\xi = \frac{\alpha \log \frac{\epsilon}{\alpha(\epsilon-1)}}{\sigma\alpha+\nu+(1-\alpha)}$.

This implies that the natural rate of interest is given by

$$r_t^n = \rho + \sigma \psi E_t[a_{t+1} - a_t]$$

(a) Choose parameters $(\alpha, \kappa, \epsilon, \beta, \rho, \sigma, \nu)$ in the Canadian context and justify their values.

Computational Part

- (b) Compute IRFs for $i_t, r_t, r_t^n, \pi_t, y_t, y_t^n$ and $x_t = y_t y_t^n$ in DYNARE for a technology shock. Interpret your results.
- (c) Now set κ close to 0. How do your IRFs change? Interpret your results.
- (d) Now set ϵ close to 1. How do your IRFs change? Interpret your results.