ECON 815

Two-Period Economies

Winter 2015

Basic Model Set-up

- one good for period $1(\operatorname{good} 1)$ and period $2(\operatorname{good} 2)$
- endowment y_{1} and y_{2}
- people (measure 1) have utility over consumption of these goods

$$
u\left(c_{1}, c_{2}\right)=u\left(c_{1}\right)+\beta u\left(c_{2}\right)
$$

- competitive markets for trading these goods ex ante

Budget constraint:

$$
p_{1} c_{1}+p_{2} c_{2} \leq p_{1} y_{1}+p_{2} y_{2}
$$

Equilibrium

Definition: An equilibrium is a set of prices $\left(p_{1}, p_{2}\right)$ and an allocation $\left(c_{1}, c_{2}\right)$ such that
(i) people maximize utility subject to the budget constraint taking prices as given
(ii) markets clear, i.e. $c_{1}=y_{1}$ and $c_{2}=y_{2}$.

Solution:

$$
\frac{u^{\prime}\left(y_{1}\right)}{\beta u^{\prime}\left(y_{2}\right)}=\frac{p_{1}}{p_{2}}
$$

Intertemporal Choice

Suppose people can borrow or lend at interest rate r.
Three markets - for goods in each period and a market for saving and borrowing.

People have now the budget constraints

$$
\begin{aligned}
c_{1}+s & =y_{1} \\
c_{2} & =y_{2}+(1+r) s
\end{aligned}
$$

Markets clearing requires $c_{1}=y_{1}, c_{2}=y_{2}$ and $s=0$.
Solution:

$$
\frac{u^{\prime}\left(y_{1}\right)}{\beta u^{\prime}\left(y_{2}\right)}=(1+r)
$$

Equivalence

Note that

$$
\frac{p_{1}}{p_{2}}=(1+r)
$$

Hence, both ways are equivalent with interest rates being a ratio of intertemporal prices.

Suppose further that $y_{1}=y_{2}$.
We simply get $(1+r)=1 / \beta$ or - in terms of the discount rate $-r=\theta$.

Sequential vs. Present-Value Budgets

More generally, we have

$$
a_{t+1}=(1+r) a_{t}+y_{t}-c_{t}
$$

where a_{t} are total assets owned by a household in period t.
Iterating forward we get

$$
a_{t}=\sum_{i=0}^{\infty}(1+r)^{-i}\left(c_{t+i}-y_{t+i}\right)
$$

where we assume that $\lim _{i \rightarrow \infty}(1+r)^{-i} a_{t+i}=0$.
Using $t=0$, we thus obtain a net present value budget constraint from sequential constraints.

Euler equation - Examples

1) Quadratic utility $u\left(c_{t}\right)=a c_{t}-b c_{t}^{2}$ and $\left(1+r_{t}\right)=1 / \beta$

Euler equation is $c_{t}=c_{t+1}$, so that consumption is constant.
If consumption is uncertain tomorrow, we have

$$
c_{t+1}=c_{t}+\epsilon_{t+1}
$$

for some ϵ_{t+1} with $E_{t}\left[\epsilon_{t+1}\right]=0$.
This is the exact case of certainty equivalence.
We can neglect (higher moments of) uncertainty.
2) CRRA utility $u\left(c_{t}\right)=c_{t}^{1-\alpha} /(1-\alpha)$ with $\alpha>0$

From the Euler equation, we have that $c_{t}^{-\alpha}=\beta\left(1+r_{t+1}\right) c_{t+1}^{-\alpha}$.
Hence:

$$
\frac{\ln c_{t+1}-\ln c_{t}}{\ln \beta+r_{t+1}}=\frac{1}{\alpha}
$$

The elasticity of intertemporal substitution is given by the inverse of the coefficient of relative risk aversion.

Moreover for the variance in consumption growth we approximately have

$$
V\left(\ln c_{t+1}-\ln c_{t}\right) \simeq\left(\frac{1}{\alpha}\right)^{2} V\left(r_{t+1}\right)
$$

The data imply that α needs to be fairly large.

Adding Production and Investment

Firms:

- have technology and are owned by people
- borrow goods x from people in period 1
- convert these goods into capital $x=k$
- pay back goods plus interest $(1+r) x$ in period 2

Production:

$$
f(k)+(1-\delta) k
$$

Assumptions:

- $f(0)=0, f^{\prime}(0)=\infty$ and $f^{\prime}(\infty)=0$
- $f^{\prime}>0$ and $f^{\prime \prime}<0$

Firms maximize profits:

$$
\max _{k} \Pi=\max _{k} f(k)+k(1-\delta)-(1+r) k
$$

Since people get the profits, the udget constraints are

$$
\begin{aligned}
& c_{1} \leq y_{1}-x \\
& c_{2} \leq y_{2}+(1+r) x+\Pi
\end{aligned}
$$

Definition: And equilibrium is an interest r and an allocation (x, k, c_{1}, c_{2}) such that
(i) people maximize utility taking the interest rate and profits as given
(ii) firms maximize profits taking the interest rate as given
(iii) markets clear, i.e. $c_{1}=y_{1}-x, c_{2}=y_{2}$ and $x=k$.

Solution

For profit maximization to have a solution that corresponds to an equilibrium, we need to have that

$$
f^{\prime}(k)+(1-\delta)=(1+r)
$$

or

$$
f^{\prime}(k)=r+\delta
$$

Solution:

$$
\mathrm{MRT}=f^{\prime}(k)+(1-\delta)=(1+r)=\frac{p_{1}}{p_{2}}=\frac{u^{\prime}\left(c_{1}\right)}{\beta u^{\prime}\left(c_{2}\right)}=\mathrm{IMRS}
$$

Since $c_{1}=y_{1}-k$ and $c_{2}=y_{2}+f(k)+(1-\delta)$, we have a nonlinear equation in k.

Example

- $u(c)=\ln c$
- $f(k)=k^{\alpha}$ and $\delta=0$
- $y_{1}=y$ and $y_{2}=0$

Let's look at a social planner who simply picks an allocation that maximizes utility for people, while respecting all (technological) constraints.

$$
\max _{k} \ln (y-k)+\beta \ln \left(k^{\alpha}\right)
$$

Solution:

$$
\begin{aligned}
c_{1} & =\frac{1}{1+\alpha \beta} y \\
k & =\frac{\alpha \beta}{1+\alpha \beta} y \\
c_{2} & =\left(\frac{\alpha \beta}{1+\alpha \beta} y\right)^{\alpha}
\end{aligned}
$$

Key insight:

Solution depends on parameters (α, β, y) and the model structure.
Let's use our first-order condition:

$$
\mathrm{MRT}=\alpha k^{\alpha-1}=\frac{c_{2}}{\beta c_{1}}=\mathrm{IMRS}
$$

Using the market clearing conditions, we obtain exactly the same result.

This is just a consequence of the two fundamental theorems of welfare economics.

