ECON 452*: Stata 12/13 Tutorials 8 and 9

```
TOPIC: Estimating and Testing the Marginal Probability Effect of the Binary Variable 'dkidslt6'
DATA: mroz.dta (a Stata-format dataset created in Stata 12/13 Tutorial 8)
```

- The Stata commands that constitute the primary subject of these tutorials are:
probit Used to compute ML estimates of probit coefficients in probit models of binary dependent variables.
dprobit Used to compute ML estimates of the marginal probability effects of explanatory variables in probit models.
test Used after probit estimation to compute Wald tests of linear coefficient equality restrictions on probit coefficients.
lincom Used after probit estimation to compute and test the marginal effects of individual explanatory variables.
margins Used after probit estimation to compute estimates of the marginal probability effects of both continuous and categorical (binary) explanatory variables.
- The Stata statistical functions used in this tutorial are:
normalden(z) Computes value of the standard normal density function (p.d.f.) for a given value \mathbf{z} of a standard normal random variable.
normal(z) Computes value of the standard normal distribution function (c.d.f.) for a given value \mathbf{z} of a standard normal random variable.
invnormal $(p) \quad$ Computes the inverse of the standard normal distribution function; if normal(z) $=\boldsymbol{p}$, then invnormal $(p)=z$.

Two Probit Models of Married Women's Participation: Specification of Models 2 and 3

We consider two different models of married women's labour force participation.

- Model 2 was introduced in Stata 12/13 Tutorial 8. The binary indicator variable dkidslt \boldsymbol{i}_{i} enters only as an additive regressor.
- Model 3 is a generalization of Model 2: it allows all probit coefficients to differ between (1) married women who currently have one or more pre-school aged children and (2) married women who currently have no preschool aged children. The binary explanatory variable dkidslt $\boldsymbol{\sigma}_{i}$ enters both additively and multiplicatively.

The observed dependent variable in both models is the binary variable inlf $\boldsymbol{f}_{\boldsymbol{i}}$ defined as follows:
inlf $_{\mathrm{i}}=1$ if the i -th married woman is in the employed labour force
$=0$ if the i -th married woman is not in the employed labour force
The explanatory variables in Models 2 and 3 are:
nwifeinc $_{\mathrm{i}}=$ non-wife family income of the i-th woman (in thousands of dollars per year);
$\mathrm{ed}_{\mathrm{i}} \quad=$ years of formal education of the i-th woman (in years);
$\exp _{i} \quad=$ years of actual work experience of the i-th woman (in years);
age $_{i} \quad=$ age of the i-th woman (in years);
dkidslt $_{\mathrm{i}} \quad=1$ if the i -th woman has one or more children less than 6 years of age, $=0$ otherwise.
Four of these explanatory variables -- nwifeinc ${ }_{i}$, ed $_{i}, \exp _{i}$, and age ${ }_{i}--$ are continuous variables, whereas the fifth explanatory variable -- dkidslt 6_{i}-- is a binary indicator (dummy) variable.

Model 2 - binary explanatory variable dkidslt $_{i}$ enters only additively

The probit index function, or regression function, for Model 2 is:

$$
\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \operatorname{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}+\delta_{0} \text { dkidslt }_{\mathrm{i}}
$$

Remarks: In Model 2, the binary explanatory variable dkidslt $_{i}$ enters only additively; only the intercept $^{\mathbf{i}}$ coefficient in the index function differs between the two groups of married women, those who have pre-school aged children and those who do not.

- In Model 2, the probit index function for married women who have no pre-school aged children, for whom dkidslt $6_{\mathrm{i}}=0$, is obtained by setting dkidslt $_{\mathrm{i}}=0$ in the index function for Model 2:

$$
\begin{aligned}
\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } \left.6_{\mathrm{i}}=0\right)}=\right. & \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0} 0 \\
& =\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \operatorname{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}
\end{aligned}
$$

- In Model 2, the probit index function for married women who have one or more pre-school aged children, for whom dkidslt $_{\mathrm{i}}=1$, is obtained by setting dkidslt $6_{\mathrm{i}}=1$ in the index function for Model 2:

$$
\begin{aligned}
\left(x_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}=1}\right) & =\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \operatorname{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0} 1 \\
& =\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}
\end{aligned}
$$

- In Model 2, the marginal index effect of the binary indicator variable dkidsltt $\boldsymbol{\sigma}_{\boldsymbol{i}}$ is simply the difference between (1) the index function for married women who currently have one or more pre-school aged children, $\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{i}}^{\mathrm{i}}=1\right.$) and (2) the index function for married women who currently have no pre-school aged children, $\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$:

$$
\begin{aligned}
& \left(x_{i}^{\mathrm{T}} \beta \mid \operatorname{dkidslt}_{\mathrm{i}}^{\mathrm{i}}=1\right)-\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right) \\
& =\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0} \\
& -\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right) \\
& =\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0} \\
& -\beta_{0}-\beta_{1} \text { nwifeinc }_{i}-\beta_{2} \text { ed }_{i}-\beta_{3} \exp _{i}-\beta_{4} \exp _{i}^{2}-\beta_{5} \text { age }_{i} \\
& =\delta_{0}
\end{aligned}
$$

- In Model 2, the marginal probability effect of the binary indicator variable dkidsltt \boldsymbol{i}_{i} is the difference between (1) the conditional probability that inlf $\mathrm{f}_{\mathrm{i}}=1$ for married women with one or more pre-school aged children and (2) the conditional probability that inlf $_{\mathrm{i}}=1$ for married women with no pre-school aged children:

$$
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \operatorname{dkidsltt}_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)
$$

where $\Phi(*)$ is the cumulative distribution function (cdf) of the standard normal distribution and

$$
\begin{aligned}
& x_{1 i}^{T}=\left(1 \text { nwifeinc }_{i} \operatorname{ed}_{i} \exp _{i} \exp _{i}^{2} \text { age }_{i} 1\right) \\
& x_{0 i}^{T}=\left(1 \text { nwifeinc }_{i} \text { ed }_{i} \exp _{i} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 0\right) \\
& \beta=\left(\beta_{0} \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \delta_{0}\right)^{\mathrm{T}} \\
& \mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0} \\
& \mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \operatorname{ed}_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}\right) \\
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{0}^{\mathrm{T}} \beta\right)=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0} 0\right) \\
& =\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{aligned}
$$

Thus, the marginal probability effect of the indicator variable dkidsltt \boldsymbol{i}_{i} in Model $\mathbf{2}$ is

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{i}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \\
&= \Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}+\delta_{0}\right) \\
&-\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}\right)
\end{aligned}
$$

Model 3-a full interaction model in the binary variable dkidslt $\boldsymbol{6}_{\boldsymbol{i}}$

The probit index function, or regression function, for Model 3 is:

$$
\begin{aligned}
& x_{i}^{T} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{i}^{2}+\beta_{5} \text { age }_{i} \\
& +\delta_{0} \text { dkidslt }_{\mathrm{i}}+\delta_{1} \text { dkidslt }_{\mathrm{i}} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{dkidslt}_{\mathrm{i}} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \mathrm{dkidslt}_{\mathrm{i}} \exp _{\mathrm{i}}+\delta_{4} \mathrm{dkidslt}_{\mathrm{i}} \exp _{\mathrm{i}}^{2}+\delta_{5} \mathrm{dkidslt}_{\mathrm{i}} \text { age }_{\mathrm{i}}
\end{aligned}
$$

Remarks: Model 3 is the full-interaction generalization of Model 2: it interacts the dkidslt6 f_{i} indicator variable with all the other regressors in Model 2, and thereby permits all index function coefficients to differ between the two groups of married women distinguished by dkidslt 6_{i}.

- In Model 3, the probit index function for married women who currently have no pre-school aged children, for whom dkidslt $_{i}=0$, is obtained by setting dkidslt $_{i}=0$ in the index function for Model 3:

$$
\left(x_{i}^{T} \beta \mid \text { dkidslt }_{i}=0\right)=\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{i}^{2}+\beta_{5} \text { age }_{i}
$$

- In Model 3, the probit index function for married women who currently have one or more pre-school aged children, for whom dkidslt $6_{\mathrm{i}}=1$, is obtained by setting dkidslt $_{\mathrm{i}}=1$ in the index function for Model 3:

$$
\begin{aligned}
&\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } \left.6_{\mathrm{i}}=1\right)=\beta_{0}}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right. \\
&+\delta_{0} 1+\delta_{1} 1 \cdot \text { nwifeinc }_{\mathrm{i}}+\delta_{2} 1 \cdot \operatorname{ed}_{\mathrm{i}}+\delta_{3} 1 \cdot \exp _{\mathrm{i}}+\delta_{4} 1 \cdot \exp _{\mathrm{i}}^{2}+\delta_{5} 1 \cdot \text { age }_{\mathrm{i}} \\
&=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+ \beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}} \\
&=\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \text { nwifeinc }_{\mathrm{i}}+\left(\beta_{2}+\delta_{2}\right) \operatorname{ed}_{\mathrm{i}}+\left(\beta_{3}+\delta_{3}\right) \exp _{\mathrm{i}}+\left(\beta_{4}+\delta_{4}\right) \exp _{\mathrm{i}}^{2}+\left(\beta_{5}+\delta_{5}\right) \text { age }_{\mathrm{i}}
\end{aligned}
$$

- In Model 3, the marginal index effect of the binary indicator variable dkidsltt $\boldsymbol{\sigma}_{\boldsymbol{i}}$ is simply the difference between (1) the index function for married women who currently have one or more pre-school aged children, $\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{i}}^{\mathrm{i}}=1\right.$) and (2) the index function for married women who currently have no pre-school aged children, $\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$:

$$
\begin{aligned}
& \left(x_{i}^{\mathrm{T}} \beta \mid \operatorname{dkidslt}_{\mathrm{i}}=1\right)-\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \operatorname{dkidslt}_{\mathrm{i}}=0\right) \\
& =\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \operatorname{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \operatorname{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}} \\
& -\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i}\right) \\
& =\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}} \\
& -\beta_{0}-\beta_{1} \text { nwifeinc }_{i}-\beta_{2} \text { ed }_{i}-\beta_{3} \exp _{i}-\beta_{4} \exp _{i}^{2}-\beta_{5} \text { age }_{i} \\
& =\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}}
\end{aligned}
$$

- In Model 3, the marginal probability effect of the binary indicator variable dkidsltt \boldsymbol{i}_{i} is the difference between (1) the conditional probability that inlf $_{\mathrm{i}}=1$ for married women with one or more pre-school aged children and (2) the conditional probability that inlf $_{\mathrm{i}}=1$ for married women with no pre-school aged children:

$$
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)
$$

where $\Phi(*)$ is the cumulative distribution function (cdf) of the standard normal distribution and

$$
\begin{aligned}
& \mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}}=\left(1 \text { nwifeinc }_{\mathrm{i}} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 1 \text { nwifeinc }_{\mathrm{i}} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \operatorname{age}_{\mathrm{i}}\right) \\
& x_{0 i}^{T}=\left(\begin{array}{l}
1 \text { nwifeinc }_{i} e d_{i} \exp _{i} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 0000000
\end{array}\right) \\
& \beta=\left(\beta_{0} \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \delta_{0} \delta_{1} \delta_{2} \delta_{3} \delta_{4} \delta_{5}\right)^{\mathrm{T}} \\
& \mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}} \\
& \mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right) \\
& =\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \mathrm{age}_{\mathrm{i}}} \\
& =\Phi\binom{\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \text { nwifeinc }_{\mathrm{i}}+\left(\beta_{2}+\delta_{2}\right) \text { ed }_{\mathrm{i}}}{+\left(\beta_{3}+\delta_{3}\right) \exp _{\mathrm{i}}+\left(\beta_{4}+\delta_{4}\right) \exp _{\mathrm{i}}^{2}+\left(\beta_{5}+\delta_{5}\right) \text { age }_{\mathrm{i}}} \\
& \begin{aligned}
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)
\end{aligned} \\
& =\Phi\binom{\beta_{0}+\beta_{1} \mathrm{nwifeinc}_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\delta_{0} 0+\delta_{1} 0+\delta_{2} 0+\delta_{3} 0+\delta_{4} 0+\delta_{5} 0} \\
& =\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}\right)
\end{aligned}
$$

Thus, the marginal probability effect of the indicator variable $\boldsymbol{d k i d s l t}_{\boldsymbol{i}}$ in Model $\mathbf{3}$ is

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)= \\
& \qquad \begin{array}{l}
\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \mathrm{age}_{\mathrm{i}}} \\
\\
\quad-\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{array}
\end{aligned}
$$

We are concerned with three aspects of the marginal probability effect of the indicator variable dkidslt f_{i} :

1. the existence of the marginal probability effect of the indicator variable dkidslt σ_{i};
2. the direction (sign) of the marginal probability effect of the indicator variable dkidslt f_{i};
3. the magnitude (size) of the marginal probability effect of the indicator variable dkidslt \boldsymbol{i}_{i}.

Testing the marginal probability effect of the binary explanatory variable dkidslt $\boldsymbol{6}_{\boldsymbol{i}}$-- test and lincom

Proposition to be Tested

- Does the conditional probability of labour force participation for married women depend on the presence in the family of one or more dependent children under 6 years of age?
- Is the probability of labour force participation for married women with given values of nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age $_{i}$ who currently have one or more pre-school aged children equal to the probability of labour force participation for married women with the same values of nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$ who currently have no pre-school aged children?
- Is it true that

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{i}=1 \mid \text { dkidslt }_{i}=1, \text { nwifeinc }_{i}, \text { ed }_{i}, \exp _{i}, \text { age }_{i}\right) \\
& =\operatorname{Pr}\left(\operatorname{inlf}_{i}=1 \mid \text { dkidslt }_{i}=0, \text { nwifeinc }_{i}, \operatorname{ed}_{i}, \exp _{i}, \text { age }_{i}\right) ?
\end{aligned}
$$

Null and Alternative Hypotheses: General Formulation

The null hypothesis in general is:

$$
\mathrm{H}_{0}: \quad \operatorname{Pr}\left(\operatorname{inlf}_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1, \ldots\right)=\operatorname{Pr}\left(\operatorname{inlf}_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0, \ldots\right)
$$

The alternative hypothesis in general is:

$$
\mathrm{H}_{1}: \quad \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1, \ldots\right) \neq \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0, \ldots\right)
$$

Testing the Existence of the Marginal Probability Effect of the Indicator Variable dkidslt $\boldsymbol{i}_{\boldsymbol{i}}$

For testing the existence of a relationship between any explanatory variable and the probability that the observed dependent variable equals 1, use either of the two Stata commands for probit estimation: use either the probit command or the dprobit command.

Null and Alternative Hypotheses: Model 2

The null hypothesis in general is:

$$
\mathrm{H}_{0}: \quad \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1, \ldots\right)=\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0, \ldots\right)
$$

For Model 2,

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{i}=1 \mid \text { dkidslt }_{i}=1, \ldots\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right) \\
& \quad=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}\right)
\end{aligned} \begin{array}{r}
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{i}=0, \ldots\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidsltt }_{\mathrm{i}}=0\right) \\
\quad=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{array}
$$

These two probabilities are equal if the exclusion restriction $\delta_{0}=0$ is true. In other words, a sufficient condition for these two probabilities to be equal is the exclusion restriction $\boldsymbol{\delta}_{\mathbf{0}}=\mathbf{0}$.

The null and alternative hypotheses for Model 2 are therefore:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \delta_{0}=0 \\
\mathrm{H}_{1}: & \delta_{0} \neq 0
\end{array}
$$

Important Point: A test of the null hypothesis that the marginal probability effect of pre-school aged children is zero is equivalent to a test of the null hypothesis that the marginal index effect of pre-school aged children is zero.

- Marginal probability effect of pre-school aged children equals zero in Model 2 if

$$
\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}}=1\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right)
$$

In Model 2,

$$
\begin{aligned}
& \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right)=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}\right) \\
& \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}\right)
\end{aligned}
$$

Question: What coefficient restriction(s) are sufficient to make these two probabilities equal for any given values of nwifeinc ${ }_{i}$, ed ${ }_{i}$, $\exp _{i}$, and age ${ }_{i}$?

Answer: By inspection - i.e., by comparing the function $\Phi\left(x_{i}^{T} \beta \mid \operatorname{dkidslt}_{i}=1\right)$ and the function $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidsltt $\left._{\mathrm{i}}=0\right)$ - we can see that a sufficient condition for $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=1\right)=$ $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left.6_{\mathrm{i}}=0\right)$ in Model 2 is the single coefficient exclusion restriction $\delta_{0}=0$.

- Marginal index effect of pre-school aged children equals zero if
$\left(x_{i}^{T} \beta \mid \operatorname{dkidsltt}_{i}=1\right)=\left(x_{i}^{T} \beta \mid \operatorname{dkidslt}_{i}=0\right)$.

In Model 2,

$\left(x_{i}^{T} \beta \mid\right.$ dkidsltt $\left._{i}=1\right)=\beta_{0}+\beta_{1}$ nwifeinc $_{i}+\beta_{2}$ ed $_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5}$ age $_{\mathrm{i}}+\delta_{0}$
$\left(x_{i}^{T} \beta \mid\right.$ dkidsltt $\left._{i}=0\right)=\beta_{0}+\beta_{1}$ nwifeinc $_{i}+\beta_{2}$ ed $_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5}$ age $_{i}$
Question: What coefficient restriction(s) are sufficient to make these two index functions equal for any given values of nwifeinc ${ }_{i}$, ed $_{i}, \exp _{i}$, and age ${ }_{i}$?

Answer: By inspection - i.e., by comparing the index function $\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=1\right)$ and the index function $\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=0\right)$ - we can see that a sufficient condition for $\left(x_{i}^{T} \beta \mid{\text { dkidslt } 6_{i}}=1\right)=\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=0\right)$ in Model 2 is the single coefficient exclusion restriction $\delta_{0}=0$.

- Result: The single coefficient exclusion restriction $\delta_{0}=0$ is sufficient to make the both the marginal probability effect and the marginal index effect of pre-school aged children equal to zero in Model 2.

- How to Perform this Test for Model 2 in Stata

- First, compute ML estimates of probit Model 2 and display the full set of saved results. Enter the following commands:

```
probit inlf nwifeinc ed exp expsq age dkidslt6
ereturn list
```

- To calculate a Wald test of H_{0} against H_{1} and the p-value for the calculated W-statistic, enter the following test, return list and display commands:

```
test dkidslt6 or test dkidslt6 = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following lincom, return list and display commands:

```
lincom _b[dkidslt6]
return list
display r(estimate)/r(se)
```

The results of this two-tail t-test are identical with those of the previous Wald test.
Note that this lincom command merely replicates the test statistic and p-value that are displayed in the output of the probit command for the regressor dkidslt6.

Null and Alternative Hypotheses: Model 3

The null hypothesis in general is:

$$
\mathrm{H}_{0}: \quad \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1, \ldots\right)=\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidsltf }_{\mathrm{i}}=0, \ldots\right)
$$

For Model 3,

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right) \\
& =\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \mathrm{age}_{\mathrm{i}}} \\
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right) \\
& =\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{aligned}
$$

These two probabilities are equal if the six exclusion restrictions $\delta_{0}=\delta_{1}=\delta_{2}=\delta_{3}=\delta_{4}=\delta_{5}=0$ are true. In other words, a sufficient condition for these two probabilities to be equal is the set of six coefficient exclusion restrictions $\delta_{\mathrm{j}}=0$ for all $\mathrm{j}=0,1, \ldots, 5$.

The null and alternative hypotheses for Model $\mathbf{3}$ are therefore:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \delta_{\mathrm{j}}=0 \quad \forall \mathrm{j}=0,1,2,3,4,5 \\
\Rightarrow & \delta_{0}=0 \text { and } \delta_{1}=0 \text { and } \delta_{2}=0 \text { and } \delta_{3}=0 \text { and } \delta_{4}=0 \text { and } \delta_{5}=0 \\
\mathrm{H}_{1}: & \delta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=0,1,2,3,4,5 \\
\Rightarrow & \delta_{0} \neq 0 \text { and/or } \delta_{1} \neq 0 \text { and/or } \delta_{2} \neq 0 \text { and/or } \delta_{3} \neq 0 \text { and/or } \delta_{4} \neq 0 \text { and/or } \delta_{5} \neq 0
\end{array}
$$

Important Point: A test of the null hypothesis that the marginal probability effect of pre-school aged children is zero is equivalent to a test of the null hypothesis that the marginal index effect of pre-school aged children is zero.

- Marginal probability effect of pre-school aged children equals zero if
$\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \operatorname{dkidsltt}_{\mathrm{i}}=1\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \operatorname{dkidslt}_{\mathrm{i}}=0\right)$.

In Model 3,

$$
\begin{aligned}
& \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}}^{\mathrm{i}} 1\right) \\
& =\Phi\binom{\beta_{0}+\beta_{1} \mathrm{nwifeinc}_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \mathrm{nwifeinc}_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \mathrm{age}_{\mathrm{i}}} \\
& \begin{aligned}
& \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}}=0\right) \\
&=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}\right)
\end{aligned}
\end{aligned}
$$

Question: What coefficient restriction(s) are sufficient to make these two probabilities equal for any given values of nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$?

Answer: By inspection - i.e., by comparing the function $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \mathrm{dkidslt}_{\mathrm{i}}=1\right)$ and the function $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$ - we can see that a sufficient condition for
$\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}}=1\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$ in Model 3 is the set of six coefficient exclusion restrictions $\delta_{0}=$ $\delta_{1}=\delta_{2}=\delta_{3}=\delta_{4}=\delta_{5}=0$.

- Marginal index effect of pre-school aged children equals zero if

$$
\left(x_{i}^{T} \beta \mid \operatorname{dkidsltt}_{i}=1\right)=\left(x_{i}^{T} \beta \mid \operatorname{dkidslt}_{i}=0\right) .
$$

In Model 3,

$$
\begin{aligned}
\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right)= & \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}} \\
\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right)= & \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i}
\end{aligned}
$$

Question: What coefficient restriction(s) are sufficient to make these two index functions equal for any given values of nwifeinc ${ }_{i}$, ed $_{i}, \exp _{i}$, and age ${ }_{i}$?

Answer: By inspection - i.e., by comparing the index function $\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=1\right)$ and the index function $\left(x_{i}^{\mathrm{T}} \beta \mid\right.$ dkidsltt $\left._{\mathrm{i}}=0\right)$ - we can see that a sufficient condition for $\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{i}}=1\right)=\left(x_{i}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$ in Model 3 is the set of six coefficient exclusion restrictions $\delta_{0}=\delta_{1}=\delta_{2}=\delta_{3}=\delta_{4}=\delta_{5}=0$.

- Result: The six coefficient exclusion restrictions $\delta_{0}=\delta_{1}=\delta_{2}=\delta_{3}=\delta_{4}=\delta_{5}=0$ are sufficient to make the both the marginal probability effect and the marginal index effect of pre-school aged children equal to zero in Model 3.
- How to Perform this Test for Model 3 in Stata

$$
\begin{array}{cc}
\mathrm{H}_{0}: & \delta_{\mathrm{j}}=0 \quad \forall \mathrm{j}=0,1,2,3,4,5 \Rightarrow \delta_{0}=0 \text { and } \delta_{1}=0 \text { and } \delta_{2}=0 \text { and } \delta_{3}=0 \text { and } \delta_{4}=0 \text { and } \delta_{5}=0 \\
\mathrm{H}_{1}: & \delta_{\mathrm{j}} \neq 0
\end{array} \mathrm{j}=0,1,2,3,4,5 \Rightarrow \begin{gathered}
\delta_{0} \neq 0 \text { and/or } \delta_{1} \neq 0 \text { and/or } \delta_{2} \neq 0 \text { and/or } \delta_{3} \neq 0 \text { and/or } \delta_{4} \neq 0 \\
\text { and/or } \delta_{5} \neq 0
\end{gathered}
$$

- Before estimating Model 3 , it is necessary to create the $\boldsymbol{d k i d s l t} \boldsymbol{6}_{\boldsymbol{i}} \mathbf{i n t e r a c t i o n ~ v a r i a b l e s . ~ E n t e r ~ t h e ~ f o l l o w i n g ~}$ generate commands:

```
generate d6nwinc = dkidslt6*nwifeinc
generate d6ed = dkidslt6*ed
generate d6exp = dkidslt6*exp
generate d6expsq = dkidslt6*expsq
generate d6age = dkidslt6*age
```

- Next, compute ML estimates of probit Model 3 and display the full set of saved results. Enter the following commands:
probit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age ereturn list
- To calculate a Wald test of H_{0} against H_{1} and the p -value for the calculated W -statistic, enter the following test and return list commands:

```
test dkidslt6 d6nwinc d6ed d6exp d6expsq d6age
return list
```

- A second hypothesis test you should perform on Model 3 is a test of the null hypothesis that all slope coefficient differences between married women who have one or more pre-school aged children and married women who have no pre-school aged children equal zero. The null and alternative hypotheses are:
$\mathrm{H}_{0}: \quad \delta_{\mathrm{j}}=0 \quad \forall \mathrm{j}=1,2,3,4,5 \Rightarrow \delta_{1}=0$ and $\delta_{2}=0$ and $\delta_{3}=0$ and $\delta_{4}=0$ and $\delta_{5}=0$
$\mathrm{H}_{1}: \quad \delta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=1,2,3,4,5 \Rightarrow \delta_{1} \neq 0$ and/or $\delta_{2} \neq 0$ and/or $\delta_{3} \neq 0$ and/or $\delta_{4} \neq 0$ and/or $\delta_{5} \neq 0$
Note that the null hypothesis H_{0} implies Model 2, whereas the alternative hypothesis H_{1} implies Model 3. Enter the test command:
test d6nwinc d6ed d6exp d6expsq d6age
probit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age

Iteration 0:	\log likelihood $=$	-514.8732
Iteration 1:	$\log \operatorname{likelihood}=$	-406.48086
Iteration 2:	\log likelihood $=$	-402.63328
Iteration 3:	\log likelihood $=$	-402.61111
Iteration 4:	\log likelihood $=-402.61111$	

Probit estimates

Log likelihood $=-402.61111$

Number of obs	$=$	753
LR chi2(11)	$=$	224.52
Prob > chi2	$=$	0.0000
Pseudo R2	$=$	0.2180

inlf	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Con	Interval]
nwifeinc	-. 0109103	. 0056007	-1.95	0.051	-. 0218874	. 0000668
ed	. 1215786	. 0280427	4.34	0.000	. 0666159	. 1765413
\exp	. 137317	. 0208939	6.57	0.000	. 0963657	. 1782682
expsq	-. 0022349	. 0006495	-3.44	0.001	-. 003508	-. 0009619
age	-. 0593504	. 0085496	-6.94	0.000	-. 0761072	-. 0425935
dkidslt6	-2.527031	1.267708	-1.99	0.046	-5.011694	-. 0423684
d6nwinc	-. 0059201	. 0109624	-0.54	0.589	-. 0274059	. 0155658
d6ed	. 0327202	. 0623143	0.53	0.600	-. 0894135	. 154854
d6exp	-. 1128835	. 0663563	-1.70	0.089	-. 2429394	. 0171724
d6expsq	. 0030026	. 0033465	0.90	0.370	-. 0035564	. 0095616
d6age	. 0503914	. 0260813	1.93	0.053	-. 0007271	. 1015099
_cons	. 6084091	. 4961565	1.23	0.220	-. 3640398	1.580858

. ereturn list
scalars:

$$
\begin{aligned}
\mathrm{e}(\mathrm{~N}) & =753 \\
\mathrm{e}(\mathrm{ll} 0) & =-514.8732045671461 \\
\mathrm{e}(\mathrm{ll}) & =-402.6111063731551 \\
\mathrm{e}(\mathrm{df} \mathrm{~m}) & =11 \\
\mathrm{e}(\mathrm{chi} 2) & =224.5241963879821 \\
\mathrm{e}\left(\mathrm{r} 2 _\mathrm{p}\right) & =.2180383387563736
\end{aligned}
$$

macros:
e(depvar) : "inlf" e(cmd) : "probit"
e(crittype) : "log likelihood"
e(predict) : "probit_p"
e(chi2type) : "LR"
matrices:

$$
\begin{aligned}
& \text { e(b) } \\
& \text { e(V) } \\
& :
\end{aligned} \quad 12 \times 12 \times 12
$$

functions:

```
e(sample)
```

. * Test 1:
. test dkidslt6 d6nwinc d6ed d6exp d6expsq d6age
(1) dkidslt6 = 0
(2) d6nwinc $=0$
(3) d6ed $=0$
(4) d6exp $=0$
(5) d6expsq $=0$
(6) d6age $=0$
chi2 $\left(\begin{array}{rl}6 & = \\ \text { Prob } & \text { chi2 }\end{array}=0.0000\right.$
. return list
scalars:

```
r(drop) = 0
r(chi2) = 58.11036668348744
r(df) = 6
r(p) = 1.08838734793e-10
```

. * Test 2:
. test d6nwinc d6ed d6exp d6expsq d6age
(1) d6nwinc $=0$
(2) d6ed $=0$
(3) d6exp $=0$
(4) d6expsq $=0$
(5) d6age $=0$

$$
\begin{aligned}
\text { chi2 }\left(\begin{array}{rl}
5
\end{array}\right) & =9.03 \\
\text { Prob }>\text { chi2 } & =0.1078
\end{aligned}
$$

. return list
scalars:

```
r(drop) = 0
    r(chi2) = 9.031191992371875
    r(df) = 5
                            r(p) = . 1078264635420236
```

. dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age

Iteration 0:	\log likelihood $=$	-514.8732
Iteration 1:	\log likelihood $=$	-406.48086
Iteration 2:	\log likelihood $=-402.63328$	
Iteration 3:	\log likelihood $=-402.61111$	
Iteration 4:	\log likelihood $=-402.61111$	

Probit estimates	Number of obs $=$
	LR chi2 $(11)=224.52$
	Prob \gg chi2
	$=0.0000$
Log likelihood $=-402.61111$	Pseudo R2

inlf	dF/dx	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	x-bar	[95\%	C.I.]
nwifeinc \|	-. 0042484	. 0021794	-1.95	0.051	20.129	-. 00852	. 000023
ed \|	. 0473425	. 0108958	4.34	0.000	12.2869	. 025987	. 068698
exp \|	. 053471	. 0081365	6.57	0.000	10.6308	. 037524	. 069418
expsq	-. 0008703	. 0002531	-3.44	0.001	178.039	-. 001366	-. 000374
age \|	-. 0231109	. 0033213	-6.94	0.000	42.5378	-. 029621	-. 016601
dkidslt6*	-. 7273305	. 1555487	-1.99	0.046	. 195219	-1.0322	-. 422461
d6nwinc \|	-. 0023053	. 00427	-0.54	0.589	4.04408	-. 010674	. 006064
d6ed	. 0127412	. 0242742	0.53	0.600	2.47809	-. 034835	. 060318
d6exp	-. 0439567	. 0258347	-1.70	0.089	1.37317	-. 094592	. 006678
d6expsq	. 0011692	. 0013032	0.90	0.370	15.012	-. 001385	. 003723
d6age \|	. 0196223	. 0101508	1.93	0.053	6.87251	-. 000273	. 039518
obs. P \|	. 5683931	(at x-bar)					
pred. P \|	. 5870885						

(*) dF/dx is for discrete change of dummy variable from 0 to 1
z and $P>|z|$ are the test of the underlying coefficient being 0

```
. ereturn list
scalars:
\[
\begin{aligned}
\mathrm{e}(\mathrm{~N}) & =753 \\
\mathrm{e}(\mathrm{ll} 0) & =-514.8732045671461 \\
\mathrm{e}(\mathrm{ll}) & =-402.6111063731551 \\
\mathrm{e}(\mathrm{df} \mathrm{~m}) & =11 \\
\mathrm{e}(\mathrm{chi2}) & =224.5241963879821 \\
\mathrm{e}\left(\mathrm{r} 2 \_\mathrm{p}\right) & =.2180383387563736 \\
\mathrm{e}(\mathrm{pbar}) & =.5683930942895087 \\
\mathrm{e}(\mathrm{xbar}) & =.220061785738521 \\
\mathrm{e}(\mathrm{offbar}) & =0
\end{aligned}
\]
```

macros:
e(cmd) : "dprobit"
e(dummy) : " 0000010000000
e(depvar) : "inlf"
e(crittype) : "log likelihood"
e(predict) : "probit_p"
e(chi2type) : "LR"
matrices:

$$
\begin{array}{rlll}
e(b) & : & 1 \times x & 12 \\
e(V) & : & 12 \times 12 \\
e\left(s e _d f d x\right) & : & 1 \times 11 \\
e(d f d x) & : & 1 \times x & 11
\end{array}
$$

functions:

```
            e(sample)
```

. * Test 1:
. test dkidslt6 d6nwinc d6ed d6exp d6expsq d6age
(1) dkidslt6 = 0
(2) d6nwinc $=0$
(3) d6ed $=0$
(4) d6exp $=0$
(5) d6expsq $=0$
(6) d6age $=0$
chi2 $\left(\begin{array}{rl}6 & = \\ \text { Prob } & \text { chi2 }\end{array}=0.0000\right.$
. return list
scalars:

```
r(drop) = 0
r(chi2) = 58.11036668348744
r(df) = 6
r(p) = 1.08838734793e-10
```

. * Test 2:
. test d6nwinc d6ed d6exp d6expsq d6age
(1) d6nwinc $=0$
(2) d6ed $=0$
(3) d6exp $=0$
(4) d6expsq $=0$
(5) d6age $=0$

$$
\begin{aligned}
\text { chi2 }\left(\begin{array}{rl}
5
\end{array}\right) & =9.03 \\
\text { Prob }>\text { chi2 } & =0.1078
\end{aligned}
$$

. return list
scalars:

```
            r(drop) = 0
            r(chi2) = 9.031191992371875
                        r(df) = 5
                            r(p) = . 1078264635420236
```


Interpreting the coefficient estimates in full-interaction Model 3

Full-interaction Model 3 estimates two distinct sets of probit coefficients: (1) the probit coefficients for married women who have no pre-school aged children (for whom dkidslt $6_{i}=0$); and (2) the probit coefficients for married women who have one or more pre-school aged children (for whom dkidslt $6_{i}=1$).

- Recall that the probit index function for Model 3 is:

$$
\begin{aligned}
\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{0} & +\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\delta_{0} \mathrm{dkidslt}_{\mathrm{i}}+\delta_{1} \text { dkidslt6 }_{\mathrm{i}} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { dkidslt }_{\mathrm{i}} \text { ed }_{\mathrm{i}} \\
& +\delta_{3} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}+\delta_{4} \text { dkidslt6 }_{\mathrm{i}} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { dkidslt }_{\mathrm{i}} \text { age }_{\mathrm{i}}
\end{aligned}
$$

- The probit index function for married women who have no pre-school aged children (for whom dkidslt6 $\mathrm{G}_{\mathrm{i}}=$ 0) is obtained by setting the indicator variable dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{0}$ in the probit index function for Model 3:

$$
\left(x_{i}^{T} \beta \mid \text { dkidslt }_{i}=0\right)=\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{i}^{2}+\beta_{5} \text { age }_{i}
$$

Implication: The probit coefficient estimates for married women who have no pre-school aged children (for whom dkidslt $6_{i}=0$) are given directly by the coefficient estimates of the first six terms in the above index function.

The probit coefficient estimates for married women who have no pre-school aged children are:
$\beta_{0}=$ the intercept coefficient for women for whom dkidslt $6_{i}=0$
$\beta_{1}=$ the slope coefficient of nwifeinc cher $_{\mathrm{i}}$ for women for whom dkidslt $6_{i}=0$
$\beta_{2}=$ the slope coefficient of ed ${ }_{i}$ for women for whom dkidslt $6_{i}=0$
$\beta_{3}=$ the slope coefficient of $\exp _{i}$ for women for whom dkidslt $6_{i}=0$
$\beta_{4}=$ the slope coefficient of $\exp _{i}^{2}$ for women for whom dkidsltt $\sigma_{i}=0$
$\beta_{5}=$ the slope coefficient of age ${ }_{i}$ for women for whom dkidslt $6_{i}=0$.

- The probit index function for married women who currently have one or more pre-school aged children (for whom dkidslt $6_{i}=1$) is obtained by setting the indicator variable dkidslt $6_{i}=1$ in the probit index function for Model 3:

$$
\begin{aligned}
\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right)= & \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \operatorname{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}}
\end{aligned}
$$

Implication: The probit coefficient estimates for married women who have one or more pre-school aged children (for whom dkidsltt $6_{\mathrm{i}}=1$) are obtained from Model 3 by summing pairs of coefficient estimates. In particular, for married women who have one or more pre-school aged children:

$$
\begin{aligned}
& \beta_{0}+\delta_{0}=\text { the intercept coefficient for women for whom dkidsltt } 6_{\mathrm{i}}=1 \\
& \beta_{1}+\delta_{1}=\text { the slope coefficient of } n w i f e i n c_{i} \text { for women for whom } \mathrm{dkidsltt}_{\mathrm{i}}=1 \\
& \beta_{2}+\delta_{2}=\text { the slope coefficient of } \operatorname{ed}_{\mathrm{i}} \text { for women for whom dkidslt } 6_{\mathrm{i}}=1 \\
& \beta_{3}+\delta_{3}=\text { the slope coefficient of } \exp _{\mathrm{i}} \text { for women for whom dkidslt } 6_{\mathrm{i}}=1 \\
& \beta_{4}+\delta_{4}=\text { the slope coefficient of } \exp _{\mathrm{i}}^{2} \text { for women for whom dkidslt } 6_{\mathrm{i}}=1 \\
& \beta_{5}+\delta_{5}=\text { the slope coefficient of age }{ }_{\mathrm{i}} \text { for women for whom dkidslt } 6_{\mathrm{i}}=1 .
\end{aligned}
$$

- Compute from Model 3 the probit coefficient estimates, t-ratios and p-values for those married women who have one or more pre-school aged children (for whom dkidslt $\mathbf{6}_{\mathrm{i}}=\mathbf{1}$). Enter the lincom commands:

```
lincom _b[_cons] + _b[dkidslt6]
lincom _b[nwifeinc] + _b[d6nwinc]
lincom _b[ed] + _b[d6ed]
lincom _b[exp] + _b[d6exp]
lincom _b[expsq] + _b[d6expsq]
lincom _b[age] + _b[d6age]
```

```
    * Model 3 probit coefficients for women for whom dkidslt6 = 1
. lincom _b[_cons] + _b[dkidslt6]
( 1) dkidslt6 + _cons = 0
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline inlf | & Coef. & Std. Err. & z & \(\mathrm{P}>|\mathrm{z}|\) & [95\% Con & Interval] \\
\hline (1) | & -1.918622 & 1.166582 & -1.64 & 0.100 & -4.205081 & . 3678365 \\
\hline
\end{tabular}
. lincom _b[nwifeinc] + _b[d6nwinc]
(1) nwifeinc + d6nwinc = 0
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline inlf & Coef. & Std. Err. & z & \(\mathrm{P}>\mid \mathrm{z}\) | & [95\% Con & Interval] \\
\hline (1) & -. 0168304 & . 0094237 & -1.79 & 0.074 & -. 0353004 & . 0016397 \\
\hline
\end{tabular}
. lincom _b[ed] + _b[d6ed]
( 1) ed + d6ed = 0
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline inlf & Coef. & Std. Err. & z & \(\mathrm{P}>|\mathrm{z}|\) & [95\% Con & Interval] \\
\hline (1) & . 1542988 & . 0556478 & 2.77 & 0.006 & . 0452311 & . 2633665 \\
\hline
\end{tabular}
```

```
    lincom _b[exp] + _b[d6exp]
( 1) exp + d6exp = 0
    inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    (1) | . 0244335 . 062981 0.39 0.698 -. 0990069 . }147878
    lincom _b[expsq] + _b[d6expsq]
( 1) expsq + d6expsq = 0
```



```
    (1) | . 0007676 . 0032829 0.23 0.815 -. 0056666 . 0072019
    lincom _b[age] + _b[d6age]
( 1) age + d6age = 0
    inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    (1) | -.0089589 . 0246402 -0.36 0.716 -. 0572529 . 039335
```

- Marginal probability effects of binary explanatory variable dkidslt6 in Model 2 - dprobit with at(vecname) option
- Use the dprobit command without the at(vecname) option to compute the marginal probability effects in Model 2 at the sample mean values of the regressors, i.e., at $x_{i}^{T}=\bar{x}^{T}$. Enter the following command:

```
dprobit inlf nwifeinc ed exp expsq age dkidslt6
```

- The next series of Stata commands will demonstrate how to use the dprobit command with the at(vecname) option to compute the marginal probability effect of the dummy variable dkidsltt $\boldsymbol{\sigma}_{i}$ in Model 2 for married women whose non-wife family income is $\$ 20,000$ per year (n wifeinc $c_{i}=20$), who have 14 years of formal education $\left(\mathrm{ed}_{\mathrm{i}}=14\right)$ and 10 years of actual work experience ($\exp _{\mathrm{i}}=10$, $\left.\operatorname{expsq}_{\mathrm{i}}=100\right)$, and who are 40 years of age (age $_{\mathrm{i}}=40$):

$$
\begin{aligned}
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=\right. & 1 \mid{\text { dkidslt } \left.6_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)}_{=} \Phi \Phi\left(\mathrm{x}_{\mathrm{ii}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right) \\
= & \Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}\right) \\
& -\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc } \mathrm{C}_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{2}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right) \\
= & \Phi\left(\beta_{0}+\beta_{1} 20+\beta_{2} 14+\beta_{3} 10+\beta_{4} 100+\beta_{5} 40+\delta_{0}\right) \\
& -\Phi\left(\beta_{0}+\beta_{1} 20+\beta_{2} 14+\beta_{3} 10+\beta_{4} 100+\beta_{5} 40\right)
\end{aligned}
$$

A Three Step Procedure: The procedure for this computation consists of three steps.
Step 1: Compute an estimate of the probability of labour force participation for married women with the specified characteristics who have one or more dependent children under $\mathbf{6}$ years of age, for whom dkidslt $6_{i}=1$: i.e., compute an estimate of

$$
\begin{array}{rlr}
\Phi\left(\mathrm{x}_{1 i}^{\mathrm{T}} \beta\right) & =\Phi\left(\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}+\delta_{0}+\beta_{0}\right) \\
& =\Phi\left(\beta_{1} 20+\beta_{2} 14+\beta_{3} 10+\beta_{4} 100+\beta_{5} 40+\delta_{0} 1+\beta_{0} 1\right) \quad \text { in Stata format }
\end{array}
$$

where $x_{1 i}^{T}=\left(\right.$ nwifeinc $\left._{i} \operatorname{ed}_{i} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \operatorname{age}_{\mathrm{i}} 11\right)=\left(\begin{array}{lll}20 & 14101004011\end{array}\right)$.
Step 2: Compute an estimate of the probability of labour force participation for married women with the specified characteristics who have no dependent children under $\mathbf{6}$ years of age, for whom dkidslt $\mathbf{f}_{\mathrm{i}}=\mathbf{0}$: i.e., compute an estimate of

$$
\begin{aligned}
\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right) & =\Phi\left(\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}+\delta_{0}+\beta_{0}\right) \\
& =\Phi\left(\beta_{1} 20+\beta_{2} 14+\beta_{3} 10+\beta_{4} 100+\beta_{5} 40+\delta_{0} 0+\beta_{0} 1\right)
\end{aligned}
$$

in Stata format
where $x_{0 i}^{T}=\left(\right.$ nwifeinc $\left._{i} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \operatorname{age}_{\mathrm{i}} 01\right)=\left(\begin{array}{llll}20 & 14 & 10 & 10040 \\ 0 & 1\end{array}\right)$
Step 3: Compute an estimate of the difference $\Phi\left(\mathrm{x}_{1 i}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)$, which is the marginal probability effect of having one or more dependent children under 6 years of age for married women who have the specified characteristics.

- Step 1: Use the dprobit command with the at(vecname) option to compute the marginal probability effects in Model 2 for married women whose non-wife family income is $\$ 20,000$ per year (n wifeinc $c_{i}=20$), who have 14 years of formal education $\left(e_{i}=14\right)$ and 10 years of actual work experience $\left(\exp _{i}=10, \operatorname{expsq}_{\mathrm{i}}=100\right)$, who are 40 years of age $\left(\mathrm{age}_{\mathrm{i}}=40\right)$, and who have one or more dependent children under 6 years of age (dkidslt $6=$ 1). You will first have to create a vector containing the specified values of the regressors for Model 2 , since the dprobit command does not permit number lists in the $\mathbf{a t}()$) option. Note that in Stata format, the vector $\mathrm{x}_{1 i}^{\mathrm{T}}$ with the dummy variable $\boldsymbol{d k i d s l t}_{\boldsymbol{i}}=\mathbf{1}$ is written as:

$$
x_{1 i}^{T}=\left(\text { nwifeinc }_{i} \operatorname{ed}_{i} \exp _{i} \exp _{\mathrm{i}}^{2} \operatorname{age}_{\mathrm{i}} 11\right)=\left(\begin{array}{lll}
2014101004011
\end{array}\right) .
$$

Enter the following commands:

```
matrix x1vec = (20, 14, 10, 100, 40, 1, 1)
matrix list x1vec
dprobit inlf nwifeinc ed exp expsq age dkidslt6, at(x1vec)
ereturn list
```

Display and save the value of $\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ generated by the above dprobit command, where $\Phi\left(\mathrm{x}_{1 i}^{\mathrm{T}} \hat{\beta}\right)$ is an estimate of $\operatorname{Pr}\left(\right.$ inlf $_{i}=1 \mid$ dkidslt $\left._{i}=1\right)$. Enter the commands:

```
display e(at)
scalar PHIx1vec = e(at)
scalar list PHIx1vec
```

. display e(at)
. 41935631
. scalar PHIx1vec = e(at)
. scalar list PHIx1vec
PHIx1vec = . 41935631

- Step 2: Now use the dprobit command with the at(vecname) option to compute the marginal probability effects in Model 2 for married women whose non-wife family income is $\$ 20,000$ per year (nwifeinc $c_{i}=20$), who have 14 years of formal education $\left(\mathrm{ed}_{\mathrm{i}}=14\right)$ and 10 years of actual work experience ($\left.\exp _{\mathrm{i}}=10, \operatorname{expsq}_{\mathrm{i}}=100\right)$, who are 40 years of age ($\mathrm{age}_{\mathrm{i}}=40$), and who have no dependent children under 6 years of age (dkidslt6 $=$ $\mathbf{0}$). First, you will have to create a vector containing the specified values of the regressors for Model 2; the dprobit command does not permit number lists in the at() option. Note that in Stata format, the vector $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}}$ with the dummy variable $\boldsymbol{d k i d s l t}_{\boldsymbol{i}}^{\boldsymbol{i}} \mathbf{= \mathbf { 0 }}$ is written as:

$$
x_{0 i}^{T}=\left(\text { nwifeinc }_{i} \operatorname{ed}_{i} \exp _{i} \exp _{\mathrm{i}}^{2} \operatorname{age}_{\mathrm{i}} 01\right)=\left(\begin{array}{llll}
20 & 141010040 & 0 & 1
\end{array}\right)
$$

Enter the following commands:

```
matrix x0vec = (20, 14, 10, 100, 40, 0, 1)
matrix list x0vec
dprobit inlf nwifeinc ed exp expsq age dkidslt6, at(x0vec)
ereturn list
```

Display and save the value of $\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ generated by the above dprobit command, where $\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ is an estimate of $\operatorname{Pr}\left(\right.$ inlf $_{\mathrm{i}}=1 \mid$ dkidslt $\left._{\mathrm{i}}=0\right)$. Enter the commands:

```
display e(at)
scalar PHIx0vec = e(at)
scalar list PHIx0vec
```

. display e(at)
. 79350221
. scalar PHIx0vec = e(at)
. scalar list PHIx0vec
PHIx0vec = . 79350221

- Step 3: Finally, compute the estimate of the difference $\Phi\left(\mathrm{x}_{1 i}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)$, which is the marginal probability effect of having one or more dependent children under 6 years of age for married women who have the specified characteristics. Enter the commands:

```
scalar diffPHI = PHIx1vec - PHIx0vec
scalar list PHIx1vec PHIx0vec diffPHI
. scalar list PHIx1vec PHIx0vec diffPHI
    PHIx1vec = .41935631
    PHIx0vec = . }7935022
    diffPHI = -. 3741459
```

- Carefully compare the results of this three-step procedure with the output of the two dprobit commands you have estimated. Enter the following commands:

```
* Model 2 at x0vec: dprobit
dprobit inlf nwifeinc ed exp expsq age dkidslt6, at (x0vec)
* Model 2 at x1vec: dprobit
dprobit inlf nwifeinc ed exp expsq age dkidslt6, at (x1vec)
```

The Stata output listing produced by these commands is reproduced on the following page. Note in particular the highlighted results in the output listing for these two dprobit commands.

```
* Model 2 at x0vec: dprobit
. dprobit inlf nwifeinc ed exp expsq age dkidslt6, at (x0vec)
```

Iteration 0:		\log likelihood $=$
Iteration 1:		\log likelihood $=$
Iteration 2:		-410.52123
Iteration 3:		\log likelihood $=$
likelihood $=$	-407.00272	

Probit regression, reporting marginal effects
Log likelihood = -406.98832

| Number of obs | $=753$ |
| :--- | ---: | ---: |
| LR chi2 (6) | $=215.77$ |
| Prob chi2 | $=0.0000$ |
| Pseudo R2 | $=0.2095$ |

inlf	dF/dx	Std. Err.	Z	$\mathrm{P}>\|\mathrm{z}\|$	X	95\%	C.I.
nwifeinc	-. 0032397	. 0013341	-2.39	0.017	20	-. 005854	-. 000625
ed	. 0347428	. 0061286	4.92	0.000	14	. 022731	. 046755
\exp	. 0334919	. 0050403	6.32	0.000	10	. 023613	. 043371
expsq	-. 0005032	. 0001622	-2.94	0.003	100	-. 000821	-. 000185
age	-. 0152501	. 0021914	-6.73	0.000	40	-. 019545	-. 010955
dkidslt6*	-. 3741459	. 0527655	-7.04	0.000	0	-. 477564	-. 270728

obs. P | . 5683931

pred. P	.583103	(at x-bar)
pred. P	.7935022	(at x)

(*) dF/dx is for discrete change of dummy variable from 0 to 1
z and $P>|z|$ correspond to the test of the underlying coefficient being 0

Model 2 at x1vec: dprobit . dprobit inlf nwifeinc ed exp expsq age dkidslt6, at (xivec)								
Iteration 0: \quad log likelihood $=-514.8732$(output omitted)								
Probit regression, reporting marginal effects					$\begin{aligned} \text { Number of obs } & =753 \\ \text { LR chi2 }(6) & =215.77 \\ \text { Prob }>\text { chi2 } & =0.0000 \end{aligned}$			
Log likelihood $=-406.98832$					Pseudo R2 $=0.2095$			
inlf \|	dF/dx	Std. Err	z	P>\|z		x	95\%	C.I
nwifeinc	-. 0044364	. 0018708	-2.39	0.017	20	-. 008103	-. 00077	
	. 0475765	. 0100112	4.92	0.000	14	. 027955	. 067198	
exp	. 0458635	. 0076519	6.32	0.000	10	. 030866	. 060861	
expsqage	-. 0006891	. 0002397	-2.94	0.003	100	-. 001159	-. 000219	
	-. 0208833	. 0029759	-6.73	0.000	40	-. 026716	-. 015051	
dkidslt6*	-. 3741459	. 0527655	-7.04	0.000	1	-. 477564	-. 270728	
$\begin{aligned} & \text { obs. P } \\ & \text { pred. } \mathrm{P} \\ & \text { pred. } \mathrm{P} \end{aligned}$. 5683931							
	. 583103	(at x -bar)						
	. 4193563	(at x)						

(*) $\mathrm{dF} / \mathrm{dx}$ is for discrete change of dummy variable from 0 to 1
z and $\mathrm{P}>|\mathrm{z}|$ correspond to the test of the underlying coefficient being 0

- Computing marginal probability effect of the binary explanatory variable dkidslt6 in Model 2 - using the margins command after probit

In Model 2, the explanatory variable $\boldsymbol{d k i d s l t}_{\boldsymbol{i}}^{\boldsymbol{i}}$ is a binary explanatory variable that distinguishes between married women who have one or more pre-school aged children under 6 years of age (for whom $\boldsymbol{d k i d s l t}_{\boldsymbol{i}}=1$), and married women who have no pre-school aged children under 6 years of age (for whom $\boldsymbol{d k i d s l t} \boldsymbol{6}_{i}=0$). This section demonstrates how to use the margins command to easily estimate the marginal probability effect of the binary explanatory variable dkidslt σ_{i} at user-specified values of the continuous explanatory variables in Model 2, i.e., $\boldsymbol{n w i f e i n c}_{i}, \boldsymbol{e d}_{i}, \boldsymbol{e x p}_{i}$, and $\boldsymbol{a g}_{i}$.

- To begin, re-estimate Model 2 by Maximum Likelihood using the probit command with all regressors entered in factor-variable notation. Enter the probit command:

```
probit inlf c.nwifeinc c.ed c.exp c.exp#c.exp c.age i.dkidslt6
```

Stata output on next page

- First, estimate the conditional probability of labour force participation in Model 2 for both married women with pre-school aged children (for whom dkidslt $_{\boldsymbol{i}}=1$) and married women without pre-school aged children (for whom dkidslt $\boldsymbol{6}_{\boldsymbol{i}}=0$), where both categories of women have non-wife family income of $\$ 20,000$ per year, have 14 years of formal education and 10 years of actual work experience, and are 40 years of age. In other words, estimate the conditional probability of labour force participation in Model 2 at the following selected values of the four continuous explanatory variables: nwifeinc ${ }_{i}=20, \operatorname{ed}_{\mathrm{i}}=14, \exp _{\mathrm{i}}=10, \mathrm{age}_{\mathrm{i}}=40$. Enter on one line the following margins command:

```
margins i.dkidslt6, at(nwifeinc = (20) ed = (14) exp = (10) age = (40))
```


Stata output

```
. * Marginal probability effect of BINARY explanatory variable 'dkidslt6' in Model 2
. margins i.dkidslt6, at(nwifeinc = (20) ed = (14) exp = (10) age = (40))
Adjusted predictions Number of obs = 753
Model VCE : OIM
\begin{tabular}{llll} 
Expression & : Pr(inlf), predict() & \\
at & : nwifeinc & \(=\) & 20 \\
& ed & \(=\) & 14 \\
& exp & \(=\) & 10 \\
& age & \(=\) & 40
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Delta-method} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{[95\% Conf. Interval]}} \\
\hline & Margin & Std. Err. & z & \(P>|z|\) & & \\
\hline \multicolumn{7}{|l|}{dkidslt6} \\
\hline 0 & . 7935022 & . 0246955 & 32.13 & 0.000 & . 7451 & . 8419045 \\
\hline 1 & . 4193563 & . 0493966 & 8.49 & 0.000 & . 3225407 & . 516172 \\
\hline
\end{tabular}
```

Note that the estimated conditional probability of labour force participation for married women with the specified characteristics who have no pre-school aged children, for whom $\boldsymbol{d k i d s l t} \boldsymbol{6}_{\boldsymbol{i}}=0$, is 0.7935 , while the estimated conditional probability of labour force participation for married women with the same specified characteristics who have one or more pre-school aged children, for whom $\boldsymbol{d k i d s l t} \boldsymbol{f}_{\boldsymbol{i}}=1$, is 0.4194 . The difference between these two conditional probabilities is by definition the marginal probability effect of the binary explanatory variable dkidslt $\boldsymbol{\sigma}_{\boldsymbol{i}}$ in Model 2 for married women with the user-specified characteristics.

- Second, estimate the marginal probability effect of the binary explanatory variable dkidsltt $\boldsymbol{i}_{\boldsymbol{i}}$ in Model 2 for married women whose non-wife family income is $\$ 20,000$ per year, who have 14 years of formal education and 10 years of actual work experience, and who are 40 years of age. In other words, estimate the marginal probability effect of dkidsltt $\boldsymbol{i}_{\boldsymbol{i}}$ at the following selected values of the four continuous explanatory variables: nwifeinc $_{\mathrm{i}}=20, \mathrm{ed}_{\mathrm{i}}=14, \exp _{\mathrm{i}}=10$, age $_{\mathrm{i}}=40$. Enter on one line the following margins command:

```
margins r.dkidslt6, at(nwifeinc = (20) ed = (14) exp = (10) age = (40))
```


Stata output

```
. margins r.dkidslt6, at(nwifeinc \(=(20)\) ed \(=(14) \exp =(10)\) age \(=(40))\)
```

Contrasts of adjusted predictions
Model VCE : OIM
Expression : Pr(inlf), predict()
at : nwifeinc $=\quad 20$
ed $=\quad 14$
$\exp \quad=\quad 10$
age $=40$

	df	chi2	$\mathrm{P}>\mathrm{Chi2}$
dkidslt6	1	50.28	0.0000

Alternatively, enter on one line the following margins command:

```
margins r.dkidslt6, at(nwifeinc = (20) ed = (14) exp = (10) age = (40))
contrast(nowald effects)
```

Stata output
. margins r.dkidslt6, at(nwifeinc $=(20)$ ed $=(14)$ exp $=(10)$ age $=(40))$
contrast(nowald effects)
Contrasts of adjusted predictions
Model VCE : OIM
Expression : Pr(inlf), predict()
at : nwifeinc = 20
ed $=\quad 14$
$\exp \quad=\quad 10$
age $=\quad 40$

	Delta-method				[95\% Conf. Interval]	
	Contrast	Std. Err.	z	$P>\|z\|$		
dkidslt6						
(1 vs 0)	-. 3741459	. 0527658	-7.09	0.000	-. 477565	-. 2707268

Compare the results of these two alternative margins commands.
The first margins command performs a Wald test of the null hypothesis that the marginal probability effect of $\boldsymbol{d k i d s l t} \boldsymbol{6}_{\boldsymbol{i}}$ equals zero; the sample value of the Wald test statistic is labeled chi2.

The second margins command performs a large sample \mathbf{t}-test of the null hypothesis that the marginal probability effect of $\boldsymbol{d k i d s l t} \boldsymbol{6}_{\boldsymbol{i}}$ equals zero; the sample value of the test statistic is labeled \mathbf{z}.

Otherwise, these two margins commands yield identical results, i.e., identical point estimates of the marginal probability effect of $\boldsymbol{d} \mathbf{k i d s l t} \boldsymbol{6}_{\boldsymbol{i}}$ and its standard error, identical 95 percent confidence limits, and identical pvalues of the calculated test statistics for the null hypothesis that the marginal probability effect of $\boldsymbol{d k i d s l t}_{\boldsymbol{i}}$ equals zero.

- Computing the marginal probability effect of the binary explanatory variable dkidsltf \boldsymbol{i}_{i} in Model 3 dprobit with at(vecname) option

This section demonstrates how to use the dprobit command with the at(vecname) option to compute the marginal probability effect of the dummy variable dkidsltt \boldsymbol{f}_{i} in Model $\mathbf{3}$ for married women who have the sample median values of the explanatory variables nwifeinc $c_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$.

Here we are concerned with obtaining an estimate of the direction and magnitude of the marginal probability effect of the dummy variable dkidslt $_{i}$ in Model 3.

Recall that the marginal probability effect of the dummy variable dkidslt $\boldsymbol{G}_{\boldsymbol{i}}$ in Model $\mathbf{3}$ is given by:

$$
\begin{gathered}
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \left\lvert\,{\text { dkidslt } \left.G_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \mathrm{i}\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)}^{\Phi} \begin{array}{l}
\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \mathrm{age}_{\mathrm{i}}} \\
-\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}\right)
\end{array}\right.\right.
\end{gathered}
$$

In Stata format, the marginal probability effect of the dummy variable dkidsltifin in Model $\mathbf{3}$ is written with the intercept coefficient $\boldsymbol{\beta}_{0}$ as the last, not the first, term in the probit index function:

$$
\begin{aligned}
\Phi\left(\mathrm{x}_{1 i}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)= & \Phi\binom{\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{i}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \mathrm{age}_{\mathrm{i}}+\beta_{0}} \\
& -\Phi\left(\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{i}+\beta_{0}\right)
\end{aligned}
$$

We can be more specific about the Stata format for the regressor vectors $\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}}$ and $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}}$ and the probit coefficient vector β for full-interaction Model 3.

- Recall that in Stata format the probit index function for Model $\mathbf{3}$ is written as:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i}+\delta_{0} \text { dkidslt }_{\mathrm{i}} \\
& +\delta_{1} \text { dkidslt }_{\mathrm{i}} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { dkidslt }_{\mathrm{i}} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \text { dkidslt6 }_{\mathrm{i}} \exp _{\mathrm{i}}+\delta_{4} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { dkidslt6 }_{\mathrm{i}} \mathrm{age}_{\mathrm{i}}+\beta_{0}
\end{aligned}
$$

- The probit coefficient vector $\boldsymbol{\beta}$ for Model $\mathbf{3}$ in Stata format is the $\mathbf{1 2 \times 1}$ column vector:

$$
\beta=\left(\beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \delta_{0} \delta_{1} \delta_{2} \delta_{3} \delta_{4} \delta_{5} \beta_{0}\right)^{\mathrm{T}}
$$

- The probit index function for married women who currently have one or more pre-school aged children (for whom dkidslt $_{i}=1$) is obtained by setting the indicator variable dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{1}$ everywhere it appears in the probit index function for Model 3:

$$
\begin{aligned}
\mathrm{x}_{\mathrm{il}}^{\mathrm{T}} \beta=\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidsltt }_{\mathrm{i}}=1\right)= & \beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}}+\beta_{0}
\end{aligned}
$$

In Stata format, the regressor vector $\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}}$ is therefore the 1×12 row vector:
$x_{1 i}^{T}=\left(\right.$ nwifeinc $_{i} \quad \operatorname{ed}_{i} \exp _{i} \exp _{\mathrm{i}}^{2}$ age $_{\mathrm{i}} 1$ nwifeinc $_{\mathrm{i}} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2}$ age $\left._{\mathrm{i}} 1\right)$

- Again, in Stata format the probit index function for Model 3 is written as:

$$
\begin{aligned}
\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta= & \beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0} \text { dkidslt }_{\mathrm{i}} \\
& +\delta_{1} \text { dkidslt }_{\mathrm{i}} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { dkidslt }_{\mathrm{i}} \text { ed }_{\mathrm{i}}+\delta_{3} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}+\delta_{4} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { dkidslt }_{\mathrm{i}} \text { age }_{\mathrm{i}}+\beta_{0}
\end{aligned}
$$

- The probit index function for married women who have no pre-school aged children (for whom dkidslt6 $\mathrm{i}_{\mathrm{i}}=$ 0) is obtained by setting the indicator variable dkidslt6 $\mathbf{i}_{\mathbf{i}}=\mathbf{0}$ everywhere it appears in the probit index function for Model 3:

$$
\begin{aligned}
& \mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta=\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidsltt }_{\mathrm{i}}=0\right) \\
& \quad=\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \operatorname{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0} 0+\delta_{1} 0+\delta_{2} 0+\delta_{3} 0+\delta_{4} 0+\delta_{5} 0+\beta_{0}
\end{aligned}
$$

In Stata format, the regressor vector $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}}$ is therefore the 1×12 row vector:

$$
x_{0 i}^{T}=\left(\begin{array}{lllllll}
\text { nwifeinc }_{i} & e d_{i} & \exp _{i} & \exp _{i}^{2} & \text { age }_{i} & 0 & 0
\end{array} 000001\right)
$$

Three-step procedure for computing the marginal probability effect of the dummy variable dkidslt $_{i}$ in Model 3

Step 1: Compute an estimate of the probability of labour force participation for married women with the specified characteristics who currently have one or more dependent children under $\mathbf{6}$ years of age, for whom dkidslt 6_{i} = 1: i.e., compute an estimate of

$$
\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)=\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \mathrm{age}_{\mathrm{i}}}
$$

Step 2: Compute an estimate of the probability of labour force participation for married women with the specified characteristics who currently have no dependent children under 6 years of age, for whom dkidslt $6_{i}=0$: i.e., compute an estimate of

$$
\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}\right)
$$

Step 3: Compute an estimate of the difference $\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \mathrm{\beta}\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)$, which is the marginal probability effect of having one or more pre-school aged children for married women who have the specified characteristics.

- Compute (or select) the values of the explanatory variables at which you wish to compute the marginal probability effect of the binary variable dkidslt $_{i}$. For this purpose, we will use the pooled sample medians of the explanatory variables nwifeinc ${ }_{i}$, ed $_{i}, \exp _{i}$, and age ${ }_{i}$. Enter the following commands:

```
summarize nwifeinc, detail
return list
scalar nwinc50p = r(p50)
summarize ed, detail
scalar ed50p = r(p50)
summarize exp, detail
scalar exp50p = r(p50)
scalar exp50psq = exp50p^2
summarize age, detail
scalar age50p = r(p50)
scalar list nwinc50p ed50p exp50p exp50psq age50p
```

The sample median values of the explanatory variables computed by these commands are as follows:

```
nwinc50p = 17.700001
    ed50p = 12
    exp50p = 9
exp50psq = 81
    age50p = 43
```

- Step 1: Use the dprobit command with the at(vecname) option to compute the marginal probability effects in Model 3 for median married women whose non-wife family income is $\$ 17,700$ per year (nwifeinc $c_{i}=17.700$), who have 12 years of formal education $\left(e_{i}=12\right)$ and 9 years of actual work experience $\left(\exp _{i}=9, \operatorname{expsq} q_{i}=81\right)$, who are 43 years of age ($\mathrm{age}_{\mathrm{i}}=43$), and who have one or more dependent children under 6 years of age (dkidslt6 = 1). You will first have to create the vector $\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}}$ containing the median values of the regressors in Model 3 when dkidslt $_{\mathrm{i}}=1$, since the dprobit command does not permit number lists in the at() option.

Remember that Stata places the equation intercept coefficient β_{0} in the last, not the first, element of the probit coefficient vector β, so that the coefficient vector β for Model 3 is written in Stata format as:

$$
\beta=\left(\beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \delta_{0} \delta_{1} \delta_{2} \delta_{3} \delta_{4} \delta_{5} \beta_{0}\right)^{\mathrm{T}}
$$

In Stata format, the vector $\mathrm{x}_{1 i}^{\mathrm{T}}$ for Model 3 thus takes the form:

$$
\begin{aligned}
x_{1 i}^{T} & =\left(\text { nwifeinc }_{i} \text { ed }_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 1 \text { nwifeinc }_{i} \text { ed }_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 1\right) \\
& =\binom{\text { nwinc50p ed50p exp50p exp50psq age50p } 1}{\text { nwinc50p ed50p exp50p exp50psq age50p } 1}
\end{aligned}
$$

Step 1 Stata commands are:

```
matrix x1median = (nwinc50p, ed50p, exp50p, expsq50p, age50p, 1, nwinc50p, ed50p,
exp50p, expsq50p, age50p, 1)
matrix list x1median
dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age,
at(x1median)
ereturn list
```

Display and save the value of $\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\mathrm{B}}\right)$ generated by the above dprobit command, where $\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ is an estimate of $\operatorname{Pr}\left(\right.$ inlf $_{\mathrm{i}}=1 \mid$ dkidslt $\left._{\mathrm{i}}=1\right)$. The value of $\Phi\left(\mathrm{x}_{1 i}^{\mathrm{T}} \hat{\beta}\right)$ is temporarily stored as the scalar $\mathbf{e}($ at $)$ following execution of the above dprobit command. Enter the commands:

```
display e(at)
scalar PHIx1med = e(at)
scalar list PHIx1med
```

These commands save the value of $\Phi\left(\mathrm{x}_{1 i}^{\mathrm{T}} \hat{\beta}\right)$ as the scalar PHIx1med.

- Step 2: Now use the dprobit command with the at(vecname) option to compute the marginal probability effects in Model 3 for median married women whose non-wife family income is $\$ 17,700$ per year (nwifeinc ${ }_{i}=$ 17.700), who have 12 years of formal education ($\mathrm{ed}_{\mathrm{i}}=12$) and 9 years of actual work experience ($\exp _{\mathrm{i}}=9$, $\operatorname{expsq} \mathrm{q}_{\mathrm{i}}=81$), who are 43 years of age ($\mathrm{age}_{\mathrm{i}}=43$), and who have no dependent children under 6 years of age (dkidslt6 = 0). Again, you will first have to create the vector $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}}$ containing the median values of the regressors in Model 3 when dkidslt $6_{i}=0$.

In Stata format, the vector $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}}$ for Model 3 takes the form:

$$
\left.\begin{array}{rl}
x_{0 \mathrm{i}}^{\mathrm{T}} & =\left(\text { nwifeinc }_{\mathrm{i}} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \operatorname{age}_{\mathrm{i}} 0000000\right.
\end{array}\right)
$$

Step 2 Stata commands are:

```
matrix x0median = (nwinc50p, ed50p, exp50p, exp50psq, age50p, 0, 0, 0, 0, 0, 0, 1)
matrix list x0median
dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age,
at(x0median)
ereturn list
```

Display and save the value of $\Phi\left(x_{0 i}^{T} \hat{\beta}\right)$ generated by the above dprobit command, where $\Phi\left(x_{0 i}^{T} \hat{\beta}\right)$ is an estimate of $\operatorname{Pr}\left(\operatorname{inlf}_{i}=1 \mid\right.$ dkidslt $\left._{i}=0\right)$. The value of $\Phi\left(x_{0 i}^{T} \hat{\beta}\right)$ is temporarily stored as the scalar $\mathbf{e}($ at $)$ following execution of the above dprobit command. Enter the commands:

```
display e(at)
scalar PHIx0med = e(at)
scalar list PHIx0med
```

These commands save the value of $\Phi\left(x_{0 i}^{T} \hat{\beta}\right)$ as the scalar PHIx0med.

- Step 3: Finally, compute the estimate of the difference $\Phi\left(\mathrm{x}_{1 i}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)$, which is the marginal probability effect having one or more dependent children under 6 years of age for married women who have the specified characteristics. Step 3 Stata commands are:

```
scalar diffPHImed = PHIx1med - PHIx0med
scalar list PHIx1med PHIx0med diffPHImed
```

The value of the scalar diffPHImed is the estimate for Model 3 of

$$
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidsltt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \operatorname{dkidslt}_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0}^{\mathrm{T}} \beta\right)
$$

i.e., of the marginal probability effect of having one or more dependent children under $\mathbf{6}$ years of age for married women who have the median characteristics of women in the full sample.

$$
\text { diffPhImed }=\hat{\operatorname{Pr}}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\hat{\operatorname{Pr}}\left(\text { inlf }_{\mathrm{i}}=1 \mid \operatorname{dkidslt}_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{\mathrm{ii}}^{\mathrm{T}} \hat{\beta}\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)
$$

Output of Step 1 Stata Commands

. dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age, at(x1median)

Iteration 0:		\log likelihood $=-514.8732$
Iteration 1:	\log likelihood $=-406.48086$	
Iteration 2:	\log likelihood $=-402.63328$	
Iteration 3:	\log likelihood $=-402.61111$	
Iteration 4:	\log likelihood $=-402.61111$	

| Probit estimates | Number of obs |
| :--- | :--- |$=$| | 753 |
| ---: | :--- |
| | LR chi2 (11) |
| | $=224.52$ |
| Log likelihood $=-402.61111$ | |
| | Prob $>$ chi2 |
| | Pseudo R2 |
| | |

inlf \|	dF/dx	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	x	[95\%	C.I.]
nwifeinc	-. 0039009	. 0020603	-1.95	0.051	17.7	-. 007939	. 000137
ed	. 0434699	. 0113882	4.34	0.000	12	. 021149	. 06579
exp	. 0490971	. 009644	6.57	0.000	9	. 030195	. 067999
expsq	-. 0007991	. 0002526	-3.44	0.001	81	-. 001294	-. 000304
age	-. 0212205	. 0040365	-6.94	0.000	43	-. 029132	-. 013309
dkidslt6*	-. 6603895	. 0730752	-1.99	0.046	1	-. 803614	-. 517165
d6nwinc	-. 0021167	. 0039297	-0.54	0.589	17.7	-. 009819	. 005585
d6ed	. 011699	. 0221757	0.53	0.600	12	-. 031765	. 055162
d6exp	-. 040361	. 0215344	-1.70	0.089	9	-. 082568	. 001846
d6expsq	. 0010736	. 0011221	0.90	0.370	81	-. 001126	. 003273
d6age	. 0180172	. 0111044	1.93	0.053	43	-. 003747	. 039781
obs. P \|	. 5683931						
pred. P \|	. 5870885	(at x -bar)					
pred. P \|	. 3198606	(at x)					

(*) dF/dx is for discrete change of dummy variable from 0 to 1 z and $P>|z|$ are the test of the underlying coefficient being 0

```
ereturn list
scalars:
            e(N)}=753.\mp@code{753.8732045671461
                            e(ll) = -402.6111063731551
        e(df_m) = 11
        e(chi2) = 224.5241963879821
        e(r2_p) = . 2180383387563736
        e(pbar) = . 5683930942895087
        e(xbar) = . 220061785738521
        e(offbar) = 0
        e(at) = . 3198606279066483
[output omitted]
. display e(at)
31986063
. scalar PHIx1med = e(at)
scalar list PHIx1med
    PHIx1med = . 31986063
```


Output of Step 2 Stata Commands

. dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age, at(x0median);

Iteration 0:		\log likelihood $=-514.8732$
Iteration 1:		\log likelihood $=-406.48086$
Iteration 2:		\log likelihood $=-402.63328$
Iteration 3:		\log likelihood $=$
Iteration 4:		\log likelihood $=$

Probit estimates					Number of obs $=753$ LR chi2(11) $=224.52$ Prob chi2 $=0.0000$ Pseudo R2 $=0.2180$		
inlf	dF/dx	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	x	95\%	C.I.
nwifeinc	-. 004054	. 0020554	-1.95	0.051	17.7	-. 008083	-. 000025
ed	. 0451757	. 0104184	4.34	0.000	12	. 024756	. 065595
exp	. 0510237	. 0074085	6.57	0.000	9	. 036503	. 065544
expsq	-. 0008305	. 0002325	-3.44	0.001	81	-. 001286	-. 000375
age	-. 0220532	. 003204	-6.94	0.000	43	-. 028333	-. 015773
dkidslt6*	-. 6311359	. 0559456	-1.99	0.046	0	-. 740787	-. 521485
d6nwinc	-. 0021998	. 0040816	-0.54	0.589	0	-. 010199	. 0058
d6ed	. 012158	. 0231649	0.53	0.600	0	-. 033244	. 05756
d6exp	-. 0419448	. 0245612	-1.70	0.089	0	-. 090084	. 006194
d6expsq	. 0011157	. 0012413	0.90	0.370	0	-. 001317	. 003549
d6age	. 0187242	. 0096966	1.93	0.053	0	-. 000281	. 037729
obs. P \|	. 5683931						
pred. P \|	. 5870885	(at x-bar)					
pred. P \|	. 6469122	(at x)					

(*) dF/dx is for discrete change of dummy variable from 0 to 1 z and $P>|z|$ are the test of the underlying coefficient being 0

```
. ereturn list
scalars:
    e(N) = 753
    e(ll_0) = -514.8732045671461
    e(11) = -402.6111063731551
    e(df_m) = 11
    e(chi2) = 224.5241963879821
    e(r2_p) = .2180383387563736
    e(pbar) = . }568393094289508
    e(xbar) = . 220061785738521
e(offbar) = 0
        e(at) = . .6469121653332525
[output omitted]
. display e(at)
.64691217
. scalar PHIx0med = e(at)
scalar list PHIx0med
    PHIx0med = . }6469121
```


Output of Step 3 Stata Commands

. * Model 3: compute marginal probability effect of dkidslt6
. scalar diffPHImed = PHIx1med - PHIx0med
. scalar list PHIx1med PHIx0med diffPHImed
PHIx1med = . 31986063
PHIx0med $=.64691217$
diffPHImed $=-. .32705154$

The value of the scalar diffPHImed is the estimate for Model 3 of

$$
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)
$$

In Model 3, the estimated marginal probability effect of having one or more dependent children under 6 years of age for married women who have the median characteristics of women in the full sample is:

$$
\Phi\left(\mathrm{x}_{\mathrm{ij}}^{\mathrm{T}} \hat{\beta}\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)=-\mathbf{0 . 3 2 7 0 5 1 5 4}=-\mathbf{0 . 3 2 7 1}
$$

- Computing the marginal probability effect of the binary explanatory variable dkidslt \boldsymbol{f}_{i} in Model 3 - probit command followed by margins command

You have previously computed an estimate of the marginal probability effect of the binary explanatory variable dkidslt $_{i}$ in Model 3 at the sample median values of the continuous explanatory variables; however, that procedure, while completely correct, was somewhat laborious.

This section demonstrates a much shorter and easier procedure that uses the margins command after Maximum Likelihood estimation of Model 3 with a probit command for computing the marginal probability effect of the dummy variable dkidslt $\boldsymbol{f}_{\boldsymbol{i}}$ in Model $\mathbf{3}$ for married women who have the sample median values of the explanatory variables nwifeinc ${ }_{i}$, ed $_{i}, \exp _{i}$, and age ${ }_{i}$.

- First, use the probit command to re-estimate Model 3, with all regressors entered in factor-variable notation to distinguish between continuous and categorical explanatory variables. Model 3 contains four continuous explanatory variables, specifically nwifeinc ${ }_{i}$, $\operatorname{ed}_{\mathrm{i}}, \exp _{\mathrm{i}}$, and age ${ }_{\mathrm{i}}$, and one binary categorical explanatory variable, dkidslt $\mathbf{i}_{\mathbf{i}}$. Enter on one line the following command:

```
probit inlf c.nwifeinc c.ed c.exp c.exp#c.exp c.age i.dkidslt6 i.dkidslt6#(c.nwifeinc
c.ed c.exp c.exp#c.exp c.age)
```

The following slide shows you the results of this probit estimation command.

probit inlf c.nwifeinc c.ed c.exp c.exp\#c.exp c.age i.dkidslt6 i.dkidslt6\#(c.nwifeinc c.ed c.exp c.exp\#c.exp c.age) ;								
Iteration 0: $\quad \log$ likelihood $=-514.8732$ (output omitted)								
Iteration 4: \quad log likelihood $=-402.61111$								
Probit regression			Number of obs LR chi2(11)		$=\quad 753$			
			$=$ $=$					
			Prob	> chi2	0.0000			
Log likelihood $=-402.61111$					Pseudo R2		0.2	
inlf	Coef.	Std. Err.	z	P>\|z		[95\% Conf	Interval]	
nwifeinc	-. 0109103	. 0056007	-1.95	0.051	-. 0218874	. 0000668		
ed	. 1215786	. 0280427	4.34	0.000	. 0666159	. 1765413		
exp	. 137317	. 0208939	6.57	0.000	. 0963657	. 1782682		
c.exp\#c.exp	-. 0022349	. 0006495	-3.44	0.001	-. 003508	-. 0009619		
age	-. 0593504	. 0085496	-6.94	0.000	-. 0761072	-. 0425935		
1.dkidslt6	-2.527031	1.267708	-1.99	0.046	-5.011694	-. 0423684		
dkidslt6\#c.ed								
1	. 0327202	. 0623143	0.53	0.600	-. 0894135	. 154854		
dkidslt6\#c.exp								
1	-. 1128835	. 0663563	-1.70	0.089	-. 2429394	. 0171724		
dkidslt6\#c.age								
1	. 0503914	. 0260813	1.93	0.053	-. 0007271	. 1015099		
_cons	. 6084091	. 4961565	1.23	0.220	-. 3640398	1.580858		

- Second, use a margins command with the at() option to compute estimates of the conditional probability of labour force participation for (1) married women with no pre-school aged children, for whom dkidslt $\mathbf{6}_{\mathrm{i}}=$ 0 , and (2) married women with one or more pre-school aged children, for whom dkidslt $6_{i}=1$. Note that the at() option is used tell Stata that these conditional probabilities of labour force participation are to be computed at the sample median values of the four continuous explanatory variables nwifeinc ${ }_{i}$, ed_{i}, $\exp _{i}$, and age $_{i}$. Enter the following margins command:

```
margins i.dkidslt6, at((median) nwifeinc ed exp age)
```

Output from this margins command:

```
. * Marginal probability effect of 'dkidslt6' at sample medians of continuous covariates
. margins i.dkidslt6, at((median) nwifeinc ed exp age)
```



```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Delta-method} & \(P>|z|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline dkidslt6 & & & & & & \\
\hline 0 & . 6469122 & . 0256601 & 25.21 & 0.000 & . 5966194 & . 6972049 \\
\hline 1 & . 3198606 & . 0948877 & 3.37 & 0.001 & . 1338842 & . 505837 \\
\hline
\end{tabular}
```

- Third, use a second margins command with the at () option to compute an estimate of the marginal probability effect of dkidslt $\mathbf{6}_{\mathbf{i}}$, which by definition is the difference in the conditional probability of labour force participation between married women with pre-school aged children (for whom dkidslt $\boldsymbol{6}_{\mathbf{i}}=\mathbf{1}$) and married women with no pre-school aged children (for whom dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{0}$). Enter the following margins command:

```
margins r.dkidslt6, at((median) nwifeinc ed exp age)
```

Output from this margins command:

```
. margins r.dkidslt6, at((median) nwifeinc ed exp age)
Contrasts of adjusted predictions
Model VCE : OIM
\begin{tabular}{lllrl} 
Expression & : Pr(inlf), predict () & & \\
at & : nwifeinc & \(=\) & 17.7 (median) \\
& ed & \(=\) & 12 (median) \\
& exp & \(=\) & 9 (median) \\
& age & \(=\) & 43 (median)
\end{tabular}
```



```
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|c|}{Delta-method} \\
\hline dkidslt6 & & & & \\
\hline (1 vs 0) & -. 3270515 & . 098296 & -. 5197082 & -. 1343949 \\
\hline
\end{tabular}
```

- An alternative to the above Stata margins command uses the option contrast(nowald effects). Enter the following margins command:

```
margins r.dkidslt6, at((median) nwifeinc ed exp age) contrast(nowald effects)
```

Output from this margins command:

```
. margins r.dkidslt6, at((median) nwifeinc ed exp age) contrast(nowald effects)
Contrasts of adjusted predictions
Model VCE : OIM
Expression : Pr(inlf), predict()
at : nwifeinc = 17.7 (median)
    ed = 12 (median)
    exp = 9 (median)
    age = 43 (median)
```


Note that the first of the above margins commands reports a Wald test of the null hypothesis that the $\boldsymbol{m a r g i n a l}$ probability effect of dkidslt $\boldsymbol{i}_{\mathbf{i}}$ at sample median values of nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$ is equal to zero, whereas the second margins command reports an equivalent large-sample \mathbf{t}-test of the same null hypothesis. Otherwise, the results produced by these two margins commands are identical.

