Formulation 2 of the Decision Rule: the p-value Rule

What is a Decision Rule?

The decision rule for an hypothesis test is a rule that states when the null hypothesis H_0 is rejected or retained (not rejected) against an alternative hypothesis H_1 at some chosen significance level α .

Formulation 2: Determine if the **p-value for** the *calculated sample* value of the test statistic t_0 or F_0 under the null hypothesis H_0 is *smaller* or *larger* than the chosen significance level α .

Definition: The **p-value** (or **probability value**) associated with the calculated sample value of the test statistic is defined as the *lowest* significance level at which the null hypothesis H_0 can be rejected, given the calculated sample value of the test statistic.

Interpretation

- The p-value is the probability of obtaining a sample value of the test statistic as extreme as the one we computed if the null hypothesis H_0 is true.
- P-values serve as *inverse* measures of the strength of evidence *against* the *null* hypothesis H₀.
 - Small p-values p-values close to zero constitute strong evidence against the null hypothesis H₀.
 - Large p-values p-values close to one provide only weak evidence against the null hypothesis H₀.

Examples of p-values for common types of hypothesis tests

Two-tail t-tests

• For a *two-tail* t-test, let the calculated sample value of the t-statistic for a given null hypothesis be t₀. Then the p-value associated with the sample value t₀ is the probability of obtaining an **absolute value of the t-statistic** greater than the absolute value of t₀ *if* the null hypothesis H₀ is true, where the absolute value of t₀ is denoted as | t₀|. That is,

two-tail p-value for
$$t_0 = Pr(|t| > |t_0| | H_0 \text{ is true})$$

$$= Pr(t > t_0 | H_0 \text{ is true}) + Pr(t < -t_0 | H_0 \text{ is true}) = 2 \cdot Pr(t > t_0 | H_0 \text{ is true}) \quad \text{if } t_0 > 0$$

$$= Pr(t < t_0 | H_0 \text{ is true}) + Pr(t > -t_0 | H_0 \text{ is true}) = 2 \cdot Pr(t < t_0 | H_0 \text{ is true}) \quad \text{if } t_0 < 0$$

Remember: the t-distribution is symmetric about its mean of zero.

Two-tail p-value of $t_0 = 1.8$ when Null Distribution of t_0 is t[50]

two-tail **p-value for** $\mathbf{t}_0 = \Pr(|\mathbf{t}| > |\mathbf{t}_0| | \mathbf{H}_0 \text{ is true}) = \Pr(|\mathbf{t}| > 1.8 | \mathbf{H}_0 \text{ is true}) = 0.07790$

. * TWO-TAIL p-value of t0 = 1.8 when t0 has t[50] distribution
. display 2*ttail(50, 1.8)
.07789525
. display 2*ttail(50, abs(-1.8))
.07789525

... Page 3 of 12 pages

One-tail t-tests

- For a *<u>one-tail t-test</u>*, let the calculated sample value of the t-statistic for a given null hypothesis be t₀. Then the p-value associated with the sample value t₀ depends on whether the test is a *right-tail* or *left-tail* test.
 - (1) For a *right-tail* t-test, the p-value associated with the sample value t₀ is the **probability of obtaining a t-** statistic value *greater than* the calculated sample value t₀ *if* the null hypothesis H₀ is true i.e.,

right-tail **p**-value for $t_0 = Pr(t > t_0 | H_0 \text{ is true}).$

(2) For a *left-tail* t-test, the p-value associated with the sample value t₀ is the **probability of obtaining a t-** statistic value *less than* the calculated sample value t₀ *if* the null hypothesis H₀ is true – i.e.,

left-tail p-value for $t_0 = Pr(t < t_0 | H_0 \text{ is true}).$

Right-tail p-value of $t_0 = 1.8$ when Null Distribution of t_0 is t[50]

right-tail **p-value for** $\mathbf{t}_0 = \mathbf{Pr}(\mathbf{t} > \mathbf{t}_0 | \mathbf{H}_0 \text{ is true}) = \Pr(\mathbf{t} > 1.8 | \mathbf{H}_0 \text{ is true}) = 0.03895$

. * RIGHT-TAIL p-value of t0 = 1.8 when t0 has t[50] distribution

. display ttail(50, 1.8)

.03894762

Right-tail p-value of $t_0 = -1.8$ **when Null Distribution of** t_0 **is** t**[50]**

right-tail **p-value for** $\mathbf{t}_0 = \mathbf{Pr}(\mathbf{t} > \mathbf{t}_0 | \mathbf{H}_0 \text{ is true}) = \Pr(\mathbf{t} > -1.8 | \mathbf{H}_0 \text{ is true}) = 0.9611$

. * RIGHT-TAIL p-value of t0 = -1.8 when t0 has t[50] distribution

- . display ttail(50, -1.8)
- .96105238

Left-tail p-value of $t_0 = -1.8$ when Null Distribution of t_0 is t[50]

left-tail **p-value for t**₀ = $Pr(t < t_0 | H_0 \text{ is true}) = Pr(t < -1.8 | H_0 \text{ is true}) = 0.03895$


```
. * LEFT-TAIL p-value of t0 = -1.8 when t0 has t[50] distribution
. display 1 - ttail(50, -1.8)
```

```
.03894762
```

Left-tail p-value of $t_0 = 1.8$ when Null Distribution of t_0 is t[50]

left-tail **p-value for** $\mathbf{t}_0 = \mathbf{Pr}(\mathbf{t} < \mathbf{t}_0 | \mathbf{H}_0 \text{ is true}) = \Pr(\mathbf{t} < 1.8 | \mathbf{H}_0 \text{ is true}) = 0.9611$


```
. * LEFT-TAIL p-value of t0 = 1.8 when t0 has t[50] distribution
. display 1 - ttail(50, 1.8)
.96105238
```

... Page 8 of 12 pages

F-tests

For an <u>F-test</u>, let the calculated sample value of the F-statistic for a given null hypothesis be F₀. Then the p-value associated with the sample value F₀ is the probability of obtaining an F-statistic value greater than the calculated sample value F₀ if the null hypothesis H₀ is true – i.e.,

p-value for $\mathbf{F}_0 = \Pr(\mathbf{F} > \mathbf{F}_0 | \mathbf{H}_0 \text{ is true}).$

Note that the F-distribution is defined only over non-negative values that are greater than or equal to zero.

P-value for $F_0 = 2.5$ when Null Distribution of F_0 is F[3, 60]

p-value of F_0 = Pr(F > F_0 | H_0 \text{ is true}) = Pr(F > 2.5 | H_0 \text{ is true}) = 0.06802

. * p-value of F0 = 2.5 when F0 has F[3,60] null distribution

. display Ftail(3, 60, 2.5)

.06802185

P-value of $F_0 = 1.5$ when Null Distribution of F_0 is F[3, 60]

p-value for $\mathbf{F}_0 = \mathbf{Pr}(\mathbf{F} > \mathbf{F}_0 | \mathbf{H}_0 \text{ is true}) = \Pr(\mathbf{F} > 1.5 | \mathbf{H}_0 \text{ is true}) = 0.2237$

. * p-value of F0 = 1.5 when F0 has F[3,60] null distribution

. display Ftail(3, 60, 1.5)

```
.22372095
```

M.G. Abbott

P-value Decision Rule -- Formulation 2

1. If the **p-value** for the calculated sample value of the test statistic *is less than* the chosen **significance level** α , *reject* the null hypothesis at significance level α .

p-value $< \alpha \implies$ *reject* H₀ at significance level α .

2. If the **p-value** for the calculated sample value of the test statistic *is greater than or equal to* the chosen significance level α, *retain (i.e., do not reject)* the null hypothesis at significance level α.

p-value $\geq \alpha \implies retain H_0$ at significance level α .