ECON 452*: Stata 11 Tutorial 9

TOPIC: Estimating and Interpreting Probit Models with Stata: Extensions

DATA: mroz.dta (a Stata-format dataset you created in Stata 11 Tutorial 8)
TASKS: Stata 11 Tutorial 9 is an extension of Stata 11 Tutorial 8, and therefore deals with the estimation, testing, and interpretation of probit models for binary dependent variables. In particular, it illustrates how to use a cross-sectional sample of married women in the United States to investigate whether and how the probability of labour force participation differs between two distinct groups of married women, namely (1) married women who have one or more pre-school aged children and (2) married women who have no pre-school aged children. It demonstrates how Stata can be used to conduct an econometric investigation into differences in the conditional probability of labour force participation between these two distinct groups of married women.

- The Stata commands that constitute the primary subject of this tutorial are:
probit Used to compute ML estimates of probit coefficients in probit models of binary dependent variables.
dprobit Used to compute ML estimates of the marginal probability effects of explanatory variables in probit models.
test Used after probit estimation to compute Wald tests of linear coefficient equality restrictions on probit coefficients.
lincom Used after probit estimation to compute and test the marginal effects of individual explanatory variables.
- The Stata statistical functions used in this tutorial are:
normalden(z) Computes value of the standard normal density function (p.d.f.) for a given value z of a standard normal random variable.
normal(z) Computes value of the standard normal distribution function (c.d.f.) for a given value z of a standard normal random variable.
invnormal (p) Computes the inverse of the standard normal distribution function; if normal $(z)=p$, then invnormal $(p)=z$.

NOTE: Stata commands are case sensitive. All Stata command names must be typed in the Command window in lower case letters.

Lecture Notes on Stata 11 Tutorial 9: CONTENTS

- Two Probit Models of Married Women's Participation: Specification of Models $\mathbf{2}$ and $\mathbf{3}$ pp. 4-12
- Testing the marginal probability effect of the binary explanatory variable dkidslt $\boldsymbol{i}_{\boldsymbol{i}}$-- test and lincom pp. 13-31
- Interpreting the coefficient estimates in full-interaction Model 3 pp. 32-36
- Computing the marginal probability effect of the binary explanatory variable dkidslt $_{i}$ in Model 3 dprobit with at(vecname) option pp. 37-49
- Marginal probability effects of continuous explanatory variables in Model 3 -- dprobit pp. 50-58
- Testing for zero marginal probability effects of continuous explanatory variables in Model 3 -- dprobit pp. 59-68
- Testing for differences in the marginal probability effects of continuous explanatory variables in Model 3-- dprobit pp. 69-73
- Computing estimates of the marginal probability effects of continuous explanatory variables in Model 3 -dprobit pp. 74-81

Two Probit Models of Married Women's Participation: Specification of Models 2 and 3

We consider two different models of married women's labour force participation.

- Model 2 was introduced in Stata 11 Tutorial 8. The binary indicator variable dkidslt $\boldsymbol{f}_{\boldsymbol{i}}$ enters only as an additive regressor.
- Model 3 is a generalization of Model 2: it allows all probit coefficients to differ between (1) married women who currently have one or more pre-school aged children and (2) married women who currently have no preschool aged children. The binary explanatory variable dkidsltt $\boldsymbol{\sigma}_{i}$ enters both additively and multiplicatively.

The observed dependent variable in both models is the binary variable inlf $\boldsymbol{f}_{\boldsymbol{i}}$ defined as follows:
$\operatorname{inlf}_{\mathrm{i}}=1$ if the i -th married woman is in the employed labour force
$=0$ if the i-th married woman is not in the employed labour force
The explanatory variables in Models 2 and 3 are:
nwifeinc $_{\mathrm{i}} \quad=$ non-wife family income of the i-th woman (in thousands of dollars per year);
$\mathrm{ed}_{\mathrm{i}} \quad=$ years of formal education of the i-th woman (in years);
$\exp _{i} \quad=$ years of actual work experience of the i-th woman (in years);
age $_{i} \quad=$ age of the i-th woman (in years);
dkidslt $_{\mathrm{i}}=1$ if the i -th woman has one or more children less than 6 years of age, $=0$ otherwise.
Four of these explanatory variables -- nwifeinc ${ }_{i}$, ed $_{i}, \exp _{i}$, and age ${ }_{i}$-- are continuous variables, whereas the fifth explanatory variable -- dkidslt 6_{i}-- is a binary indicator (dummy) variable.

$\underline{\text { Model } 2 \text { - binary explanatory variable } \text { dkidslt }_{i} \text { enters only additively }}$

The probit index function for Model 2 is:

$$
\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\beta_{6} \text { dkidslt }_{i}
$$

Remarks: In Model 2, the binary explanatory variable dkidslt6 i $_{i}$ enters only additively; only the intercept coefficient in the index function differs between the two groups of married women, those who have pre-school aged children and those who do not.

- In Model 2, the probit index function for married women who have no pre-school aged children, for whom dkidslt $_{\mathrm{i}}=0$, is obtained by setting dkidslt $\mathrm{C}_{\mathrm{i}}=0$ in the index function for Model 2:

$$
\begin{aligned}
\left(x_{i}^{T} \beta \mid \text { dkidslt }_{i}=0\right) & =\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i}+\beta_{6} 0 \\
& =\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{i}^{2}+\beta_{5} \text { age }_{i}
\end{aligned}
$$

- In Model 2, the probit index function for married women who have one or more pre-school aged children, for whom $^{\text {dkidslt }} \mathrm{F}_{\mathrm{i}}=1$, is obtained by setting dkidslt $_{i}=1$ in the index function for Model 2:

$$
\begin{aligned}
\left(x_{i}^{T} \beta \mid \text { dkidslt }_{i}=1\right) & =\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{i}^{2}+\beta_{5} \text { age }_{i}+\beta_{6} 1 \\
& =\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{i}^{2}+\beta_{5} \text { age }_{i}+\beta_{6}
\end{aligned}
$$

- In Model 2, the marginal index effect of the binary indicator variable dkidslt $\boldsymbol{j}_{\boldsymbol{i}}$ is simply the difference between (1) the index function for married women who currently have one or more pre-school aged children,
 children, $\left(x_{i}^{T} \beta \mid\right.$ dkidsltt $\left._{i}=0\right)$:

$$
\begin{aligned}
&\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}=1}\right)-\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right) \\
&= \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\beta_{6} \\
& \quad-\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right) \\
&= \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\beta_{6} \\
& \quad-\beta_{0}-\beta_{1} \text { nwifeinc }_{\mathrm{i}}-\beta_{2} \text { ed }_{\mathrm{i}}-\beta_{3} \exp _{\mathrm{i}}-\beta_{4} \exp _{\mathrm{i}}^{2}-\beta_{5} \text { age }_{\mathrm{i}} \\
&= \beta_{6}
\end{aligned}
$$

- In Model 2, the marginal probability effect of the binary indicator variable dkidslt $6_{\boldsymbol{i}}$ is the difference between (1) the conditional probability that inlf $_{\mathrm{i}}=1$ for married women with one or more pre-school aged children and (2) the conditional probability that inlf $\mathrm{f}_{\mathrm{i}}=1$ for married women with no pre-school aged children:

$$
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)
$$

where $\Phi(*)$ is the cumulative distribution function (cdf) of the standard normal distribution and

$$
\begin{aligned}
& \mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}}=\left(1 \text { nwifeinc }_{\mathrm{i}} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 1\right) \\
& x_{0 i}^{T}=\left(1 \text { nwifeinc }_{i} \operatorname{ed}_{i} \exp _{i} \exp _{\mathrm{i}}^{2} \operatorname{age}_{\mathrm{i}} 0\right) \\
& \beta=\left(\begin{array}{lllllll}
\beta_{0} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{5} & \beta_{6}
\end{array}\right)^{\mathrm{T}} \\
& \mathrm{x}_{\mathrm{ii}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\beta_{6} \\
& \mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\beta_{6}\right) \\
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\beta_{6} 0\right) \\
& =\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{aligned}
$$

Thus, the marginal probability effect of the indicator variable dkidslt $\boldsymbol{i}_{\boldsymbol{i}}$ in Model $\mathbf{2}$ is

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{\mathrm{ii}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right) \\
&= \Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\beta_{6}\right) \\
&-\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{aligned}
$$

Model 3 - a full interaction model in the binary variable dkidsltt \boldsymbol{i}_{i}

The probit index function, or regression function, for Model 3 is:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\beta_{6} \text { dkidslt }_{i} \\
& +\beta_{7} \text { dkidslt }_{i} \text { nwifeinc }_{\mathrm{i}}+\beta_{8} \text { dkidslt }_{\mathrm{i}} \mathrm{ed}_{\mathrm{i}}+\beta_{9} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}+\beta_{10} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { dkidslt }_{\mathrm{i}} \text { age }_{\mathrm{i}}
\end{aligned}
$$

Remarks: Model 3 is the full-interaction generalization of Model 2: it interacts the dkidslt 6_{i} indicator variable with all the other regressors in Model 2, and thereby permits all index function coefficients to differ between the two groups of married women distinguished by dkidslt 6_{i}.

- In Model 3, the probit index function for married women who currently have no pre-school aged children, for whom dkidslt $6_{\mathrm{i}}=0$, is obtained by setting dkidslt $6_{\mathrm{i}}=0$ in the index function for Model 3:

$$
\left(x_{i}^{\mathrm{T}} \beta \mid \text { dkidslt }_{i}=0\right)=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i}
$$

- In Model 3, the probit index function for married women who currently have one or more pre-school aged children, for whom dkidslt $6_{i}=1$, is obtained by setting dkidslt $6_{i}=1$ in the index function for Model 3:

$$
\begin{aligned}
&\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right)= \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
&+\beta_{6} 1+\beta_{7} 1 \cdot \text { nwifeinc }_{\mathrm{i}}+\beta_{8} 1 \cdot \text { ed }_{\mathrm{i}}+\beta_{9} 1 \cdot \exp _{\mathrm{i}}+\beta_{10} 1 \cdot \exp _{\mathrm{i}}^{2}+\beta_{11} 1 \cdot \text { age }_{\mathrm{i}} \\
&=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\beta_{6}+\beta_{7} \text { nwifeinc }_{\mathrm{i}}+\beta_{8} \text { ed }_{\mathrm{i}}+\beta_{9} \exp _{\mathrm{i}}+\beta_{10} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { age }_{\mathrm{i}} \\
&=\beta_{0}+\beta_{6}+\left(\beta_{1}+\beta_{7}\right) \text { nwifeinc }_{\mathrm{i}}+\left(\beta_{2}+\beta_{8}\right) \text { ed }_{\mathrm{i}}+\left(\beta_{3}+\beta_{9}\right) \exp _{\mathrm{i}}+\left(\beta_{4}+\beta_{10}\right) \exp _{\mathrm{i}}^{2}+\left(\beta_{5}+\beta_{11}\right) \text { age }_{\mathrm{i}}
\end{aligned}
$$

- In Model 3, the marginal index effect of the binary indicator variable dkidslt $\boldsymbol{j}_{\boldsymbol{i}}$ is simply the difference between (1) the index function for married women who currently have one or more pre-school aged children, $\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=1\right)$ and (2) the index function for married women who currently have no pre-school aged children, $\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$:

$$
\begin{aligned}
& \left(x_{i}^{\mathrm{T}} \beta \mid \operatorname{dkidslt}_{\mathrm{i}}=1\right)-\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right) \\
& =\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i}+\beta_{6}+\beta_{7} \text { nwifeinc }_{i}+\beta_{8} \text { ed }_{i}+\beta_{9} \exp _{i}+\beta_{10} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { age }_{i} \\
& -\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right) \\
& =\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i}+\beta_{6}+\beta_{7} \text { nwifeinc }_{i}+\beta_{8} \text { ed }_{i}+\beta_{9} \exp _{i}+\beta_{10} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { age }_{i} \\
& -\beta_{0}-\beta_{1} \text { nwifeinc }_{i}-\beta_{2} \text { ed }_{i}-\beta_{3} \exp _{\mathrm{i}}-\beta_{4} \exp _{\mathrm{i}}^{2}-\beta_{5} \text { age }_{\mathrm{i}} \\
& =\beta_{6}+\beta_{7} \text { nwifeinc }_{i}+\beta_{8} \text { ed }_{i}+\beta_{9} \exp _{i}+\beta_{10} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { age }_{i}
\end{aligned}
$$

- In Model 3, the marginal probability effect of the binary indicator variable dkidslt \boldsymbol{f}_{i} is the difference between (1) the conditional probability that inlf $\mathrm{f}_{\mathrm{i}}=1$ for married women with one or more pre-school aged children and (2) the conditional probability that inlf $\mathrm{f}_{\mathrm{i}}=1$ for married women with no pre-school aged children:

$$
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)
$$

where $\Phi(*)$ is the cumulative distribution function (cdf) of the standard normal distribution and

$$
\begin{aligned}
& x_{1 i}^{T}=\left(1 \text { nwifeinc }_{i} \operatorname{ed}_{i} \exp _{i} \exp _{\mathrm{i}}^{2} \operatorname{age}_{\mathrm{i}} 1 \text { nwifeinc }_{\mathrm{i}} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{i}\right) \\
& x_{0 i}^{T}=\left(\begin{array}{l}
1 \text { nwifeinc }_{i} \operatorname{ed}_{i} \exp _{i} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 0000000
\end{array}\right) \\
& \beta=\left(\beta_{0} \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \beta_{6} \beta_{7} \beta_{8} \beta_{9} \beta_{10} \beta_{11}\right)^{\mathrm{T}} \\
& \mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \operatorname{ed}_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\beta_{6}+\beta_{7} \text { nwifeinc }_{i}+\beta_{8} \text { ed }_{i}+\beta_{9} \exp _{i}+\beta_{10} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { age }_{\mathrm{i}} \\
& \mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right) & =\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\beta_{6}+\beta_{7} \text { nwifeinc }_{\mathrm{i}}+\beta_{8} \text { ed }_{\mathrm{i}}+\beta_{9} \exp _{\mathrm{i}}+\beta_{10} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { age }_{\mathrm{i}}} \\
& =\Phi\binom{\left(\beta_{0}+\beta_{6}\right)+\left(\beta_{1}+\beta_{7}\right) \text { nwifeinc }_{\mathrm{i}}+\left(\beta_{2}+\beta_{8}\right) \text { ed }_{\mathrm{i}}}{+\left(\beta_{3}+\beta_{9}\right) \text { exp }_{\mathrm{i}}+\left(\beta_{4}+\beta_{10}\right) \exp _{\mathrm{i}}^{2}+\left(\beta_{5}+\beta_{11}\right) \text { age }_{\mathrm{i}}} \\
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right) & =\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\beta_{6} 0+\beta_{7} 0+\beta_{8} 0+\beta_{9} 0+\beta_{10} 0+\beta_{11} 0} \\
& =\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{aligned}
$$

Thus, the marginal probability effect of the indicator variable $\boldsymbol{d k i d s l t}_{\boldsymbol{i}}$ in Model 3 is

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidsltf }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)= \\
& \qquad \begin{array}{l}
\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\beta_{6}+\beta_{7} \text { nwifeinc }_{\mathrm{i}}+\beta_{8} \text { ed }_{\mathrm{i}}+\beta_{9} \exp _{\mathrm{i}}+\beta_{10} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { age }_{\mathrm{i}}} \\
\\
-\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{array}
\end{aligned}
$$

We are concerned with three aspects of the marginal probability effect of the indicator variable dkidslt \boldsymbol{f}_{i} :

1. the existence of the marginal probability effect of the indicator variable dkidsltt ${ }_{i}$;
2. the direction (sign) of the marginal probability effect of the indicator variable dkidslt \boldsymbol{f}_{i};
3. the magnitude (size) of the marginal probability effect of the indicator variable dkidslt \boldsymbol{G}_{i}.

Testing the marginal probability effect of the binary explanatory variable dkidslt $\boldsymbol{i}_{\boldsymbol{i}}$-- test and lincom

Proposition to be Tested

- Does the conditional probability of labour force participation for married women depend on the presence in the family of one or more dependent children under 6 years of age?
- Is the probability of labour force participation for married women with given values of nwifeinc ${ }_{i}$, ed_{i}, $\exp _{\mathrm{i}}$, and age $_{i}$ who currently have one or more pre-school aged children equal to the probability of labour force participation for married women with the same values of nwifeinc c_{i}, ed_{i}, $\exp _{i}$, and age e_{i} who currently have no pre-school aged children?
- Is it true that

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{i}=1 \mid \text { dkidslt }_{i}=1, \text { nwifeinc }_{i}, \text { ed }_{i}, \exp _{i}, \text { age }_{i}\right) \\
& \quad=\operatorname{Pr}\left(\text { inlf }_{i}=1 \mid \text { dkidslt }_{i}=0, \text { nwifeinc }_{i}, \text { ed }_{i}, \exp _{i}, \text { age }_{i}\right) \text { ? }
\end{aligned}
$$

Null and Alternative Hypotheses: General Formulation

The null hypothesis in general is:

$$
\mathrm{H}_{0}: \quad \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1, \ldots\right)=\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0, \ldots\right)
$$

The alternative hypothesis in general is:

$$
\mathrm{H}_{1}: \quad \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1, \ldots\right) \neq \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0, \ldots\right)
$$

Testing the Existence of the Marginal Probability Effect of the Indicator Variable dkidslt6 $\boldsymbol{i}_{\boldsymbol{i}}$

For testing the existence of a relationship between any explanatory variable and the probability that the observed dependent variable equals 1, use either of the two Stata commands for probit estimation: use either the probit command or the dprobit command.

Null and Alternative Hypotheses: Model 2

The null hypothesis in general is:

$$
\mathrm{H}_{0}: \quad \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1, \ldots\right)=\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0, \ldots\right)
$$

For Model 2,

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidsltt }_{\mathrm{i}}=1, \ldots\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right) \\
& \quad=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\beta_{6}\right) \\
& \begin{aligned}
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0, \ldots\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidsltt }_{\mathrm{i}}=0\right) \\
\quad=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{aligned}
\end{aligned}
$$

These two probabilities are equal if the exclusion restriction $\beta_{6}=0$ is true. In other words, a sufficient condition for these two probabilities to be equal is the exclusion restriction $\beta_{6}=\mathbf{0}$.

The null and alternative hypotheses for Model 2 are therefore:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \beta_{6}=0 \\
\mathrm{H}_{1}: & \beta_{6} \neq 0
\end{array}
$$

Important Point: A test of the null hypothesis that the marginal probability effect of pre-school aged children is zero is equivalent to a test of the null hypothesis that the marginal index effect of pre-school aged children is zero.

- Marginal probability effect of pre-school aged children equals zero in Model 2 if

$$
\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}}=0\right) .
$$

In Model 2,

$$
\begin{aligned}
& \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{i}}^{\mathrm{i}}=1\right)=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\beta_{6}\right) \\
& \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}\right)
\end{aligned}
$$

Question: What coefficient restriction(s) are sufficient to make these two probabilities equal for any given values of nwifeinc $\mathrm{c}_{\mathrm{i}}, \mathrm{ed}_{\mathrm{i}}, \exp _{\mathrm{i}}$, and age ${ }_{\mathrm{i}}$?

Answer: By inspection - i.e., by comparing the function $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \mathrm{dkidslt}_{\mathrm{i}}=1\right)$ and the function $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}}=0\right)$ - we can see that a sufficient condition for $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=1\right)=$ $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}}=0\right)$ in Model 2 is the single coefficient exclusion restriction $\beta_{6}=0$.

- Marginal index effect of pre-school aged children equals zero if
$\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=1\right)=\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=0\right)$.

In Model 2,

$\left(x_{i}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=1\right)=\beta_{0}+\beta_{1}$ nwifeinc $_{\mathrm{i}}+\beta_{2}$ ed $_{i}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5}$ age $_{i}+\beta_{6}$
$\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=0\right)=\beta_{0}+\beta_{1}$ nwifeinc $_{i}+\beta_{2}$ ed $_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5}$ age $_{\mathrm{i}}$
Question: What coefficient restriction(s) are sufficient to make these two index functions equal for any given values of nwifeinc ${ }_{i}$, ed $_{i}, \exp _{i}$, and age ${ }_{i}$?

Answer: By inspection - i.e., by comparing the index function $\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=1\right)$ and the index function $\left(x_{i}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$ - we can see that a sufficient condition for $\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{i}}=1\right)=\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\left.\text { dkidslt } 6_{i}=0\right)}\right.$ in Model 2 is the single coefficient exclusion restriction $\beta_{6}=0$.

- Result: The single coefficient exclusion restriction $\beta_{6}=0$ is sufficient to make the both the marginal probability effect and the marginal index effect of pre-school aged children equal to zero in Model 2.

- How to Perform this Test for Model 2 in Stata

- First, compute ML estimates of probit Model 2 and display the full set of saved results. Enter the following commands:

```
probit inlf nwifeinc ed exp expsq age dkidslt6
ereturn list
```

- To calculate a Wald test of H_{0} against H_{1} and the p -value for the calculated W -statistic, enter the following test, return list and display commands:

```
test dkidslt6 or test dkidslt6 = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following lincom, return list and display commands:

```
lincom _b[dkidslt6]
return list
display r(estimate)/r(se)
```

The results of this two-tail t-test are identical with those of the previous Wald test.
Note that this lincom command merely replicates the test statistic and p-value that are displayed in the output of the probit command for the regressor dkidslt6.

Null and Alternative Hypotheses: Model 3

The null hypothesis in general is:

$$
\mathrm{H}_{0}: \quad \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1, \ldots\right)=\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0, \ldots\right)
$$

For Model 3,

$$
\begin{aligned}
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right) & =\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right) \\
& =\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\beta_{6}+\beta_{7} \text { nwifeinc }_{\mathrm{i}}+\beta_{8} \mathrm{ed}_{\mathrm{i}}+\beta_{9} \exp _{\mathrm{i}}+\beta_{10} \text { exp }_{\mathrm{i}}^{2}+\beta_{11} \text { age }_{\mathrm{i}}} \\
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right) & =\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right) \\
& =\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{aligned}
$$

These two probabilities are equal if the six exclusion restrictions $\beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=\beta_{11}=0$ are true. In other words, a sufficient condition for these two probabilities to be equal is the set of six coefficient exclusion restrictions $\beta_{\mathrm{j}}=0$ for all $\mathrm{j}=6, \ldots, 11$.

The null and alternative hypotheses for Model $\mathbf{3}$ are therefore:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \beta_{\mathrm{j}}=0 \quad \forall \mathrm{j}=6,7,8,9,10,11 \\
\Rightarrow & \beta_{6}=0 \text { and } \beta_{7}=0 \text { and } \beta_{8}=0 \text { and } \beta_{9}=0 \text { and } \beta_{10}=0 \text { and } \beta_{11}=0 \\
\mathrm{H}_{1}: & \beta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=6,7,8,9,10,11 \\
\Rightarrow & \beta_{6} \neq 0 \text { and/or } \beta_{7} \neq 0 \text { and/or } \beta_{8} \neq 0 \text { and/or } \beta_{9} \neq 0 \text { and/or } \beta_{10} \neq 0 \text { and/or } \beta_{11} \neq 0
\end{array}
$$

Important Point: A test of the null hypothesis that the marginal probability effect of pre-school aged children is zero is equivalent to a test of the null hypothesis that the marginal index effect of pre-school aged children is zero.

- Marginal probability effect of pre-school aged children equals zero in Model 3 if
$\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \operatorname{dkidslt}_{\mathrm{i}}=1\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$.

In Model 3,

$\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=1\right)=\Phi\binom{\beta_{0}+\beta_{1}$ nwifeinc $_{i}+\beta_{2}$ ed $_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5}$ age $_{\mathrm{i}}}{+\beta_{6}+\beta_{7}$ nwifeinc $_{i}+\beta_{8}$ ed $_{\mathrm{i}}+\beta_{9} \exp _{\mathrm{i}}+\beta_{10} \exp _{\mathrm{i}}^{2}+\beta_{11}$ age $_{\mathrm{i}}}$
$\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)=\Phi\left(\beta_{0}+\beta_{1}\right.$ nwifeinc $_{\mathrm{i}}+\beta_{2}$ ed $_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5}$ age $\left._{\mathrm{i}}\right)$
Question: What coefficient restriction(s) are sufficient to make these two probabilities equal for any given values of nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$?

Answer: By inspection - i.e., by comparing the function $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \mathrm{dkidslt}_{\mathrm{i}}=1\right)$ and the function
 $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$ in Model 3 is the set of six coefficient exclusion restrictions $\beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=\beta_{11}=\mathbf{0}$.

- Marginal index effect of pre-school aged children equals zero in Model 3 if

$$
\left(x_{i}^{\mathrm{T}} \beta \mid \operatorname{dkidslt}_{\mathrm{i}}=1\right)=\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \operatorname{dkidslt}_{\mathrm{i}}=0\right) .
$$

In Model 3,

$$
\begin{aligned}
&\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } \left.6_{\mathrm{i}}=1\right)=} \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right. \\
&+\beta_{6}+\beta_{7} \text { nwifeinc }_{\mathrm{i}}+\beta_{8} \text { ed }_{\mathrm{i}}+\beta_{9} \exp _{\mathrm{i}}+\beta_{10} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { age }_{\mathrm{i}} \\
&\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } \left.6_{\mathrm{i}}=0\right)=} \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right.
\end{aligned}
$$

Question: What coefficient restriction(s) are sufficient to make these two index functions equal for any given values of nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$?

Answer: By inspection - i.e., by comparing the index function $\left(x_{i}^{\top} \beta \mid\right.$ dkidslt $\left._{i}=1\right)$ and the index function $\left(x_{i}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{i}=0\right)$ - we can see that a sufficient condition for $\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=1\right)=\left(x_{i}^{T} \beta \mid\right.$ dkidsltt $\left._{i}=0\right)$ in Model 3 is the set of six coefficient exclusion restrictions $\beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=\beta_{11}=\mathbf{0}$.

- Result: The six coefficient exclusion restrictions $\beta_{6}=\beta_{7}=\beta_{8}=\beta_{9}=\beta_{10}=\beta_{11}=\mathbf{0}$ are sufficient to make the both the marginal probability effect and the marginal index effect of pre-school aged children equal to zero in Model 3.
- How to Perform this Test for Model 3 in Stata

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \beta_{\mathrm{j}}=0 \quad \forall \mathrm{j}=6,7,8,9,10,11 \\
\mathrm{H}_{1}: & \beta_{\mathrm{j}} \neq 0
\end{array}
$$

- Before estimating Model 3, it is necessary to create the $\boldsymbol{d k i d s l t} \boldsymbol{6}_{\boldsymbol{i}}$ interaction variables. Enter the following generate commands:

```
generate d6nwinc = dkidslt6*nwifeinc
generate d6ed = dkidslt6*ed
generate d6exp = dkidslt6*exp
generate d6expsq = dkidslt6*expsq
generate d6age = dkidslt6*age
```

- Next, compute ML estimates of probit Model 3 and display the full set of saved results. Enter the following commands:

```
probit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age
ereturn list
```

- To calculate a Wald test of H_{0} against H_{1} and the p -value for the calculated W -statistic, enter the following test and return list commands:

```
test dkidslt6 d6nwinc d6ed d6exp d6expsq d6age
return list
```

- A second hypothesis test you should perform on Model 3 is a test of the null hypothesis that all slope coefficient differences between married women who have one or more pre-school aged children and married women who have no pre-school aged children equal zero. The null and alternative hypotheses are:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \beta_{\mathrm{j}}=0 \quad \forall \mathrm{j}=7,8,9,10,11 \\
\Rightarrow & \beta_{7}=0 \text { and } \beta_{8}=0 \text { and } \beta_{9}=0 \text { and } \beta_{10}=0 \text { and } \beta_{11}=0 \\
\mathrm{H}_{1}: & \beta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=7,8,9,10,11 \\
\Rightarrow & \beta_{7} \neq 0 \text { and/or } \beta_{8} \neq 0 \text { and/or } \beta_{9} \neq 0 \text { and/or } \beta_{10} \neq 0 \text { and/or } \beta_{11} \neq 0
\end{array}
$$

Note that the null hypothesis H_{0} implies Model 2, whereas the alternative hypothesis H_{1} implies Model 3. Enter the test command:
test d6nwinc d6ed d6exp d6expsq d6age
probit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age

Iteration 0:	\log likelihood $=$	-514.8732
Iteration 1:	\log likelihood $=$	-406.48086
Iteration 2:	\log likelihood $=$	-402.63328
Iteration 3:	\log likelihood $=$	-402.61111
Iteration 4:	\log likelihood $=$	-402.61111

Probit estimates

Number of obs	$=$	753
LR chi2(11)	$=$	224.52
Prob > chi2	$=$	0.0000
Pseudo R2	$=$	0.2180

Log likelihood = -402.61111

inlf	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Con	Interval]
nwifeinc	-. 0109103	. 0056007	-1.95	0.051	-. 0218874	. 0000668
ed	. 1215786	. 0280427	4.34	0.000	. 0666159	. 1765413
exp	. 137317	. 0208939	6.57	0.000	. 0963657	. 1782682
expsq	-. 0022349	. 0006495	-3.44	0.001	-. 003508	-. 0009619
age	-. 0593504	. 0085496	-6.94	0.000	-. 0761072	-. 0425935
dkidslt6	-2.527031	1.267708	-1.99	0.046	-5.011694	-. 0423684
d6nwinc	-. 0059201	. 0109624	-0.54	0.589	-. 0274059	. 0155658
d6ed	. 0327202	. 0623143	0.53	0.600	-. 0894135	. 154854
d6exp	-. 1128835	. 0663563	-1.70	0.089	-. 2429394	. 0171724
d6expsq	. 0030026	. 0033465	0.90	0.370	-. 0035564	. 0095616
d6age	. 0503914	. 0260813	1.93	0.053	-. 0007271	. 1015099
_cons	. 6084091	.4961565	1.23	0.220	-. 3640398	1.580858

. ereturn list
scalars:

$$
\begin{aligned}
\mathrm{e}(\mathrm{~N}) & =753 \\
\mathrm{e}(\mathrm{ll} 0) & =-514.8732045671461 \\
\mathrm{e}(\mathrm{ll}) & =-402.6111063731551 \\
\mathrm{e}(\mathrm{df} \mathrm{~m}) & =11 \\
\mathrm{e}(\mathrm{chi} 2) & =224.5241963879821 \\
\mathrm{e}\left(\mathrm{r} _\mathrm{p}\right) & =.2180383387563736
\end{aligned}
$$

macros:
e(depvar) : "inlf" e(cmd) : "probit"
e(crittype) : "log likelihood"
e(predict) : "probit_p"
e(chi2type) : "LR"
matrices:

$$
\begin{aligned}
& \text { e(b) }: 1 \times 12 \\
& \text { e(v) }: 12 \times 12
\end{aligned}
$$

functions:

```
    e(sample)
```

. * Test 1:
. test dkidslt6 d6nwinc d6ed d6exp d6expsq d6age
(1) dkidslt6 $=0$
(2) d6nwinc $=0$
(3) d6ed $=0$
(4) d6exp $=0$
(5) d6expsq $=0$
(6) d6age $=0$
chi2 (6) = 58.11
Prob > chi2 $=0.0000$
. return list
scalars:

```
r(drop) = 0
r(chi2) = 58.11036668348744
r(df) = 6
    r(p) = 1.08838734793e-10
```

. * Test 2:
. test d6nwinc d6ed d6exp d6expsq d6age
(1) d6nwinc $=0$
(2) d6ed $=0$
(3) d6exp $=0$
(4) d6expsq $=0$
(5) d6age $=0$
chi2 (5) = 9.03
Prob $>$ chi2 $=0.1078$
. return list
scalars:

```
            r(drop) = 0
            r(chi2) = 9.031191992371875
            r(df) = 5
            r(p) = . 1078264635420236
```

. dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age

Iteration 0:	\log likelihood $=$	-514.8732
Iteration 1:	\log likelihood $=$	-406.48086
Iteration 2:	\log likelihood $=$	-402.63328
Iteration 3:	\log likelihood $=$	-402.61111
Iteration 4:	\log likelihood $=-402.61111$	

Probit estimates

Log likelihood = -402.61111

| Number of obs | $=753$ |
| :--- | ---: | ---: |
| LR chi2(11) | $=224.52$ |
| Prob > chi2 | $=0.0000$ |
| Pseudo R2 | $=0.2180$ |

inlf	dF/dx	Std. Err.	Z	$\mathrm{P}>\|\mathrm{z}\|$	x-bar	95\%	C.I
nwifeinc	-. 0042484	. 0021794	-1.95	0.051	20.129	-. 00852	. 000023
ed	. 0473425	. 0108958	4.34	0.000	12.2869	. 025987	. 068698
\exp	. 053471	. 0081365	6.57	0.000	10.6308	. 037524	. 069418
expsq	-. 0008703	. 0002531	-3.44	0.001	178.039	-. 001366	-. 000374
age	-. 0231109	. 0033213	-6.94	0.000	42.5378	-. 029621	-. 016601
dkidslt6*	-. 7273305	. 1555487	-1.99	0.046	. 195219	-1.0322	-. 422461
d6nwinc	-. 0023053	. 00427	-0.54	0.589	4.04408	-. 010674	. 006064
d6ed	. 0127412	. 0242742	0.53	0.600	2.47809	-. 034835	. 060318
d6exp	-. 0439567	. 0258347	-1.70	0.089	1.37317	-. 094592	. 006678
d6expsq	. 0011692	. 0013032	0.90	0.370	15.012	-. 001385	. 003723
d6age	. 0196223	. 0101508	1.93	0.053	6.87251	-. 000273	. 039518
$\begin{array}{r} \text { obs. } P \\ \text { pred. } \\ \hline \end{array}$	$\begin{aligned} & .5683931 \\ & .5870885 \end{aligned}$	(at x-bar)					

(*) dF/dx is for discrete change of dummy variable from 0 to 1 z and $P>|z|$ are the test of the underlying coefficient being 0

```
. ereturn list
scalars:
```



```
                    e(11) = -402.6111063731551
            e(df_m) = 11
            e(chi2) = 224.5241963879821
            e(r2_p) = . 2180383387563736
            e(pbar) = . 5683930942895087
            e(xbar) = . 220061785738521
            e(offbar) = 0
```

macros:
e(cmd) : "dprobit"

e(depvar) : "inlf"
e(crittype) : "log likelihood"
e(predict) : "probit_p"
e(chi2type) : "LR"
matrices:

$$
\begin{array}{rlll}
e(b) & : & 1 \times 12 \\
e(V) & : & 12 \times 12 \\
e\left(s e _d f d x\right) & : & 1 \times 11 \\
e(d f d x) & : & 1 \times 11
\end{array}
$$

functions:

```
            e(sample)
```

. * Test 1:
. test dkidslt6 d6nwinc d6ed d6exp d6expsq d6age
(1) dkidslt6 $=0$
(2) d6nwinc $=0$
(3) d6ed $=0$
(4) d6exp $=0$
(5) d6expsq $=0$
(6) d6age $=0$
chi2 (6) = 58.11
Prob > chi2 $=0.0000$
. return list
scalars:

```
r(drop) = 0
r(chi2) = 58.11036668348744
r(df) = 6
    r(p) = 1.08838734793e-10
```

. * Test 2:
. test d6nwinc d6ed d6exp d6expsq d6age
(1) d6nwinc $=0$
(2) d6ed $=0$
(3) d6exp $=0$
(4) d6expsq $=0$
(5) d6age $=0$
chi2 (5) = 9.03
Prob $>$ chi2 $=0.1078$
. return list
scalars:

```
r(drop) = 0
r(chi2) = 9.031191992371875
r(df) = 5
                            r(p) = . 1078264635420236
```


Interpreting the coefficient estimates in full-interaction Model 3

Full-interaction Model 3 estimates two distinct sets of probit coefficients: (1) the probit coefficients for married women who have no pre-school aged children (for whom dkidslt $_{i}=0$); and (2) the probit coefficients for married women who have one or more pre-school aged children (for whom dkidslt $6_{i}=1$).

- Recall that the probit index function for Model 3 is:

$$
\begin{aligned}
\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{0} & +\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\beta_{6} \text { dkidslt }_{i}+\beta_{7}{\text { dkidsltt } 6_{\mathrm{i}} \text { nwifeinc }_{\mathrm{i}}+\beta_{8} \text { dkidslt }_{\mathrm{i}} \text { ed }_{\mathrm{i}}} \\
& +\beta_{9} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}+\beta_{10}{\text { dkidslt } 6_{\mathrm{i}}} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { dkidsltt }_{\mathrm{i}} \text { age }_{\mathrm{i}}
\end{aligned}
$$

- The probit index function for married women who have no pre-school aged children (for whom dkidslt $6_{i}=$ 0) is obtained by setting the indicator variable dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{0}$ in the probit index function for Model 3:

$$
\left(x_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}
$$

Implication: The probit coefficient estimates for married women who have no pre-school aged children (for whom dkidslt $_{\mathrm{i}}=0$) are given directly by the coefficient estimates of the first six terms in the above index function. In particular, for married women who currently have no pre-school aged children:

The probit coefficient estimates for married women who have no pre-school aged children are:
$\beta_{0}=$ the intercept coefficient for women for whom $\operatorname{dkidslt}_{\mathrm{i}}=0$
$\beta_{1}=$ the slope coefficient of nwifeinc ${ }_{i}$ for women for whom dkidsltt $6_{i}=0$
$\beta_{2}=$ the slope coefficient of ed ${ }_{i}$ for women for whom dkidslt6 ${ }_{i}=0$
$\beta_{3}=$ the slope coefficient of $\exp _{i}$ for women for whom dkidslt $6_{i}=0$
$\beta_{4}=$ the slope coefficient of $\exp _{\mathrm{i}}^{2}$ for women for whom dkidslt $6_{i}=0$
$\beta_{5}=$ the slope coefficient of age ${ }_{i}$ for women for whom dkidsltt $6_{i}=0$.

- The probit index function for married women who currently have one or more pre-school aged children (for whom dkidsltt $6_{i}=1$) is obtained by setting the indicator variable dkidslt $6_{i}=1$ in the probit index function for Model 3:

$$
\begin{aligned}
\left(x_{i}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{i}}^{2}\right)= & \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\beta_{6}+\beta_{7} \text { nwifeinc }_{\mathrm{i}}+\beta_{8} \text { ed }_{\mathrm{i}}+\beta_{9} \exp _{\mathrm{i}}+\beta_{10} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { age }_{\mathrm{i}}
\end{aligned}
$$

Implication: The probit coefficient estimates for married women who have one or more pre-school aged children (for whom dkidslt $6_{i}=1$) are obtained from Model 3 by summing pairs of coefficient estimates. In particular, for married women who have one or more pre-school aged children:

$$
\begin{aligned}
& \beta_{0}+\beta_{6}=\text { the intercept coefficient for women for whom } \text { dkidslt }_{i}=1 \\
& \beta_{1}+\beta_{7}=\text { the slope coefficient of nwifeinc }{ }_{i} \text { for women for whom dkidslt } 6_{i}=1 \\
& \beta_{2}+\beta_{8}=\text { the slope coefficient of ed } \mathrm{d}_{\mathrm{i}} \text { for women for whom dkidsltt } \mathrm{F}_{\mathrm{i}}=1 \\
& \beta_{3}+\beta_{9}=\text { the slope coefficient of } \exp _{\mathrm{i}} \text { for women for whom dkidslt } 6_{\mathrm{i}}=1 \\
& \beta_{4}+\beta_{10}=\text { the slope coefficient of } \exp _{i}^{2} \text { for women for whom dkidsltt } i_{i}=1 \\
& \beta_{5}+\beta_{11}=\text { the slope coefficient of age }{ }_{i} \text { for women for whom dkidsltt } 6_{i}=1 \text {. }
\end{aligned}
$$

- Compute from Model 3 the probit coefficient estimates, t-ratios and p-values for those married women who have one or more pre-school aged children (for whom dkidslt $_{i}=1$). Enter the following lincom commands:

```
lincom _b[_cons] + _b[dkidslt6]
lincom _b[nwifeinc] + _b[d6nwinc]
lincom _b[ed] + _b[d6ed]
lincom _b[exp] + _b[d6exp]
lincom _b[expsq] + _b[d6expsq]
lincom _b[age] + _b[d6age]
```

```
    * Model 3 probit coefficients for women for whom dkidslt6 = 1
    lincom _b[_cons] + _b[dkidslt6]
(1) dkidslt6 + _cons = 0
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline inlf & Coef. & Std. Err. & z & \(\mathrm{P}>|\mathrm{z}|\) & [95\% Con & Interval] \\
\hline (1) & -1.918622 & 1.166582 & -1.64 & 0.100 & -4.205081 & . 3678365 \\
\hline
\end{tabular}
lincom _b[nwifeinc] + _b[d6nwinc]
( 1) nwifeinc + d6nwinc = 0
```



```
    lincom _b[ed] + _b[d6ed]
( 1) ed + d6ed = 0
    inlf | Coef. Std. Err. Z P>|z| [95% Conf. Interval]
    (1) | . }1542988 .0556478 2.77 0.006 . 0452311 . 2633665
```


- Computing the marginal probability effect of the binary explanatory variable dkidslt \boldsymbol{f}_{i} in Model 3 dprobit with at(vecname) option

This section demonstrates how to use the dprobit command with the at(vecname) option to compute the marginal probability effect of the dummy variable dkidslt \boldsymbol{f}_{i} in Model $\mathbf{3}$ for married women who have the sample median values of the explanatory variables nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$.

Here we are concerned with obtaining an estimate of the direction and magnitude of the marginal probability effect of the dummy variable dkidslt \boldsymbol{G}_{i} in Model 3.

The marginal probability effect of the dummy variable dkidslt $\boldsymbol{f}_{\boldsymbol{i}}$ in Model $\mathbf{3}$ is:

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{i}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{i}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right) \\
&= \Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\beta_{6}+\beta_{7} \text { nwifeinc }_{\mathrm{i}}+\beta_{8} \mathrm{ed}_{\mathrm{i}}+\beta_{9} \exp _{\mathrm{i}}+\beta_{10} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { age }_{\mathrm{i}}} \\
&-\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{aligned}
$$

The procedure for this computation consists of three steps.

Three-step procedure for computing the marginal probability effect of the dummy variable dkidslt $\boldsymbol{f}_{\boldsymbol{i}}$ in Model 3

Step 1: Estimate the probability of labour force participation for married women with the specified characteristics who currently have one or more dependent children under 6 years of age, for whom dkidslt $6_{i}=1$: i.e., compute an estimate of

$$
\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)=\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\beta_{6}+\beta_{7} \text { nwifeinc }_{\mathrm{i}}+\beta_{8} \mathrm{ed}_{\mathrm{i}}+\beta_{9} \exp _{\mathrm{i}}+\beta_{10} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { age }_{\mathrm{i}}}
$$

Step 2: Estimate the probability of labour force participation for married women with the specified characteristics who currently have no dependent children under $\mathbf{6}$ years of age, for whom dkidslt $6_{i}=0$: i.e., compute an estimate of

$$
\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}\right)
$$

Step 3: Compute an estimate of the difference $\Phi\left(\mathrm{x}_{1 i}^{T} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)$, which is the marginal probability effect of having one or more pre-school aged children for married women who have the specified characteristics.

- Compute (or select) the values of the explanatory variables at which you wish to compute the marginal probability effect of the binary variable dkidslt 6_{i}.

Use the pooled sample medians of the explanatory variables nwifeinc ${ }_{i}, \operatorname{ed}_{i}$, exp $_{i}$, and age ${ }_{i}$. Enter the following commands:

```
summarize nwifeinc, detail
return list
scalar nwinc50p = r(p50)
summarize ed, detail
scalar ed50p = r(p50)
summarize exp, detail
scalar exp50p = r(p50)
scalar expsq50p = exp50p^2
summarize age, detail
scalar age50p = r(p50)
scalar list nwinc50p ed50p exp50p expsq50p age50p
```

The sample median values of the explanatory variables computed by these commands are as follows:

nwinc50p	$=$	17.700001
ed50p	$=$	12
exp50p	$=$	9
expsq50p	$=$	81
age50p	$=$	43

- Step 1: Use the dprobit command with the at(vecname) option to compute the marginal probability effects in Model 3 for median married women whose non-wife family income is $\$ 17,700$ per year (nwifeinc $=17.700$), who have 12 years of formal education ($\mathrm{ed}=12$) and 9 years of actual work experience ($\exp =9, \operatorname{expsq}=81$), who are 43 years of age (age $=43$), and who have one or more dependent children under 6 years of age (dkidslt6 = 1).

First create the vector $\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}}$ containing the median values of the regressors in Model 3 when dkidslt $6_{i}=1$. The coefficient vector β for Model 3 in Stata format is:

$$
\beta=\left(\beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \beta_{6} \beta_{7} \beta_{8} \beta_{9} \beta_{10} \beta_{11} \beta_{0}\right)^{\mathrm{T}}
$$

In Stata format, the vector $\mathrm{x}_{1 i}^{\mathrm{T}}$ for Model 3 thus takes the form:

$$
\begin{aligned}
\mathrm{x}_{1 i}^{\mathrm{T}} & =\left(\text { nwifeinc }_{\mathrm{i}} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 1 \text { nwifeinc }_{\mathrm{i}} \text { ed }_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 1\right) \\
& =\binom{\text { nwinc50p ed50p exp50p expsq50p age50p } 1}{\text { nwinc50p ed50p exp50p expsq50p age50p } 1}
\end{aligned}
$$

Step 1 Stata commands are:

```
matrix x1median = (nwinc50p, ed50p, exp50p, expsq50p, age50p, 1, nwinc50p, ed50p,
exp50p, expsq50p, age50p, 1)
matrix list x1median
dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age,
at(x1median)
ereturn list
```

Display and save the value of $\Phi\left(\mathrm{x}_{\mathrm{ij}}^{\mathrm{T}} \hat{\hat{\beta}}\right)$, an estimate of $\operatorname{Pr}\left(\right.$ inlf $\left._{\mathrm{i}}=1 \mid \operatorname{dkidslt}_{\mathrm{i}}=1\right)$. The value of $\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ is temporarily stored as the scalar $\mathbf{e (a t)}$ following the above dprobit command. Enter the commands:

```
display e(at)
scalar PHIx1med = e(at)
scalar list PHIx1med
```

These commands save the value of $\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\mathrm{\beta}}\right)$ as the scalar PHIx1med.

- Step 2: Now use the dprobit command with the at(vecname) option to compute the marginal probability effects in Model 3 for median married women whose non-wife family income is $\$ 17,700$ per year (nwifeinc $=$ 17.700), who have 12 years of formal education (ed = 12) and 9 years of actual work experience (exp $=9$, expsq $=81$), who are 43 years of age (age = 43), and who have no dependent children under 6 years of age
(dkidslt6 = 0). Again, you will first have to create the vector $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}}$ containing the median values of the regressors in Model 3 when dkidslt $\mathrm{i}_{\mathrm{i}}=0$.

In Stata format, the vector $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}}$ for Model 3 takes the form:

$$
\left.\begin{array}{rl}
\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} & =\left(\text { nwifeinc }_{\mathrm{i}} \mathrm{ed}_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \operatorname{age}_{\mathrm{i}} 00000001\right.
\end{array}\right) .
$$

Step 2 Stata commands are:

```
matrix x0median = (nwinc50p, ed50p, exp50p, expsq50p, age50p, 0, 0, 0, 0, 0, 0, 1)
matrix list x0median
dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age,
at(x0median)
ereturn list
```

Display and save the value of $\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\mathrm{B}}\right)$, an estimate of $\operatorname{Pr}\left(\operatorname{inlf}_{\mathrm{i}}=1 \mid \operatorname{dkidslt}_{\mathrm{i}}=0\right)$. The value of $\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ is temporarily stored as the scalar $\mathbf{e (a t)}$ following the above dprobit command. Enter the commands:

```
display e(at)
scalar PHIx0med = e(at)
scalar list PHIx0med
```

These commands save the value of $\Phi\left(\mathrm{x}_{0}^{\mathrm{T}} \mathrm{\beta}\right)$ as the scalar PHIx0med.

- Step 3: Finally, compute the estimate of the difference $\Phi\left(\mathrm{x}_{1 i}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)$, which is the marginal probability effect having one or more dependent children under 6 years of age for married women who have the specified characteristics. Step 3 Stata commands are:

```
scalar diffPHImed = PHIx1med - PHIx0med
scalar list PHIx1med PHIx0med diffPHImed
```

The value of the scalar diffPHImed is the estimate for Model 3 of

$$
\operatorname{Pr}\left(\operatorname{inlf}_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)
$$

i.e., of the marginal probability effect of having one or more dependent children under $\mathbf{6}$ years of age for married women who have the median characteristics of women in the full sample.

$$
\operatorname{diffPHImed}^{2}=\hat{\operatorname{Pr}}^{2}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\hat{\operatorname{Pr}}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)
$$

Output of Step 1 Stata Commands

. dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age, at(x1median)

Iteration 0:	log likelihood =	-514.8732
Iteration 1:	log likelihood	-406.48086
Iteration 2:	log likelihood	-402.63328
Iteration 3:	log likelihood	-402.61111
Iteration 4:	log likelihood =	-402.61111

Probit estimates					Number of obs $=753$ LR chi2(11) $=224.52$ Prob chi2 $=0.0000$ Pseudo R2 $=0.2180$		
inlf	dF/dx	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	X	95\%	C.I.]
nwifeinc	-. 0039009	. 0020603	-1.95	0.051	17.7	-. 007939	. 000137
ed	. 0434699	. 0113882	4.34	0.000	12	. 021149	. 06579
\exp	. 0490971	. 009644	6.57	0.000	9	. 030195	. 067999
expsq	-. 0007991	. 0002526	-3.44	0.001	81	-. 001294	-. 000304
age	-. 0212205	. 0040365	-6.94	0.000	43	-. 029132	-. 013309
dkidslt6*	-. 6603895	. 0730752	-1.99	0.046	1	-. 803614	-. 517165
d6nwinc	-. 0021167	. 0039297	-0.54	0.589	17.7	-. 009819	. 005585
d6ed	. 011699	. 0221757	0.53	0.600	12	-. 031765	. 055162
d6exp	-. 040361	. 0215344	-1.70	0.089	9	-. 082568	. 001846
d6expsq	. 0010736	. 0011221	0.90	0.370	81	-. 001126	. 003273
d6age	. 0180172	. 0111044	1.93	0.053	43	-. 003747	. 039781
obs. P \|	. 5683931						
pred. P \|	. 5870885	(at x-bar)					
pred. P \|	. 3198606	(at x)					

(*) dF/dx is for discrete change of dummy variable from 0 to 1
z and $P>|z|$ are the test of the underlying coefficient being 0

```
. ereturn list
scalars:
            e(N) = 753
            e(ll_0) = -514.8732045671461
                    e(11) = -402.6111063731551
            e(df_m) = 11
            e(chi2) = 224.5241963879821
            e(r2_p) = .2180383387563736
            e(pbar) = . }568393094289508
            e(xbar) = . 220061785738521
            e(offbar) = 0
                    e(at) = . 3198606279066483
[output omitted]
. display e(at)
31986063
. scalar PHIx1med = e(at)
scalar list PHIx1med
PHIx1med = . 31986063
```


Output of Step 2 Stata Commands

. dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age, at(x0median);

Probit estimates	Number of obs = 753
	LR chi2(11) $=224.52$
	Prob > chi2 $=0.0000$
Log likelihood = -402.61111	Pseudo R2 = 0.2180

inlf \|	dF/dx	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	x	95\%	C.I.]
nwifeinc \|	-. 004054	. 0020554	-1.95	0.051	17.7	-. 008083	-. 000025
ed	. 0451757	. 0104184	4.34	0.000	12	. 024756	. 065595
exp	. 0510237	. 0074085	6.57	0.000	9	. 036503	. 065544
expsq	-. 0008305	. 0002325	-3.44	0.001	81	-. 001286	-. 000375
age \|	-. 0220532	. 003204	-6.94	0.000	43	-. 028333	-. 015773
dkidslt6*	-. 6311359	. 0559456	-1.99	0.046	0	-. 740787	-. 521485
d6nwinc \|	-. 0021998	. 0040816	-0.54	0.589	0	-. 010199	. 0058
d6ed	. 012158	. 0231649	0.53	0.600	0	-. 033244	. 05756
d6exp	-. 0419448	. 0245612	-1.70	0.089	0	-. 090084	. 006194
d6expsq	. 0011157	. 0012413	0.90	0.370	0	-. 001317	. 003549
d6age \|	. 0187242	. 0096966	1.93	0.053	0	-. 000281	. 037729
obs. P \|	. 5683931						
pred. P \|	. 5870885	(at x-bar)					
pred. P \|	. 6469122						

(*) $\mathrm{dF} / \mathrm{dx}$ is for discrete change of dummy variable from 0 to 1
z and $P>|z|$ are the test of the underlying coefficient being 0

```
. ereturn list
scalars:
            e(N) = 753
            e(ll_0) = -514.8732045671461
                e(11) = -402.6111063731551
            e(df_m) = 11
            e(chī2) = 224.5241963879821
            e(r2_p) = . 2180383387563736
            e(pbar) = . }568393094289508
            e(xbar) = . 220061785738521
                    e(offbar) = 0
            e(at) = . .6469121653332525
[output omitted]
. display e(at)
. }6469121
. scalar PHIx0med = e(at)
. scalar list PHIx0med
    PHIx0med = . }6469121
```


Output of Step 3 Stata Commands

. * Model 3: compute marginal probability effect of dkidslt6
. scalar diffPHImed = PHIx1med - PHIx0med
. scalar list PHIx1med PHIx0med diffPHImed
PHIx1med $=.31986063$
PHIx0med $=.64691217$
diffPHImed $=-. .32705154$

The value of the scalar diffPHImed is the estimate for Model 3 of

$$
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)
$$

In Model 3, the estimated marginal probability effect of having one or more dependent children under $\mathbf{6}$ years of age for married women who have the median characteristics of women in the full sample is:

$$
\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)=\mathbf{- 0 . 3 2 7 0 5 1 5 4}=\mathbf{- 0 . 3 2 7 1}
$$

Marginal probability effects of continuous explanatory variables in Model 3 -- dprobit

Background

- The marginal probability effects of continuous explanatory variables in probit models are the partial derivatives of the standard normal c.d.f. $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)$ with respect to the individual explanatory variables:

$$
\text { marginal probability effect of } \mathbf{X}_{\mathbf{j}}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{X}_{\mathrm{ij}}}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta} \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{X}_{\mathrm{ij}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{X}_{\mathrm{ij}}}
$$

where

$$
\begin{aligned}
& \phi\left(x_{i}^{T} \beta\right)=\text { the value of the standard normal p.d.f. evaluated at } x_{i}^{T} \beta \\
& \frac{\partial x_{i}^{T} \beta}{\partial X_{i j}}=\text { the marginal index effect of the continuous variable } X_{j} .
\end{aligned}
$$

- Recall that the probit index function for Model 3 is:

$$
\begin{aligned}
\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{0} & +\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\beta_{6} \text { dkidsltt }_{\mathrm{i}}+\beta_{7}{\text { dkidsltt } 6_{\mathrm{i}} \text { nwifeinc }_{\mathrm{i}}+\beta_{8} \text { dkidsltt }_{\mathrm{i}} \text { ed }_{\mathrm{i}}} \\
& +\beta_{9} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}+\beta_{10}{\text { dkidslt } 6_{\mathrm{i}}} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { dkidslt }_{\mathrm{i}} \mathrm{age}_{\mathrm{i}}
\end{aligned}
$$

Marginal Index Effects of Continuous Explanatory Variables - Model 3

- For Model 3, there are two sets of marginal index effects, one for women with no pre-school aged children (for whom dkidslt $6_{i}=0$), and the other for women with one or more pre-school aged children (for whom dkidsltt $6_{i}=$ 1).
- The marginal index effects of the continuous explanatory variables in Model 3 are obtained by partially differentiating the index function $x_{i}^{\top} \beta$ for Model 3 with respect to each of the four continuous explanatory variables nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$.

The probit index function, or regression function, for Model $\mathbf{3}$ is:

$$
\begin{aligned}
\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{0} & +\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\beta_{6} \text { dkidslt }_{\mathrm{i}}+\beta_{7}{\text { dkidsltt } 6_{\mathrm{i}} \text { nwifeinc }_{\mathrm{i}}+\beta_{8} \text { dkidslt }_{\mathrm{i}} \text { ed }_{\mathrm{i}}} \\
& +\beta_{9} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}+\beta_{10}{\text { dkidslt } 6_{\mathrm{i}}} \exp _{\mathrm{i}}^{2}+\beta_{11} \text { dkidslt }_{\mathrm{i}} \text { age }_{\mathrm{i}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{0} & +\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\beta_{6} \text { dkidslt }_{i}+\beta_{7}{\text { dkidslt } 6_{\mathrm{i}} \text { nwifeinc }_{\mathrm{i}}+\beta_{8}{\text { dkidslt } 6_{\mathrm{i}}}^{\text {ed }_{\mathrm{i}}}} \\
& +\beta_{9} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}+\beta_{10} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}^{2}+\beta_{11}{\text { dkidslt } 6_{\mathrm{i}}} \text { age }_{\mathrm{i}}
\end{aligned}
$$

Now partially differentiate the index function $x_{i}^{T} \beta$ for Model 3 with respect to each of the four continuous explanatory variables nwifeinc ${ }_{i}, \operatorname{ed}_{i}$, $\exp _{i}$, and age $_{i}$.

1. marginal index effect of nwifeinc ${ }_{i}=\frac{\partial x_{i}^{\mathrm{T}} \beta}{\partial \text { nwifeinc }_{\mathrm{i}}}=\beta_{1}+\beta_{7}$ dkidslt $_{\mathrm{i}}$
2. marginal index effect of ed ${ }_{i}=\frac{\partial x_{i}^{T} \beta}{\partial \mathrm{ed}_{\mathrm{i}}}=\beta_{2}+\beta_{8}$ dkidsltt $_{\mathrm{i}}$
3. marginal index effect of $\exp _{\mathrm{i}}=\frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \exp _{\mathrm{i}}}$

$$
=\beta_{3}+2 \beta_{4} \exp _{\mathrm{i}}+\left(\beta_{9}+2 \beta_{10} \exp _{\mathrm{i}}\right) \mathrm{dkidslt}_{\mathrm{i}}
$$

4. marginal index effect of age ${ }_{i}=\frac{\partial x_{i}^{\mathrm{T}} \beta}{\partial \text { age }_{\mathrm{i}}}=\beta_{5}+\beta_{11}$ dkidslt $_{\mathrm{i}}$

Note: Each of these marginal index effects differs depending on whether dkidslt $6_{i}=0$ or dkidslt $6_{i}=1$.

- The marginal index effects for married women with no pre-school aged children are obtained by setting the indicator variable dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{0}$ in expressions 1 to 4 above:

5. marginal index effect of nwifeinc ${ }_{i}=\frac{\partial x_{i}^{T} \beta}{\partial \text { nwifeinc }_{i}}=\beta_{1}$
6. marginal index effect of $\mathrm{ed}_{\mathrm{i}}=\frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{ed}_{\mathrm{i}}}=\beta_{2}$
7. marginal index effect of $\exp _{i}=\frac{\partial x_{i}^{\mathrm{T}} \beta}{\partial \exp _{i}}=\beta_{3}+2 \beta_{4} \exp _{\mathrm{i}}$
8. marginal index effect of age $_{i}=\frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{age}_{\mathrm{i}}}=\beta_{5}$

- The marginal index effects for married women with one or more pre-school aged children are obtained by setting the indicator variable dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{1}$ in expressions 1 to 4 above:

9. marginal index effect of nwifeinc ${ }_{i}=\frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \text { nwifeinc }_{\mathrm{i}}}=\beta_{1}+\beta_{7}$
10.marginal index effect of $\mathrm{ed}_{\mathrm{i}}=\frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{ed}_{\mathrm{i}}}=\beta_{2}+\beta_{8}$
11.marginal index effect of $\exp _{i}=\frac{\partial x_{i}^{T} \beta}{\partial \exp _{i}}=\beta_{3}+2 \beta_{4} \exp _{i}+\left(\beta_{9}+2 \beta_{10} \exp _{i}\right)$

$$
=\beta_{3}+\beta_{9}+2\left(\beta_{4}+\beta_{10}\right) \exp _{i}
$$

12.marginal index effect of age $_{i}=\frac{\partial x_{i}^{T} \beta}{\partial \text { age }_{i}}=\beta_{5}+\beta_{11}$

Marginal Probability Effects of Continuous Explanatory Variables - Model 3

- The marginal probability effects of the four continuous explanatory variables in Model 3 are:

1. marginal probability effect of nwifeinc $c_{i}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \text { nwifeinc }_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \text { nwifeinc }_{i}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{1}+\beta_{7} \text { dkidslt } 6_{\mathrm{i}}\right)
$$

2. marginal probability effect of ed ${ }_{i}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{ed}_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{ed}_{\mathrm{i}}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{2}+\beta_{8} \mathrm{dkidslt}_{\mathrm{i}}\right)
$$

3. marginal probability effect of $\exp _{i}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \exp _{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \exp _{\mathrm{i}}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{3}+2 \beta_{4} \exp _{\mathrm{i}}+\left(\beta_{9}+2 \beta_{10} \exp _{\mathrm{i}}\right) \text { dkidslt }_{\mathrm{i}}\right)
$$

4. marginal probability effect of age ${ }_{i}=\frac{\partial \Phi\left(x_{i}^{T} \beta\right)}{\partial \text { age }_{i}}=\phi\left(x_{i}^{T} \beta\right) \frac{\partial x_{i}^{T} \beta}{\partial \text { age }_{i}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{5}+\beta_{11} \text { dkidslt } 6_{\mathrm{i}}\right)
$$

Notes: There are three features of these marginal probability effects for Model 3 that you should recognize.

1. These marginal probability effects differ depending on whether dkidslt6 ${ }_{i}=0$ or dkidslt6 ${ }_{i}=1$.
2. The marginal probability effect of a continuous explanatory variable X_{j} is proportional to the marginal index effect of X_{j}, where the factor of proportionality is the standard normal p.d.f. at $X_{i}^{T} \beta$:

$$
\text { marginal probability effect of } \mathbf{X}_{\mathbf{j}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \times \text { marginal index effect of } \mathbf{X}_{\mathbf{j}}
$$

3. Estimation of the marginal probability effects of a continuous explanatory variable X_{j} requires one to choose a specific vector of regressor values X_{i}^{T}. Common choices for x_{i}^{T} are the sample mean and sample median values of the regressors.

- The marginal probability effects for married women with no pre-school aged children are obtained by setting the indicator variable dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{0}$ in expressions 1 to 4 above:

5. marginal probability effect of nwifeinc $\mathrm{c}_{\mathrm{i}}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \text { nwifeinc }_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \text { nwifeinc }_{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \beta_{1}$
6. marginal probability effect of $\mathrm{ed}_{\mathrm{i}}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{ed}_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{ed}_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \beta_{2}$
7. marginal probability effect of $\exp _{i}=\frac{\partial \Phi\left(x_{i}^{T} \beta\right)}{\partial \exp _{i}}=\phi\left(x_{i}^{T} \beta\right) \frac{\partial x_{i}^{T} \beta}{\partial \exp _{i}}=\phi\left(x_{i}^{T} \beta\right)\left(\beta_{3}+2 \beta_{4} \exp _{i}\right)$
8. marginal probability effect of age ${ }_{i}=\frac{\partial \Phi\left(x_{i}^{T} \beta\right)}{\partial \text { age }_{i}}=\phi\left(x_{i}^{T} \beta\right) \frac{\partial x_{i}^{T} \beta}{\partial \text { age }_{i}}=\phi\left(x_{i}^{T} \beta\right) \beta_{5}$

- The marginal probability effects for married women with one or more pre-school aged children are obtained by setting the indicator variable dkidslt $\mathbf{i}_{\mathbf{i}}=\mathbf{1}$ in expressions 1 to 4 above:

9. marginal probability effect of nwifeinc ${ }_{i}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \text { nwifeinc }_{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \text { nwifeinc }_{i}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{1}+\beta_{7}\right)
$$

10. marginal probability effect of $\mathrm{ed}_{\mathrm{i}}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{ed}_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{ed}_{\mathrm{i}}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{2}+\beta_{8}\right)
$$

11. marginal probability effect of $\exp _{i}=\frac{\partial \Phi\left(x_{i}^{T} \beta\right)}{\partial \exp _{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \exp _{\mathrm{i}}}$

$$
\begin{aligned}
& =\phi\left(x_{i}^{\mathrm{T}} \beta\right)\left(\beta_{3}+2 \beta_{4} \exp _{\mathrm{i}}+\beta_{9}+2 \beta_{10} \exp _{\mathrm{i}}\right) \\
& =\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{3}+\beta_{9}+2\left(\beta_{4}+\beta_{10}\right) \exp _{\mathrm{i}}\right)
\end{aligned}
$$

12. marginal probability effect of age ${ }_{i}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{age}_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{age}_{\mathrm{i}}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{5}+\beta_{11}\right)
$$

Testing for zero marginal probability effects of continuous explanatory variables in Model 3 - probit or

 dprobit
Background:

For any explanatory variable, there are two distinct empirical questions that an econometric investigation of married women's labour force participation (or any other binary outcome) should address.

- The first question concerns the existence of a relationship: is a particular explanatory variable related to the probability of married women's labour force participation, conditional on other explanatory variables included in the model?

In other words, is the marginal probability effect of a particular explanatory variable on the probability of married women's labour force participation zero or non-zero?

- The second question concerns the direction and magnitude of the relationship: how large a change in the conditional probability of married women's labour force participation is associated with a one-unit increase in the value of a particular continuous explanatory variable, holding constant the values of all other explanatory variables included in the model?

This section addresses the first question for each of the four continuous variables in Model 3.

Objective: To test the proposition that the marginal effect of each continuous explanatory variable on the probability of married women's labour force participation is equal to zero for each of the two groups of married women:

1. married women with one or more pre-school aged children
and
2. married women with no pre-school aged children

Important Point:

The marginal probability effect of a continuous explanatory variable X_{j} is proportional to the marginal index effect of X_{j}, where the factor of proportionality is the standard normal p.d.f. at $X_{i}^{T} \beta$:
marginal probability effect of $\mathbf{X}_{\mathbf{j}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \times$ marginal index effect of $\mathbf{X}_{\mathbf{j}}$
Implication: Any set of coefficient restrictions that is sufficient to make the marginal index effect of a continuous explanatory variable equal to zero is also sufficient to make the marginal probability effect of that continuous explanatory variable equal to zero.

In other words, testing the null hypothesis that the marginal index effect of a continuous explanatory variable equals zero is equivalent to testing the null hypothesis that the marginal probability effect of that continuous explanatory variable equals zero.

- First, re-estimate probit Model 3. Enter the probit command:
probit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age
- Test 1 - Model 3: for married women with no pre-school aged children
- Proposition: The non-wife income of the family has no effect on the probability of labour force participation for married women who have no pre-school aged children; the marginal probability (and index) effect of nwifeinc $\boldsymbol{c}_{\mathbf{i}}$ equals zero for married women for whom dkidsltt $_{i}=0$.
- For married women for whom $\boldsymbol{d k i d s I t t}_{\boldsymbol{i}}=\mathbf{0}$: marginal probability effect of nwifeinc $\mathrm{c}_{\mathrm{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \beta_{1}$

A sufficient condition for the marginal probability effect of nwifeinc c_{i} to equal zero for any given values of the regressors $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ is $\beta_{1}=0$.

- Null and Alternative Hypotheses:

$$
H_{0}: \beta_{1}=0 \quad \text { versus } \quad H_{1}: \beta_{1} \neq 0
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following test, return list and display commands:

```
test nwifeinc or test nwifeinc = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic \mathbf{t}-test of H_{0} against H_{1}, enter the following Stata commands:

```
lincom _b[nwifeinc]
return list
display r(estimate)/r(se)
```

The results of this two-tail t-test are identical with those of the previous Wald test.

- Test 1-Model 3: for married women with one or more pre-school aged children
- Proposition: The non-wife income of the family has no effect on the probability of labour force participation for married women who have one or more pre-school aged children; the marginal probability (and index) effect of nwifeinc c_{i} equals zero for married women for whom dkidslt $6_{i}=1$.
- For married women for whom dkidslt $\boldsymbol{6}_{\boldsymbol{i}}=\mathbf{1}$: marginal probability effect of nwifeinc ${ }_{i}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{1}+\beta_{7}\right)$

A sufficient condition for the marginal probability effect of nwifeinc to equal zero for any given values of the $^{\text {to }}$ regressors x_{i}^{T} is $\beta_{1}+\beta_{7}=0$.

- Null and Alternative Hypotheses:

$$
\mathrm{H}_{0}: \beta_{1}+\beta_{7}=0 \quad \text { versus } \quad H_{1}: \beta_{1}+\beta_{7} \neq 0
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following test, return list and display commands:

```
test nwifeinc + d6nwinc = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic \mathbf{t}-test of H_{0} against H_{1}, enter the following Stata commands:

```
lincom _b[nwifeinc] + _b[d6nwinc]
return list
display r(estimate)/r(se)
```

The results of this two-tail t-test are identical with those of the previous Wald test.

- Test 2-Model 3: for married women with no pre-school aged children
- Proposition: For married women who have no pre-school aged children, the probability of labour force participation does not depend on their education; the marginal probability (and index) effect of ed $\mathbf{e d}_{\mathbf{i}}$ equals zero for married women for whom dkidsltt $_{i}=0$.
- For married women for whom $\boldsymbol{d k i d s l t}_{\boldsymbol{i}}^{\boldsymbol{i}}=\mathbf{0}$: marginal probability effect of $\mathrm{ed}_{\mathrm{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \beta_{2}$

A sufficient condition for the marginal probability effect of ed_{i} to equal zero for any given values of the regressors $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ is $\beta_{2}=0$.

- Null and Alternative Hypotheses:

$$
H_{0}: \beta_{2}=0 \quad \text { versus } \quad H_{1}: \beta_{2} \neq 0
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following test, return list and display commands:

```
test ed or test ed = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following Stata commands:

```
lincom _b[ed]
return list
display r(estimate)/r(se)
```

The results of this two-tail t-test are identical with those of the previous Wald test.

- Test 2-Model 3: for married women with one or more pre-school aged children
- Proposition: For married women who have one or more pre-school aged children, the probability of labour force participation does not depend on their education; the marginal probability (and index) effect of $\mathbf{e d}_{\mathbf{i}}$ equals zero for married women for whom dkidslt $_{\mathrm{i}}=1$.
- For married women for whom dkidslt $_{\boldsymbol{i}}=\mathbf{1}$: marginal probability effect of ed ${ }_{i}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{2}+\beta_{8}\right)$

A sufficient condition for the marginal probability effect of ed_{i} to equal zero for any given values of the regressors $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ is $\beta_{2}+\beta_{8}=0$.

- Null and Alternative Hypotheses:

$$
\mathrm{H}_{0}: \beta_{2}+\beta_{8}=0 \quad \text { versus } \quad H_{1}: \beta_{2}+\beta_{8} \neq 0
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following test, return list and display commands:

```
test ed + d6ed = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following Stata commands:

```
lincom _b[ed] + _b[d6ed]
return list
display r(estimate)/r(se)
```

The results of this two-tail t-test are identical with those of the previous Wald test.

- Test 3-Model 3: for married women with no pre-school aged children
- Proposition: Years of actual work experience have no effect on the probability of labour force participation for married women who have no pre-school aged children; the marginal probability (and index) effect of $\exp _{\mathbf{i}}$ equals zero for married women for whom dkidslt $6_{i}=0$.
- For married women for whom dkidsltt $\boldsymbol{i}_{\boldsymbol{i}}=\mathbf{0}$: marginal probability effect of $\exp _{i}=\phi\left(x_{i}^{T} \beta\right)\left(\beta_{3}+2 \beta_{4} \exp _{i}\right)$

A sufficient condition for the marginal probability effect of $\exp _{\mathrm{i}}$ to equal zero for any given values of the regressors x_{i}^{T} is $\beta_{3}=0$ and $\beta_{4}=0$.

- Null and Alternative Hypotheses:

$$
\mathrm{H}_{0}: \beta_{3}=0 \text { and } \beta_{4}=0 \text { versus } \mathrm{H}_{1}: \beta_{3} \neq 0 \text { and/or } \beta_{4} \neq 0
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following test, return list and display commands:

```
test exp expsq
return list
```

- Test 3-Model 3: for married women with one or more pre-school aged children
- Proposition: Years of actual work experience have no effect on the probability of labour force participation for married women who have one or more pre-school aged children; the marginal probability (and index) effect of $\boldsymbol{e x p}_{\mathbf{i}}$ equals zero for married women for whom dkidsltt $6_{i}=1$.
- For married women for whom dkidslt $_{i}=1$:
marginal probability effect of $\exp _{\mathrm{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{3}+\beta_{9}+2\left(\beta_{4}+\beta_{10}\right) \exp _{\mathrm{i}}\right)$
A sufficient condition for the marginal probability effect of $\exp _{\mathrm{i}}$ to equal zero for any given values of the regressors $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ is $\beta_{3}+\beta_{9}=0$ and $\beta_{4}+\beta_{10}=0$.
- Null and Alternative Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{3}+\beta_{9}=0 \text { and } \beta_{4}+\beta_{10}=0 \\
& \mathrm{H}_{1}: \beta_{3}+\beta_{9} \neq 0 \text { and/or } \beta_{4}+\beta_{10} \neq 0
\end{aligned}
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following test and return list commands:

```
test exp + d6exp = 0, notest
test expsq + d6expsq = 0, accumulate
return list
```

- Test 4-Model 3: for married women with no pre-school aged children
- Proposition: For married women who have no pre-school aged children, their age has no effect on their probability of labour force participation; the marginal probability (and index) effect of age $\mathbf{e}_{\mathbf{i}}$ equals zero for married women for whom dkidslt $6_{i}=0$.
- For married women for whom dkidsltt $\boldsymbol{i}_{\boldsymbol{i}}=\mathbf{0}$: marginal probability effect of age $\mathrm{a}_{\mathrm{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \beta_{5}$

A sufficient condition for the marginal probability effect of ed_{i} to equal zero for any given values of the regressors $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ is $\beta_{5}=0$.

- Null and Alternative Hypotheses:

$$
\mathrm{H}_{0}: \beta_{5}=0 \quad \text { versus } \quad H_{1}: \beta_{5} \neq 0
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following test, return list and display commands:

```
test age or test age = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic \mathbf{t}-test of H_{0} against H_{1}, enter the following Stata commands:

```
lincom _b[age]
return list
display r(estimate)/r(se)
```

The results of this two-tail t-test are identical with those of the previous Wald test.

- Test 4-Model 3: for married women with one or more pre-school aged children
- Proposition: For married women who have one or more pre-school aged children, their age has no effect on their probability of labour force participation; the marginal probability (and index) effect of age $\mathrm{e}_{\mathbf{i}}$ equals zero for married women for whom dkidslt $6_{\mathrm{i}}=1$.
- For married women for whom dkidsltt $_{\boldsymbol{i}}=\mathbf{1}$: marginal probability effect of age ${ }_{i}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{5}+\beta_{11}\right)$

A sufficient condition for the marginal probability effect of age ${ }_{i}$ to equal zero for any given values of the regressors x_{i}^{T} is $\beta_{5}+\beta_{11}=0$.

- Null and Alternative Hypotheses:

$$
H_{0}: \beta_{5}+\beta_{11}=0 \quad \text { versus } \quad H_{1}: \beta_{5}+\beta_{11} \neq 0
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following test, return list and display commands:

```
test age + d6age = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic \mathbf{t}-test of H_{0} against H_{1}, enter the following Stata commands:

```
lincom _b[age] + _b[d6age]
return list
display r(estimate)/r(se)
```

The results of this two-tail t-test are identical with those of the previous Wald test.

- Testing for differences in the marginal probability effects of continuous explanatory variables in Model 3probit or dprobit

Objective: To test the proposition that the marginal effect of each continuous explanatory variable on the probability of married women's labour force participation is equal for the two groups of married women: married women with no pre-school aged children, for whom dkidslt $_{i}=0$; and married women with one or more pre-school aged children, for whom dkidslt $6_{i}=1$.

- Test 5 - Model 3: equal marginal probability effects of nwifeinc ${ }_{i}$
- Proposition: The marginal probability (and index) effect of nwifeinc c_{i} is equal for zero for married women for whom dkidslt6 $6_{\mathrm{i}}=1$.
- Marginal probability effects for nwifeinc $_{\boldsymbol{i}}$ are:

$$
\begin{array}{ll}
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \beta_{1} & \text { when dkidslt } 6_{\mathrm{i}}=0 \\
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{1}+\beta_{7}\right) & \text { when dkidsltt } \mathrm{C}_{\mathrm{i}}=1
\end{array}
$$

A sufficient condition for the marginal probability effect of nwifeinc c_{i} to be equal for married women with and without pre-school aged children is $\beta_{7}=0$.

- Null and Alternative Hypotheses:

$$
\mathrm{H}_{0}: \beta_{7}=0 \quad \text { versus } \quad H_{1}: \beta_{7} \neq 0
$$

- To calculate a Wald test of this hypothesis, enter the following test command:

```
test d6nwinc = 0
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following lincom command:

```
lincom _b[d6nwinc]
```

The results of this two-tail t-test are identical with those of the previous Wald test.

- Test 6 - Model 3: equal marginal probability effects of $\boldsymbol{e d}_{\boldsymbol{i}}$
- Proposition: The marginal probability (and index) effect of ed_{i} is equal for married women with pre-school aged kids and married women with no pre-school aged kids.
- Marginal probability effects for $\boldsymbol{e d}_{\boldsymbol{i}}$ are:

$$
\begin{array}{lr}
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \beta_{2} & \text { when dkidslt } 6_{\mathrm{i}}=0 \\
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{2}+\beta_{8}\right) & \text { when dkidslt } 6_{\mathrm{i}}=1
\end{array}
$$

A sufficient condition for the marginal probability effect of ed_{i} to be equal for married women with and without pre-school aged children is $\beta_{8}=0$.

- Null and Alternative Hypotheses:

$$
\mathrm{H}_{0}: \beta_{8}=0 \quad \text { versus } \quad H_{1}: \beta_{8} \neq 0
$$

- To calculate a Wald test of this hypothesis, enter the following test command:

```
test d6ed = 0
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following lincom command:

```
lincom _b[d6ed]
```

The results of this two-tail t-test are identical with those of the previous Wald test.

- Test 7-Model 3: equal marginal probability effects of $\exp _{i}$
- Proposition: The marginal probability (and index) effect of $\exp _{\mathrm{i}}$ is equal for married women with pre-school aged kids and married women with no pre-school aged kids.
- Marginal probability effects for $\boldsymbol{e x p}_{\boldsymbol{i}}$ are:

$$
\begin{array}{ll}
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{3}+2 \beta_{4} \exp _{\mathrm{i}}\right) & \text { when dkidslt } 6_{\mathrm{i}}=0 \\
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{3}+\beta_{9}+2\left(\beta_{4}+\beta_{10}\right) \exp _{\mathrm{i}}\right) & \text { when dkidslt } 6_{\mathrm{i}}=1
\end{array}
$$

Sufficient conditions for the marginal probability effect of $\exp _{\mathrm{i}}$ to be equal for married women with and without pre-school aged children are $\beta_{9}=0$ and $\beta_{10}=0$.

- Null and Alternative Hypotheses:

$$
\mathrm{H}_{0}: \beta_{9}=0 \text { and } \beta_{10}=0 \text { versus } \mathrm{H}_{1}: \beta_{9} \neq 0 \text { and/or } \beta_{10} \neq 0
$$

- To calculate a Wald test of this hypothesis, enter the following test commands:

```
test d6exp = 0
test d6expsq = 0, accumulate
```

- Test 8 - Model 3: equal marginal probability effects of age ${ }_{i}$
- Proposition: The marginal probability (and index) effect of age e_{i} is equal for married women with pre-school aged kids and married women with no pre-school aged kids.
- Marginal probability effects for age $_{\boldsymbol{i}}$ are:

$$
\begin{array}{ll}
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \beta_{5} & \text { when }{\text { dkidsltt } 6_{\mathrm{i}}=0}^{=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{5}+\beta_{11}\right)}
\end{array} \quad \text { when dkidslt } 6_{\mathrm{i}}=1 ~ \$
$$

A sufficient condition for the marginal probability effect of age ${ }_{i}$ to be equal for married women with and without pre-school aged children is $\beta_{11}=0$.

- Null and Alternative Hypotheses:

$$
\mathrm{H}_{0}: \beta_{11}=0 \quad \text { versus } \quad H_{1}: \beta_{11} \neq 0
$$

- To calculate a Wald test of this hypothesis, enter the following test command:

```
test d6age = 0
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following lincom command:

```
lincom _b[d6age]
```

The results of this two-tail t-test are identical with those of the previous Wald test.

- Computing estimates of the marginal probability effects of continuous explanatory variables in Model 3 -dprobit

Objective

To estimate the magnitude of the relationship between a continuous explanatory variable and the conditional probability of married women's labour force participation.

Question addressed is: How large a change in the conditional probability of married women's labour force participation is associated with a one-unit increase in the value of a particular continuous explanatory variable, holding constant the values of all other explanatory variables included in the model?

This section demonstrates how to address this second question for each of the continuous explanatory variables nwifeinc $_{i}$, ed $_{i}$, exp $_{i}$, and age ${ }_{i}$.

Procedure

Recall that the marginal probability effect of a continuous explanatory variable $\mathbf{X}_{\mathbf{j}}$ is proportional to the marginal index effect of $\mathbf{X}_{\mathbf{j}}$, where the factor of proportionality is the standard normal p.d.f. evaluated at $x_{i}^{T} \beta$: marginal probability effect of $\mathbf{X}_{\mathbf{j}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \times$ marginal index effect of $\mathbf{X}_{\mathbf{j}}$

This expression implies that to compute estimates of the marginal probability effect of each continuous explanatory variable, we must first do two things.

- First, we must compute an estimate $x_{i}^{T} \hat{\beta}$ of $x_{i}^{T} \beta$.
- Second, we must compute the value of $\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$, i.e., the value of the standard normal density function evaluated at $x_{i}^{T} \hat{\beta}$.

Which Stata command to use Use the dprobit command with the at(vecname) option

Marginal probability effects for married women for whom dkidslt $6_{i}=0$

Compute the marginal probability effects of the four continuous explanatory variables in Model 3 for married women who have the sample median values of nwifeinc ${ }_{i}$, ed ${ }_{i}$, $\exp _{i}$, and age ${ }_{i}$, and no pre-schooled aged children (for whom dkidslt $6_{i}=0$).

- First re-estimate Model 3 using the dprobit command with the at(vecname) option. The vector to use in the at(vecname) option is the vector $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}}$ containing the median values of the regressors in Model 3 when dkidslt $6_{i}=$ 0 :

$$
\left.\begin{array}{rl}
\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} & =\left(\text { nwifeinc }_{i} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 00000001\right.
\end{array}\right) .
$$

You previously created the vector $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}}$ and named it $\mathbf{x 0 m e d i a n}$. So simply enter the commands:

```
dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age,
at(x0median)
ereturn list
display e(at)
```

Recall that the scalar $\mathbf{e}(\mathbf{a t})$ contains the value of $\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ generated by the previous dprobit command, where $\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ is an estimate of $\operatorname{Pr}\left(\operatorname{inlf}_{\mathrm{i}}=1 \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$.

- Second, use the Stata statistical function invnormal() to save the value of $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}$. Enter the commands:

```
scalar x0medbhat = invnormal(e(at))
scalar list x0medbhat
```

- Third, use the Stata statistical function normalden() to save as a scalar the value of $\phi\left(x_{0 i}^{T} \hat{\beta}\right)$, which is the standard normal density function (or p.d.f.) evaluated at $x_{0 i}^{T} \hat{\beta}$. Enter the commands:

```
scalar phix0med = normalden(x0medbhat)
scalar list phix0med
```

These commands save the value of $\phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ as the scalar $\mathbf{p h i x} 0$ med.

- Compute the estimated marginal probability effect of explanatory variable nwifeinc $\boldsymbol{n}_{\boldsymbol{i}}$ for the median married woman who has no pre-school aged children, which when $\mathbf{d k i d s l t}_{\mathbf{i}}=\mathbf{0}$ is given by the function:
estimated marginal probability effect of nwifeinc $\mathbf{c}_{\mathbf{i}}=\phi\left(\mathrm{X}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\boldsymbol{\beta}}\right) \hat{\boldsymbol{\beta}}_{1}$

Enter the lincom command:
lincom phix0med*_b[nwifeinc]

- Compute the estimated marginal probability effect of explanatory variable $\boldsymbol{e d}_{\boldsymbol{i}}$ for the median married woman who has no pre-school aged children, which when dkidslt $\mathbf{6}_{\mathbf{i}} \mathbf{= 0}$ is given by the function:
estimated marginal probability effect of ed ${ }_{i}=\phi\left(\mathrm{X}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\mathrm{B}}\right) \hat{\boldsymbol{\beta}}_{2}$
Enter the lincom command:
lincom phix0med*_b[ed]
- Compute the estimated marginal probability effect of explanatory variable exp $\boldsymbol{e}_{\boldsymbol{i}}$ for the median married woman who has no pre-school aged children, which when dkidslt $\mathbf{6}_{\mathbf{i}} \mathbf{= 0}$ is given by the function:
estimated marginal probability effect of $\exp _{\mathbf{i}}=\phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)\left(\hat{\beta}_{3}+2 \hat{\beta}_{4} \exp 50 \mathrm{p}\right)$
Enter the lincom command:
lincom phix0med*(_b[exp] + 2*_b[expsq]*exp50p)
- Compute the estimated marginal probability effect of explanatory variable age for the median married woman who has no pre-school aged children, which when dkidslt $\mathbf{6}_{\mathbf{i}} \mathbf{= 0}$ is given by the function:
estimated marginal probability effect of age $\mathbf{i}_{\mathbf{i}}=\phi\left(\mathrm{X}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right) \hat{\beta}_{5}$
Enter the lincom command:
lincom phix0med*_b[age]

Marginal probability effects for married women for whom dkidslt ${\underset{i}{i}}^{i}=1$

Compute the marginal probability effects of the four continuous explanatory variables in Model 3 for married women who have the sample median values of nwifeinc ${ }_{i}$, ed $_{i}$, $\exp _{i}$, and age ${ }_{i}$, and one or more pre-schooled aged children (for whom dkidslt $6_{i}=1$).

- First re-estimate Model 3 using the dprobit command with the at(vecname) option. The vector to use in the at(vecname) option is the vector $\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}}$ containing the median values of the regressors in Model 3 when dkidslt $6_{i}=$ 1 :

$$
\begin{aligned}
x_{1 i}^{T} & =\left(\text { nwifeinc }_{i} \text { ed }_{i} \exp _{i} \exp _{i}^{2} \text { age }_{i} 1 \text { nwifeinc }_{i} \text { ed }_{i} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 1\right) \\
& =\binom{\text { nwinc50p ed50p exp50p expsq50p age50p } 1}{\text { nwinc50p ed50p exp50p expsq50p age50p } 1}
\end{aligned}
$$

You previously created the vector $\mathrm{x}_{1 i}^{\mathrm{T}}$ and named it x1median. So simply enter the commands:

```
dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age,
at(x1median)
ereturn list
display e(at)
```

Recall that the scalar $\mathbf{e}(\mathbf{a t})$ contains the value of $\Phi\left(\mathrm{x}_{\mathrm{il}}^{\mathrm{T}} \hat{\beta}\right)$ generated by the previous dprobit command, where $\Phi\left(\mathrm{x}_{\mathrm{ii}}^{\mathrm{T}} \hat{\beta}\right)$ is an estimate of $\operatorname{Pr}\left(\mathrm{inlf}_{\mathrm{i}}=1 \mid\right.$ dkidslt $\left._{\mathrm{i}}=1\right)$.

- Second, use the Stata statistical function invnormal() to save the value of $\mathrm{x}_{\mathrm{ij}}^{\mathrm{T}} \hat{\beta}$. Enter the commands:

```
scalar x1medbhat = invnormal(e(at))
scalar list x1medbhat
```

- Third, use the Stata statistical function normalden() to save as a scalar the value of $\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \hat{\mathrm{B}}\right)$, which is the standard normal density function (or p.d.f.) evaluated at $\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}$. Enter the commands:

```
scalar phix1med = normalden(x1medbhat)
scalar list phix1med
```

These commands save the value of $\phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\mathrm{B}}\right)$ as the scalar phix1med.

- Compute the estimated marginal probability effect of explanatory variable nwifeinc $\boldsymbol{c}_{\boldsymbol{i}}$ for the median married woman who has one or more pre-school aged children, which when dkidsltt $_{\mathbf{i}}=\mathbf{1}$ is given by the function:
estimated marginal probability effect of nwifeinc ${ }_{i}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)\left(\hat{\beta}_{1}+\hat{\beta}_{7}\right)$
Enter the lincom command:
lincom phix1med*(_b[nwifeinc] + _b[d6nwinc])
- Compute the estimated marginal probability effect of explanatory variable $\boldsymbol{e d}_{i}$ for the median married woman who has one or more pre-school aged children, which when dkidslt $\mathrm{f}_{\mathbf{i}} \mathbf{= 1} \mathbf{i s}$ given by the function: estimated marginal probability effect of ed ${ }_{\mathbf{i}}=\phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)\left(\hat{\beta}_{2}+\hat{\beta}_{8}\right)$

Enter the lincom command:
lincom phix1med*(_b[ed] + _b[d6ed])

- Compute the estimated marginal probability effect of explanatory variable $\exp _{i}$ for the median married woman who has one or more pre-school aged children, which when dkidslt $\mathbf{f}_{\mathbf{i}} \mathbf{= 1}$ is given by the function: estimated marginal probability effect of $\exp _{\mathbf{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \hat{\mathrm{i}}\right)\left(\hat{\beta}_{3}+\hat{\beta}_{9}+2\left(\hat{\beta}_{4}+\hat{\beta}_{10}\right) \exp 50 \mathrm{p}\right)$

Enter the lincom command:

```
lincom phix1med*(_b[exp] + _b[d6exp] + 2*(_b[expsq] + _b[d6expsq])*exp50p)
```

- Compute the estimated marginal probability effect of explanatory variable age ${ }_{i}$ for the median married woman who has one or more pre-school aged children, which when dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{1}$ is given by the function:
estimated marginal probability effect of age $\mathbf{i}_{\mathbf{i}}=\phi\left(\mathrm{X}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{5}+\beta_{11}\right)$
Enter the lincom command:

```
lincom phix1med*(_b[age] + _b[d6age])
```

