ECON 815

Uncertainty and Asset Prices

Winter 2014

Adding Uncertainty

Endowments are now stochastic.

- endowment in period 1 is fixed at $y_{1}=y$
- two states $s \in\{H, L\}$ in period 2 , where $y_{L}<y_{H}$
- there is a probability distribution $\left(\pi_{L}, \pi_{H}\right)$

People now maximize expected utility

$$
u\left(c_{1}\right)+\beta E\left[u\left(c_{2}\right)\right]
$$

Key idea:
They face different budget constraints depending on the state.
Consumption in different states is a different good.

Extending the Framework

With more periods, it is convenient to allow tomorrow's state to depend on today's state.

Example 1: Markov chain with two states

$$
\Pi=\left[\begin{array}{ll}
\pi_{11} & \pi_{12} \\
\pi_{21} & \pi_{22}
\end{array}\right]
$$

where $\pi_{i j}$ describes the probability of going from state i today to state j tomorrow.
Example 2: AR(1) process

$$
y_{t}=\rho y_{t-1}+\epsilon_{t}
$$

where $\epsilon_{t} \sim \mathcal{N}(0, \sigma)$ and $\rho \in(0,1)$
We then have that tomorrow's expected values are functions of today's state or

$$
E_{t}\left[y_{t+1}\right]=E\left[y_{t+1} \mid y_{t}, \ldots\right]
$$

Decisions under Uncertainty

With two periods, people solve

$$
\begin{aligned}
& \max E_{t}\left[u\left(c_{t}\right)+\beta u\left(c_{t+1}\right)\right] \\
& \quad \text { subject to } \\
& \quad c_{t}+a_{t}=y_{t} \\
& \quad c_{s, t+1}=y_{s, t+1}+\left(1+r_{t+1}\right) a_{t} \text { for all } s
\end{aligned}
$$

where a denote savings now and r_{t} is a risk-free interest rate.
Solution:

$$
E_{t}\left[\frac{u^{\prime}\left(c_{t}\right)}{\beta u^{\prime}\left(c_{t+1}\right)}\right]=1+r_{t+1}
$$

Warning!

$$
E[f(x)]<f(E[x]) \text { if and only if } f^{\prime \prime}<0
$$

which is referred to as Jensen's inequality.

Asset Prices

What is an asset?

- assume again two periods (or equivalently a short-lived asset)
- everything is in units of consumption
- pay price p_{t} for asset ...
- ... in exchange for payoffs across states tomorrow

Think of a tree. It yields fruit every period (dividend) and can be resold each period. The return from buying a tree is

$$
1+r\left(s_{t+1} \mid s_{t}\right)=\frac{d\left(s_{t+1} \mid s_{t}\right)+p\left(s_{t+1} \mid s_{t}\right)}{p\left(s_{t}\right)}
$$

in state s tomorrow.

An asset is risk-free if it has the same return across all states tomorrow. Otherwise it is a risky asset.

For a risky asset, we have an expected total return of

$$
E_{t}\left[1+r_{t+1}\right]=E_{t}\left[\frac{d_{t+1}+p_{t+1}}{p_{t}}\right] .
$$

Note that this return will in general depend on today's state. Why?

- c_{t} can vary across states
- d might depend on today's state

The key question is then how to determine the asset prices $\left\{p\left(s_{t+1} \mid s_{t}\right)\right\}_{t}$.

We use our model - the intertemporal Euler equation, expectations and asset payoffs - to derive a theory of asset prices.

Arrow-Debreu Securities

To do so, we first will price elementary securities called Arrow-Debreu securities.

- tomorrow's states $s \in\{1,2, \ldots, S\}$
- today's AD security s pays exactly one unit of consumption in state s tomorrow and nothing in any other state or period
- its price is called the state price s
- think of them as one-period zero coupon bonds

All assets can be thought of as portfolios of AD securities.
Key Idea: If we can price all AD securities, we can price any other security through arbitrage.

This is known as the consumption-based capital asset pricing model (CCAPM) and relies on the notion of complete markets.

Pricing Securities

Suppose there are two states and people can only choose AD securities to invest in.

$$
\begin{aligned}
& \max u\left(c_{t}\right)+\beta E_{t}\left[u\left(c_{t+1}\right)\right] \\
& \quad \text { subject to } \\
& \quad c_{t}+q\left(1 \mid s_{t}\right) a\left(1 \mid s_{t}\right)+q\left(2 \mid s_{t}\right) a\left(2 \mid s_{t}\right) \leq y_{t} \\
& \quad c\left(s_{t+1} \mid s_{t}\right) \leq y_{t+1}+a\left(s_{t+1} \mid s_{t}\right) \text { for all } s_{t+1}
\end{aligned}
$$

where $a\left(s_{t+1} \mid s_{t}\right)$ is the amount of AD security $s_{t+1} \mid s_{t}$ they buy.
Solution:

$$
q\left(s_{t+1} \mid s_{t}\right)=\frac{\beta \pi\left(s_{t+1} \mid s_{t}\right) u^{\prime}\left(c\left(s_{t+1} \mid s_{t}\right)\right.}{u^{\prime}\left(c_{t}\right)}
$$

where $\pi\left(s_{t+1} \mid s_{t}\right)$ is the conditional probability for state s_{t+1} occurring in period t.

Example 1: Consider a one-period risk-free bond that pays 1 unit of consumption in each state tomorrow.

Payoffs for the bond are given by:

$$
\binom{1}{1}=1 \cdot\binom{1}{0}+1 \cdot\binom{0}{1}
$$

Hence, its price is equal to a portfolio consisting of one unit of each of the two AD securities. Thus,

$$
\begin{aligned}
q & =q\left(1 \mid s_{t}\right)+q\left(2 \mid s_{t}\right)=\frac{\beta \pi\left(1 \mid s_{t}\right) u^{\prime}\left(c\left(1 \mid s_{t}\right)\right)}{u^{\prime}\left(c_{t}\right)}+\frac{\beta \pi\left(2 \mid s_{t}\right) u^{\prime}\left(c\left(2 \mid s_{t}\right)\right)}{u^{\prime}\left(c_{t}\right)} \\
& =\beta E_{t}\left[\frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}\right] .
\end{aligned}
$$

This implies that the risk-free interest $q=1 /\left(1+r^{f}\right)$ rate solves the equation

$$
1=E_{t}\left[\frac{\beta u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}\right]\left(1+r_{t+1}^{f}\right)
$$

Example 2: Consider any asset with arbitrary payoff across states equal to $\left(x_{1}, x_{2}\right)$.
It's price must be given by

$$
q_{x}=x_{1} q_{1, t}+x_{2} q_{2, t}=\beta E_{t}\left[\frac{u^{\prime}\left(c_{t+1}\right) x_{t+1}}{u^{\prime}\left(c_{t}\right)}\right]
$$

Interpret this as equity with payoff $x_{t+1}=d_{t+1}+q_{t+1}$. We then have that the return on equity is defined by

$$
1=\beta E_{t}\left[\frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}\left(1+r_{t+1}^{e}\right)\right]
$$

Careful! The return on equity is also a random variable.

Consumption Insurance and Risk Premia

We have

$$
E[x y]=E[x] E[y]+\operatorname{Cov}[x y] .
$$

This implies for asset pricing that

$$
q_{x}=E_{t}\left[\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}\right] E_{t}[x]+\beta \operatorname{Cov}\left[\frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}, x\right]
$$

What matters for asset prices?

- the average payoff ...
- ... and the covariance of payoffs with consumption
- if negative, it is a hedge which increases the price
- if positive, people require an additional risk premium which decrease the price

