ECON 815

The Canonical RBC Model

Winter 2015

Model

- infinite horizon: $t=0,1,2, \ldots$
- preferences

$$
E_{0}\left[\sum_{t=0}^{\infty} \beta^{t}\left(U\left(c_{t}, 1-n_{t}\right)\right)\right]
$$

- endowments
- initial level of capital k_{0}
- one unit of time each period
- production
- firms have a neoclassical production function as before:

$$
z_{t} F\left(k_{t}, n_{t}\right)
$$

- capital depreciates at rate δ
- Technology shocks: $\ln z_{t}=(1-\rho) \ln \bar{z}+\rho \ln z_{t-1}+\epsilon_{t}$ with $\rho \in(0,1)$ and $\epsilon_{t} \sim \mathcal{N}(0, \sigma)$

Note: z_{t} is the only exogenous variable in the economy.

Parameters

Preferences:

$$
\frac{c^{1-\gamma}}{1-\gamma}+\theta \frac{(1-n)^{1-\eta}}{1-\eta}
$$

- elasticities of substitution $-1 / \eta$ and $1 / \gamma$
- weight θ
- discount factor β

Technology:

- α
- δ
- \bar{z}

Shocks (need to be estimated):

- serial autocorrelation ρ
- variance of shock σ

Firm's Problem

$$
\max _{k, n} z_{t} F\left(k_{t}, n_{t}\right)-w_{t} n_{t}-r_{t} k_{t}
$$

FOC:

$$
\begin{aligned}
z_{t} \alpha\left(\frac{k_{t}}{n_{t}}\right)^{\alpha-1} & =r_{t} \\
z_{t}(1-\alpha)\left(\frac{k_{t}}{n_{t}}\right)^{\alpha} & =w_{t}
\end{aligned}
$$

Zero profits, but factor prices depend on the current state z_{t}.

Household's Problem

$$
\max _{c_{t}, k_{t}, n_{t}} E_{0}\left[\sum_{t=0}^{\infty} \beta^{t}\left(\frac{c_{t}^{1-\gamma}}{1-\gamma}+\theta \frac{\left(1-n_{t}\right)^{1-\eta}}{1-\eta}\right)\right]
$$

subject to

$$
\begin{aligned}
& c_{t}+x_{t} \leq w_{t} n_{t}+r_{t} k_{t} \text { for all } t \text { and } z_{t} \\
& k_{t+1}=x_{t}+(1-\delta) k_{t} \\
& k_{0} \text { and } z_{0} \text { given }
\end{aligned}
$$

FOC:

$$
\begin{aligned}
& \left(\frac{c_{t}^{-\gamma}}{\theta\left(1-n_{t}\right)^{-\eta}}\right)=\frac{1}{w\left(z_{t}\right)} \text { for all } t \text { and } z_{t} \\
& 1=E\left[\left.\beta\left(\frac{c_{t}}{c_{t+1}}\right)^{\gamma}\left(r_{t+1}+(1-\delta)\right) \right\rvert\, z_{t}\right] \text { for all } t \text { and } z_{t} \\
& c_{t}+k_{t+1}=w_{t}\left(z_{t}\right) n_{t}+r_{t}\left(z_{t}\right) k_{t}+(1-\delta) k_{t} \text { for all } t \text { and } z_{t}
\end{aligned}
$$

Steady State

Suppose that $z_{t}=\bar{z}$ for all t.
From the firm's problem and market clearing, we obtain that the steady state is described by

$$
\begin{aligned}
& \left(\frac{\bar{c}^{-\gamma}}{\theta(1-\bar{n})^{-\eta}}\right)=\frac{1}{f_{n}} \\
& 1=\beta\left(f_{k}+(1-\delta)\right) \\
& \bar{c}+\bar{k}=\bar{z} F(\bar{k}, \bar{n})+(1-\delta) \bar{k}
\end{aligned}
$$

We have three equations in three unknowns that we can solve.
The dynamics are way more tricky.
Why? The intertemporal Euler equations is a non-linear second-order difference equation.

Consumption function

Invoking certainty equivalence and using $1=\beta(\bar{r}+(1-\delta))$, we obtain

$$
1=E_{t}\left[\left(\frac{c_{t}}{c_{t+1}}\right)^{\gamma}\left(\frac{r_{t+1}+(1-\delta)}{\bar{r}+(1-\delta)}\right)\right]
$$

Hence, approximately, we have

$$
E_{t}\left[\ln \left(\frac{c_{t+1}}{c_{t}}\right)\right] \approx \frac{1}{\gamma}\left(E_{t}\left[r_{t+1}\right]-\bar{r}\right)
$$

Expected consumption growth depends on

- expected changes in return to capital
- willingness to substitute intertemporally
- ... and higher moments of uncertainty (which we have neglected).

Labour Supply Decisions

Recall that

$$
\left(\frac{c_{t}^{-\gamma}}{\theta\left(1-n_{t}\right)^{-\eta}}\right)=\frac{1}{w_{t}}
$$

Now people can change their labour supply in response to shocks which enter through w_{t} directly.

Usually, we think about an extensive and not an intensive margin.

- work is fixed at $h<1$ hours
- fraction ψ of people work, others do not
- assume that people insure individual consumption risk

This changes utility to be linear in labour
$\psi\left(\frac{c_{t}^{1-\gamma}}{1-\gamma}+\theta \frac{(1-h)^{1-\eta}}{1-\eta}\right)+(1-\psi)\left(\frac{c_{t}^{1-\gamma}}{1-\gamma}+\theta \frac{1^{1-\eta}}{1-\eta}\right)=\frac{c_{t}^{1-\gamma}}{1-\gamma}+\tilde{\psi} \frac{(1-h)^{1-\eta}}{1-\eta}$

Solow Residuals and Shocks

Consider the production function

$$
Y_{t}=z_{t} F\left(K_{t}, N_{t} X_{t}\right)
$$

where $X_{t}=\gamma X_{t-1}$ with $\gamma>1$.
The Solow residuals are measured by

$$
\log S R_{t}=\log z_{t}+(1-\alpha) \log X_{t}=\log Y_{t}-\alpha \log K_{t}-(1-\alpha) \log N_{t}
$$

We have assumed that $\log z_{t}$ is $\operatorname{AR}(1)$ and that $\log X_{t}$ has a deterministic trend.

- Solow residuals inherit this trend.
- The productivity shock is just the deviations from this trend.
- We impose a particular structure on these deviations which allows us to identify ρ and σ from the data.

How Do We Proceed Now?

1) How do we pick the parameters for the model?
\Longrightarrow Calibration and Estimation
2) How do we analyze the dynamics of the model?
\Longrightarrow Linear first-order difference equation for the model
3) How do we judge how well the model does?
\Longrightarrow Simulation and Impulse Response Functions

But, what happened to trend growth?
We can detrend a model with growth and work with that model.
Or, we can start out from a model without trend as shown here.
Of course, this requires us to also work with detrended data.

