ECON 815

Introduction

Winter 2014

What is the course about?

Modern macroeconomics is about understanding cyclical fluctuations.

Important for:

- forecasting
- analyze policy changes
- design optimal policy responses to shocks

Main issue:

The first task merely requires an econometric (reduced form) toolkit. The second requires a theoretical (structural) model. The third requires a combination of the two.

A Brief History of Thought

Classic Non-structural Approach:

- developed pre WWII
- ▶ reduced form, univariate ARMA models (Box-Jenkins)

Keynesian Large-scale Structural Models:

- ▶ ad-hoc postulated, simultaneous equation models
- not connected to long-run
- equation-by-equation estimation

Modern Nonstructural models:

- multivariate time series analysis
- error correction models & VARs
- cointegration issues and common factor models

The course will focus on **DSGE** models.

What is DSGE about?

 \mathbf{D} ynamic – how an economy evolves throughout time

 $S_{tochastic-in}$ response to shocks

General – at a high level of aggregation

 ${f E}$ quilibrium – based on (optimal) decision rules.

Key Aspects:

- ▶ at the core, there is a structural, microfounded model
- ▶ due to non-linearities, this model is solved in an approximate way
- the model is then compared to the data taking the model serious
 which is quite schizophrenic
- ▶ have become an indispensable way for policy analysis
- by now: it has become an art how to match models and data for estimation

Ultimately: a synthesis of reduced form and structural approaches.

Overview

- 1. Two-period economy
- 2. The canonical RBC model
 - steady state
 - linear approximations
 - calibration
 - computing IRFs and simulate
 - (possibly VAR and SVAR)
- 3. Fiscal Policy and Business Cycles
- 4. (Newkeynesian) DSGE models and Monetary Policy
- 5. Financial Shocks

A Glance at the Data

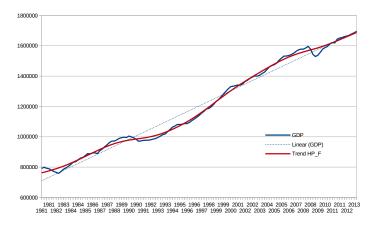


Figure: Canadian Real GDP – 1981:1 - 2013:3

<u>Issue:</u> macro variables are often I(1) and we want to explain fluctuations around trend.

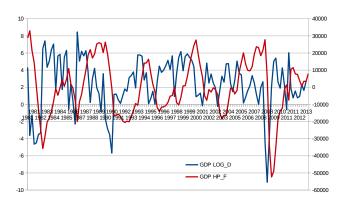


Figure: Fluctuations in Real GDP - 1981:1 - 2013:3

<u>Issue:</u> there are many ways to "detrend" the data and render variables stationary.

Stationarity and Detrending

- 1) First-differences:
 - growth rates are given by $\frac{\dot{y}_t}{y_t} = \frac{d \ln y_t}{dt}$
 - ▶ or: $\frac{y_t y_{t-1}}{y_{t-1}}$ which can be approximated by $\Delta \ln y_t$
- 2) HP filter:
 - decompose series into a cyclical component and a trend
 - ▶ least square estimator: $\min_{y_t^g} \sum_{t=0}^T (y_t y_t^g)^2 + \lambda \sum_{t=0}^T (\Delta^2 y_t^g)^2$
 - for quarterly business cycle data set $\lambda = 1600$
- 3) Cointegration
 - \blacktriangleright take two time series y_t and x_t
 - they are cointegrated whenever there exists some γ s.th. $\epsilon_t = y_t \gamma x_t$ is I(0)
 - if the variables are cointegrated, simple differencing would lose information
 - ▶ classic example: consumption and output have both a long-run relationship and short-run dynamics

Second Moments

"Classic" Approach of DSGE:

- ▶ calibrate the data
- ▶ solve the model
- ▶ simulate the model
- compare moments (or IRFs to shocks)

Table: Mean Annual Growth, Standard Deviation and Covariance with Output (Canada 1981:1 - 2013:3)

	Mean	$\frac{SD}{SD_Y}$	-4	-3	-2	-1	0	1	2	3	4
Output	2.35	1	0.03	0.21	0.31	0.55	1	0.55	0.31	0.21	0.03
Cons.	2.43	0.72	-0.13	0.21	0.24	0.32	0.53	0.31	0.26	0.15	0.07
Inv.	2.92	5.12	-0.01	0.09	0.32	0.47	0.59	0.48	0.15	0.00	-0.07
Hours	1.22	0.97	-0.08	0.07	0.25	0.53	0.70	0.61	0.35	0.18	0.09
Prod.	1.13	0.76	0.15	0.19	0.10	0.05	0.41	-0.05	-0.04	0.05	-0.08

Stylized RBC Facts

- relatively stable long-run trend growth (balanced growth path)
- ▶ investment fluctuates more than output
- consumption is smooth relative to output
- ▶ hours and output fluctuate about the same (but avg. weekly hours fluctuate much less)
- ▶ productivity fluctuates somewhat less than output, but it procyclical (seems to drive output)
- ▶ Also: real wages vary less than productivity and avg. compensation not correlated with output

<u>Key:</u> We should expect that technology shocks play a large role with investment and labor input being the main propagating mechanisms.