Assignment 1

(Due: Thursday, January 29 – in class)

1. Consider the following economy. The economy lasts for two periods. A representative household has an endowment of a single good equal to y = 1 in the first period, but no endowment in the second period. Preferences over consumption are given by

$$u(c_1, c_2) = \frac{c_1^{1-\gamma}}{1-\gamma} + \beta \frac{c_2^{1-\gamma}}{1-\gamma}$$

where $\gamma > 0$ and $\beta \in (0,1)$. The household can invest into capital in period 1 to obtain a deterministic gross return of r in period 2.

The capital is being used by a representative firm to produce output in the second period according to the production function

$$f(k) = k^{\alpha}$$

where $\alpha \in (0,1)$. Once capital has been used, it fully depreciates. The firm is owned by the household who receives all the firm's profits after it has payed for the rental of capital.

- (a) Set up the household's decision problem with a sequence of budget constraints.
- (b) Set up the firm's decision problem.
- (c) Define a competitive equilibrium for this economy.
- (d) Derive a single equation that describes the competitive equilibrium in terms of capital k invested in the first period and the parameters of the model (α, β, γ) .

Computational part

- (e) Set $\alpha = 0.3$, $\beta = 0.9$ and $\gamma = 2$. Solve numerically for the equilibrium capital stock k, consumption c_1 and c_2 and the equilibrium interest rate r.
- (f) Produce graphs for the equilibrium capital stock, the interest rate and consumption as a function of the parameter $\gamma \in (0, 10)$. [WARNING: $\gamma = 1$ is a special case. Which one?]
- (g) Provide economic intuition for the resulting graph.
- 2. Consider the following economy with uncertainty. Households have preferences that are given by

$$u(c_1, c_2) = E_0 \left[\frac{c_1^{1-\gamma}}{1-\gamma} + \beta \frac{c_2^{1-\gamma}}{1-\gamma} \right]$$

where $\gamma > 0$ and $\beta \in (0,1)$.

In each period, the household has a stochastic endowment \underline{y} or \bar{y} . Uncertainty is described by the following Markov transition matrix

$$\Pi = \left[\begin{array}{cc} 0.9 & 0.1 \\ 0.1 & 0.9 \end{array} \right]$$

where the first (second) row gives the probabilities to go from \underline{y} (\overline{y}) today to a new state tomorrow.

- (a) Assume that the state today is given by \underline{y} . What is the probability distribution across states tomorrow?
- (b) Find the long-run, stationary distribution across the two states \underline{y} and \bar{y} .

Set $\beta = 0.9$ and $\gamma = 2$ and assume that $\underline{y} = 1 < 2 = \overline{y}$. Consider now an asset – a risk-free bond – that is available in period 1 and delivers a payoff of 1 in units of the consumption good.

- (c) Calculate the equilibrium price for the asset for $y_1 = \underline{y}$ and $y_1 = \overline{y}$.
- (d) Calculate the unconditional mean price for the bond in period 0 assuming that we start out from the long-run stationary distribution you have found in part (b).

Consider now an asset that is risky – equity – as it delivers $1 - \epsilon + x/0.9$ when $y_2 = \underline{y}$ and $1 - \epsilon - x/0.1$ when $y_2 = \overline{y}$ in units of the consumption good. Assume that both ϵ and x are sufficiently small, so that the asset yields a positive payoff in both states.

- (e) Calculate the price for this asset in period 1 assuming that $y_1 = \underline{y}$.
- (f) For this case, find the range of values for x such that the price for the risky asset is larger than the price of the risk-free asset. Interpret your answer by using the covariance decomposition for asset pricing.

Computational part

Consider now that the payoff for equity is given precisely by the endowment process.

- (g) Plot the return difference between the two assets as a function of $\gamma \in (0, 10)$ for $y_1 = \underline{y}, y_1 = \overline{y}$ and for the unconditional mean.
- 3. Consider the following two-period economy. There are two representative households which both have an endowment of y = 1 in both periods and preferences given by

$$u(c_1, c_2) = \ln c_1 + \beta_i \ln c_2$$

where $\beta_1 < \beta_2$ so that household 1 discounts the future more than household 2. These households can save or borrow across periods at interest rate 1 + r.

Find the competitive equilibrium for this economy and interpret your result. [Hint: Derive the intertemporal budget constraints from the sequential ones and use it to find the equilibrium.]