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What does really drive BCs?

Some correlations for Canada (1/1981-3/2013):

I corr(GDP, Hours) = 0.696

I corr(GDP, Prod) = 0.491

I corr(Prod, Hours) = -0.285

So hours move countercyclical relative to prod. shocks.

In the RBC model, we need very high intertemporal elasticity of
substitution (η or σ), so that the income effect dominates the
substitution effect.

1) What shocks are then responsible for cycles?

2) How can we identify these from the data?
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VAR Analysis

Consider the following model specification:

yt = µ+ Γ1yt−1 + · · ·+ Γpyt−p + εt

For theoretical exposition, we can always stack vectors of longer lags
to only consider a first-order VAR

yt = µ+ Γyt−1 + εt

We are interested again either in the IRFs or in estimating (long-run)
correlations between variables.
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For that purpose, we can transform the VAR into its MA
representation (presuming that Γ is stable).

Then, by repeated substitution we can rewrite the VAR as

yt = µ+ Γyt−1 + εt

= µ+ Γµ+ Γ2yt−2 + εt + Γεt−1

= [I− Γ(L)]−1(µ+ εt)

= ȳ +

∞∑
t=0

Γiεt−i

Interpretation:

I we can use the Γi matrices to figure out IRFs
I element is given by γml(i)
I deviation of ym,t+i from its mean to a one-time shock in εl,t

One can use OLS to (point) estimate Γ(L). Standard errors are not
straightforward to obtain.
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Gali, AER (1999)

Model – VAR in hours nt and (labour) productivity zt

We (log) first-difference productivity and hours

I ∆zt = log zt − log zt−1
I ∆nt = log nt − log nt−1

Specification:(
∆zt
∆nt

)
=

[
γ
(t−1)
11 γ

(t−1)
12

γ
(t−1)
21 γ

(t−1)
22

](
∆zt−1
∆nt−1

)
+ · · ·+

(
ε1t
ε2t

)

We could estimate IRFs and correlations from this model, but it
would not be useful for answering our question.

Why? We can neither interpret coefficients (γ’s) nor shocks (ε’s).
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Problem: Identification

We would like to obtain a 1-1 mapping between the estimated
coefficients and shocks to a theoretical model that allows for an
interpretation of these objects.

We would like to call some shocks supply or technology shocks and
others demand shocks and obtain correlations conditional on these
shocks.

Assumptions:

1) Shocks are orthogonal, or Eεtε
′
t = Σ = I.

2) Productivity is influenced in the long-run only by technology
shocks, or γ12 = 0.
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Structural VAR

For simplicity, we assume now a lag of one period only. We have then
the following recursive structure:

∆zt = γ11∆zt−1 + ε1t

∆nt = γ12∆zt−1 + γ22∆nt−1 + ε2t

Since the shocks are orthogonal to each other, the system is a fully
recursive and we can estimate the VAR now equation by equation.

Under these restrictions, the parameters of a theoretical model of the
form

Θyt = Ψyt−1 + ηt

where E[ηtη
′
t] = Ω would be identified.
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Interpretation of the SVAR

Shocks
I technology

log zt = log zt−1 + ηt
I demand or policy shock

logMs
t = logMs

t−1 + χt

Firms are monopolistic price-setters, but need to wait one period to
change prices.

With technology shock, firms will not adjust output since real
balances do not change and, thus, demand is constant.

=⇒ negative correlation between hours and productivity.

With demand shock, real balances rise for one period (prices are
fixed) and, thus output increases.

=⇒ positive correlation between hours and (measured) productivity
possible (e.g. short-run increasing returns to scale).

Queen’s University – ECON 815 8



Lecture X

Evidence from Canadian Data

Step 1 – Reduced from VAR:

I lag of 1

I coefficient matrix

Γ =

[
0.0686 0.16273
0.4527 0.6087

]
I used bootstrapping for constructing confidence intervals

Step 2 – Structural VAR as in Gali (1999):

I restrictions as above

I calculated conditional correlations from MA representation

I corr(∆zt,∆nt|1) = −0.6784

I corr(∆zt,∆nt|2) = 0.6620
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IRFs – Reduced Form VAR
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IRFs – SVAR acc. to Gali, AER (1999)

2 4 6 8 10

−
0.

00
1

0.
00

0
0.

00
1

0.
00

2
0.

00
3

xy$x

di
ff.

lo
g.

pr
od

2 4 6 8 10

−
0.

00
1

0.
00

0
0.

00
1

0.
00

2
0.

00
3

xy$x

di
ff.

lo
g.

ho
ur

s

SVAR Impulse Response from diff.log.prod

Queen’s University – ECON 815 12



Lecture X

2 4 6 8 10

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30

xy$x

di
ff.

lo
g.

pr
od

2 4 6 8 10

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30

xy$x

di
ff.

lo
g.

ho
ur

s

SVAR Impulse Response from diff.log.hours

Queen’s University – ECON 815 13


