ECON 815

Fiscal Policy in the RBC Model

Winter 2015

RBC Model with Policy Shocks

A policy is defined by

$$
\left\{z_{t}\right\}_{t=0}^{\infty}=\left\{g_{t}, \tau_{c t}, \tau_{x t}, \tau_{k t}, \tau_{n t}, T_{t}\right\}_{t=0}^{\infty}
$$

The policy is feasible if it satisfies a flow budget constraint

$$
g_{t}=\tau_{c t} c_{t}+\tau_{x t} x_{t}+\tau_{k t} r_{t} k_{t}+\tau_{n t} w_{t} n_{t}-T_{t}
$$

Public expenditures g do not provide direct utility.

There are no technology shocks, but we would like to look at

- anticipated policy changes
- unanticipated policy shocks.

Households take prices and policy as given to maximize

$$
\begin{aligned}
& \max _{\left\{c_{t}, n_{t}, x_{t}\right\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, 1-n_{t}\right) \\
& \text { subject to } \\
& \quad\left(1+\tau_{c t}\right) c_{t}+\left(1+\tau_{x t}\right) x_{t} \leq\left(1-\tau_{k t}\right) r_{t} k_{t}+\left(1-\tau_{n t}\right) w_{t} n_{t}+T_{t} \\
& \quad k_{t+1}=(1-\delta) k_{t}+x_{t} \\
& \quad k_{0} \text { given }
\end{aligned}
$$

Firms have a neoclassical production function and, taking prices as given, maximize profits

$$
\begin{aligned}
r_{t} & =F_{k}\left(k_{t}, n_{t}\right) \\
w_{t} & =F_{n}\left(k_{t}, n_{t}\right)
\end{aligned}
$$

Tax Wedges

Intratemporal distortion

$$
\frac{\left(1-\tau_{n t}\right)}{\left(1+\tau_{c t}\right)}=\frac{u_{n}\left(c_{t}, 1-n_{t}\right)}{u_{c}\left(c_{t}, 1-n_{t}\right) F_{n}\left(k_{t}, n_{t}\right)}
$$

Intertemporal distortion

$$
\begin{aligned}
& \frac{u_{c}\left(c_{t}, 1-n_{t}\right)}{\beta u_{c}\left(c_{t+1}, 1-n_{t+1}\right)}= \\
& \quad \frac{\left(1+\tau_{c t}\right)}{\left(1+\tau_{c t+1}\right)}\left[(1-\delta) \frac{\left(1+\tau_{x t+1}\right)}{\left(1+\tau_{x t}\right)}+F_{k}\left(k_{t+1}, n_{t+1}\right) \frac{\left(1-\tau_{k t+1}\right)}{\left(1+\tau_{x t}\right)}\right]
\end{aligned}
$$

Steady State

The steady state is given by the solution $\left(c^{S S}, n^{S S}, k^{S S}\right)$ to

$$
\begin{aligned}
& 1=\beta\left[(1-\delta)+\frac{\left(1-\tau_{k}\right)}{\left(1+\tau_{x}\right)} F_{k}\left(k^{S S}, n^{S S}\right)\right] \\
& \frac{u_{c}\left(c^{S S}, 1-n^{S S}\right)}{u_{n}\left(c^{S S}, 1-n^{S S}\right)}=\frac{\left(1-\tau_{n}\right)}{\left(1+\tau_{c}\right)} F_{n}\left(k^{S S}, n^{S S}\right) \\
& g+c^{S S}+\delta k^{S S}=F\left(k^{S S}, n^{S S}\right)
\end{aligned}
$$

Suppose $u(c, 1-n)=u(c)$, i.e. labour is inelastically supplied.

- Labour taxes are lump-sum.
- Constant consumption taxes $\left(\tau_{c} \neq 0\right)$ are not distorting either.
- It is optimal to set $\tau_{x}=\tau_{k}=0$ in steady state $k^{S S}$.

Distortions in TFP vs. Policy

What accounts for persistent differences in GDP across countries?

1) OECD vs. developing countries:

Different institutions are "barriers to riches" and lead to lower TFP.
2) Within OECD:

Labour taxes are higher in some countries leading - with high enough labor elasticity - to losses in GDP.

Variations in Policy Matter

Denote the after-tax gross return on capital by $1+R_{t+1}$.
With inelastically supplies labour $(n=1)$, we get

$$
u^{\prime}\left(c_{t}\right)=\beta u^{\prime}\left(c_{t+1}\right)\left(1+R_{t+1}\right)
$$

or

$$
\log \left(\frac{c_{t+1}}{c_{t}}\right)=\frac{1}{\gamma}\left(R_{t+1}-\bar{R}\right)
$$

The return R_{t+1} - and, hence, investment and consumption - is influenced by variations in tax rates.

Policy Experiments

We look at announced policy changes in period 0 that will take effect in period T.

There is a response to the announcement. The economy will react before the shock happens based on rational expectations about future policy changes.

There is a transient response after the shock to go back to the (possibly new) steady state.

We still can distinguish between permanent and temporary policy changes.

Lump-sum transfers are always available to satisfy the government's budget constraint.

- take labour to be inelastically supplied
- explicitly we vary taxes or expenditures
- implicitly we need to adjust lump-sum transfers

Experiment I - Surprise in g

Figure : Temporary increase in $t=0$ from $g=0.2$ to $g=0.4$

Experiment II - Announcement of increase in g

Figure : Temporary increase in $t=10$ from $g=0.2$ to $g=0.4$

Experiment III - Announcement of increase in g

After Tax R

Aft. Tax Ret on k

Shock

Figure : Permanent increase in $t=10$ from $g=0.2$ to $g=0.4$

Experiment IV - Announcement of increase in τ_{c}

GDP

After Tax R

Aft. Tax Ret on k

k

Figure : Permanent increase in $t=10$ from $\tau_{c}=0$ to $\tau_{c}=0.2$

Experiment V - Announcement of increase in τ_{i}

Aft. Tax Ret on k

Figure : Temporary increase in $t=10$ from $\tau_{i}=0$ to $\tau_{i}=0.2$

Experiment VI - Announcement of increase in τ_{i}

Aft. Tax Ret on k

Shock

Figure : Permanent increase in $t=10$ from $\tau_{i}=0$ to $\tau_{i}=0.2$

Experiment VII - Announcement of increase in τ_{k}

Figure : Permanent increase in $t=10$ from $\tau_{k}=0$ to $\tau_{k}=0.2$

