ECON 815 Introduction

Winter 2015

Queen's University - ECON 815

1

What is the course about?

Modern macroeconomics is about understanding cyclical fluctuations.

Important for:

- ► forecasting
- analyze policy changes
- design optimal policy responses to shocks

Main issue:

The first task merely requires an econometric (reduced form) toolkit. The second requires a theoretical (structural) model. The third requires a combination of the two.

A Brief History of Thought

Classic nonstructural approach:

▶ reduced form, univariate ARMA models (Box-Jenkins)

Keynesian large-scale structural models:

- ▶ ad-hoc postulated, simultaneous equation models
- ▶ not micro-founded, nor connected to long-run
- equation-by-equation estimation

Modern nonstructural models:

- multivariate time series analysis
- ▶ error correction models & VARs
- common factor models

DSGE models:

- micro-founded and trend-dependent
- structurally estimated and/or calibrated

What is DSGE about?

 ${f D}_{ynamic}$ – how an economy evolves throughout time ${f S}_{tochastic}$ – in response to shocks ${f G}_{eneral}$ – at a high level of aggregation ${f E}_{quilibrium}$ – based on (optimal) decision rules.

Key Aspects:

- ▶ The core is a structural, microfounded model.
- Due to non-linearities, the model is solved in an approximate way.
- ▶ The model is then compared to the data taking the model serious.
- ▶ It is thus a synthesis of reduced form and structural approaches.

Overview

- 1) Two-period economy
- 2) Long-run growth
- 3) The canonical RBC model
 - steady state
 - linear approximations
 - calibration
 - computing IRFs and simulate
 - ► (S)VARs
- 4) DSGE models and Monetary Policy
 - evidence
 - Lucas-island economy and Newkeynesian model
 - interest rate rules
 - optimal policy

A Glance at the Data

Canadian Real GDP - 1981:1 - 2013:3

<u>Issue:</u> GDP is I(1) and we want to explain fluctuations around trend.

Fluctuations in Real GDP – 1981:1 - 2013:3

Issue: There are many ways to "detrend" the data.

Stationarity and Detrending

- 1) First-differences
 - growth rates are given by $\frac{\dot{y}_t}{y_t} = \frac{d \ln y_t}{dt}$

• or:
$$\frac{y_t - y_{t-1}}{y_{t-1}}$$
 which can be approximated by $\Delta \ln y_t$

2) HP filter

▶ decompose series into a cyclical component and a trend

$$y_t = y_t^g + y_t^c + \epsilon_t$$

least square estimator

$$\min_{y_t^g} \sum_{t=0}^T (y_t - y_t^g)^2 + \lambda \sum_{t=0}^T (\Delta^2 y_t^g)^2$$

• for quarterly business cycle data set $\lambda = 1600$

3) Cointegration

- Take two time series, y_t and x_t .
- They are cointegrated whenever there exists some γ s.th. $\epsilon_t = y_t \gamma x_t$ is I(0).
- ▶ If the variables are cointegrated, they have a common trend.
- ▶ Then simply differencing variable by variable would lose information.
- ▶ We want to purge the common trend from the variables to study short-term deviations from that trend.

Classic example: Consumption and Output

Canadian Real GDP (blue) and Consumption (red) – 1981:1 - 2013:3 Residuals from Cointegration

Empirical results will be different if one simply detrends output and consumption separately, rather than taking into account the long-run relationship.

Second Moments

"Classic" Approach of DSGE:

- ▶ calibrate the data
- solve the model
- ▶ simulate the model
- compare moments (or IRFs to shocks)

Mean Annual Growth, Standard Deviation and Covariance with Output (Canada 1981:1 - 2013:3)

	Mean	$\frac{SD}{SD_Y}$	-4	-3	-2	-1	0	1	2	3	4
Output	2.35	1	0.03	0.21	0.31	0.55	1	0.55	0.31	0.21	0.03
Cons.	2.43	0.72	-0.13	0.21	0.24	0.32	0.53	0.31	0.26	0.15	0.07
Inv.	2.92	5.12	-0.01	0.09	0.32	0.47	0.59	0.48	0.15	0.00	-0.07
Hours	1.22	0.97	-0.08	0.07	0.25	0.53	0.70	0.61	0.35	0.18	0.09
Prod.	1.13	0.76	0.15	0.19	0.10	0.05	0.41	-0.05	-0.04	0.05	-0.08

Stylized RBC Facts

- ▶ stable long-run trend growth (balanced growth path)
- ▶ investment fluctuates more than output
- consumption is smooth relative to output
- ▶ hours and output fluctuate about the same (but avg. weekly hours fluctuate much less)
- productivity is procyclical, but fluctuates somewhat less than output
- real wages vary less than productivity and avg. compensation not correlated with output

Conclusion:

Technology shocks should play a large role with investment and labor input being the main propagating mechanisms.