ECON 452*: Stata 11 Tutorial 9

TOPIC: Estimating and Interpreting Probit Models with Stata: Extensions

- *DATA:* mroz.dta (a *Stata*-format dataset you created in *Stata 11 Tutorial 8*)
- TASKS: Stata 11 Tutorial 9 is an extension of Stata 11 Tutorial 8, and therefore deals with the estimation, testing, and interpretation of probit models for binary dependent variables. In particular, it illustrates how to use a cross-sectional sample of married women in the United States to investigate whether and how the probability of labour force participation differs between two distinct groups of married women, namely (1) married women who have one or more pre-school aged children and (2) married women who have no pre-school aged children. It demonstrates how Stata can be used to conduct an econometric investigation into differences in the conditional probability of labour force participation between these two distinct groups of married women.
- The *Stata* commands that constitute the primary subject of this tutorial are:

probit	Used to compute ML estimates of <i>probit</i> coefficients in probit models of binary dependent variables.
dprobit	Used to compute ML estimates of the marginal <i>probability</i> effects of explanatory variables in probit models.
test	Used after probit estimation to compute <i>Wald tests</i> of linear coefficient equality restrictions on probit coefficients.
lincom	Used after probit estimation to compute and test the marginal effects of individual explanatory variables.

- The *Stata* statistical functions used in this tutorial are:
 - **normalden**(*z*) Computes *value of the standard normal <u>density function</u> (<i>p.d.f.*) for a given value *z* of a standard normal random variable.
 - **normal**(*z*) Computes *value of the standard normal <u>distribution function</u> (<i>c.d.f.*) for a given value *z* of a standard normal random variable.
 - invnormal(p) Computes the inverse of the standard normal <u>distribution</u> function; if normal(z) = p, then invnormal(p) = z.
- *NOTE: Stata* commands are *case sensitive*. All *Stata command names* must be typed in the Command window in *lower case letters*.

Lecture Notes on Stata 11 Tutorial 9: CONTENTS

- **Two Probit Models of Married Women's Participation: Specification of Models 2 and 3** pp. 4-12
- **Testing the marginal** *probability* effect of the binary explanatory variable $dkidslt6_i$ -- *test* and *lincom* pp. 13-31
- □ Interpreting the coefficient estimates in full-interaction Model 3 pp. 32-36
- □ Computing the marginal *probability* effect of the binary explanatory variable *dkidslt6*^{*i*} in Model 3 *dprobit* with *at*(*vecname*) option pp. 37-49
- □ Marginal probability effects of continuous explanatory variables in Model 3 -- dprobit pp. 50-58
- □ **Testing for zero marginal** *probability* effects of *continuous* explanatory variables in Model 3 -- *dprobit* pp. 59-68
- Testing for *differences* in the marginal *probability* effects of *continuous* explanatory variables in Model 3 *dprobit* pp. 69-73
- □ Computing estimates of the marginal *probability* effects of *continuous* explanatory variables in Model 3 -- *dprobit* pp. 74-81

Two Probit Models of Married Women's Participation: Specification of Models 2 and 3

We consider two different models of married women's labour force participation.

- Model 2 was introduced in *Stata 11 Tutorial 8*. The binary indicator variable *dkidslt6*_i enters only as an additive regressor.
- **Model 3** is a generalization of Model 2: it allows all probit coefficients to differ between (1) married women who currently have one or more pre-school aged children and (2) married women who currently have no pre-school aged children. The **binary explanatory variable** *dkidslt6*_{*i*} enters both **additively and multiplicatively**.

The *observed dependent variable* in both models is the binary variable $inlf_i$ defined as follows:

 $inlf_i = 1$ if the i-th married woman is in the employed labour force = 0 if the i-th married woman is not in the employed labour force

The *explanatory variables* in Models 2 and 3 are:

nwifeinc _i	= non-wife family income of the i-th woman (in thousands of dollars per year);
ed_i	= years of formal education of the i-th woman (in years);
exp _i	= years of actual work experience of the i-th woman (in years);
age _i	= age of the i-th woman (in years);
dkidslt6 _i	= 1 if the i-th woman has one or more children less than 6 years of age, = 0 otherwise.

Four of these explanatory variables -- nwifeinc_i, ed_i , exp_i , and age_i -- are *continuous* variables, whereas the fifth explanatory variable -- dkidslt6_i -- is a *binary* indicator (dummy) variable.

<u>Model 2</u> – binary explanatory variable *dkidslt6*^{*i*} enters only additively

The probit index function for Model 2 is:

 $\mathbf{x}_{i}^{\mathrm{T}}\boldsymbol{\beta} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \text{nwifeinc}_{i} + \boldsymbol{\beta}_{2} \text{ed}_{i} + \boldsymbol{\beta}_{3} \exp_{i} + \boldsymbol{\beta}_{4} \exp_{i}^{2} + \boldsymbol{\beta}_{5} age_{i} + \boldsymbol{\beta}_{6} dkidslt\boldsymbol{\delta}_{i}$

- *Remarks:* In Model 2, the binary explanatory variable dkidslt6_i enters only additively; only the intercept coefficient in the index function differs between the two groups of married women, those who have pre-school aged children and those who do not.
- In Model 2, the probit index function for *married women who have no pre-school aged children*, for whom dkidslt6_i = 0, is obtained by setting dkidslt6_i = 0 in the index function for Model 2:

$$\left(\mathbf{x}_{i}^{\mathrm{T}} \boldsymbol{\beta} \right| \mathrm{dkidslt6}_{i} = \mathbf{0} \right) = \beta_{0} + \beta_{1} \mathrm{nwifeinc}_{i} + \beta_{2} \mathrm{ed}_{i} + \beta_{3} \exp_{i} + \beta_{4} \exp_{i}^{2} + \beta_{5} \mathrm{age}_{i} + \beta_{6} \mathbf{0}$$
$$= \beta_{0} + \beta_{1} \mathrm{nwifeinc}_{i} + \beta_{2} \mathrm{ed}_{i} + \beta_{3} \exp_{i} + \beta_{4} \exp_{i}^{2} + \beta_{5} \mathrm{age}_{i}$$

• In Model 2, the probit index function for *married women who have one or more pre-school aged children*, for whom dkidslt6_i = 1, is obtained by setting dkidslt6_i = 1 in the index function for Model 2:

$$\left(x_i^{\mathrm{T}} \beta \right| \mathrm{dkidslt6}_i = 1 \right) = \beta_0 + \beta_1 \mathrm{nwifeinc}_i + \beta_2 \mathrm{ed}_i + \beta_3 \exp_i + \beta_4 \exp_i^2 + \beta_5 \mathrm{age}_i + \beta_6 1$$
$$= \beta_0 + \beta_1 \mathrm{nwifeinc}_i + \beta_2 \mathrm{ed}_i + \beta_3 \exp_i + \beta_4 \exp_i^2 + \beta_5 \mathrm{age}_i + \beta_6$$

In Model 2, the marginal *index* effect of the binary indicator variable *dkidslt6_i* is simply the difference between (1) the index function for *married women who currently have one or more pre-school aged children*, (x^T_iβ|dkidslt6_i = 1) and (2) the index function for *married women who currently have no pre-school aged children*, (x^T_iβ|dkidslt6_i = 0):

$$\begin{aligned} \left(\mathbf{x}_{i}^{\mathrm{T}}\boldsymbol{\beta}\right| dkidslt\boldsymbol{6}_{i} = 1\right) &- \left(\mathbf{x}_{i}^{\mathrm{T}}\boldsymbol{\beta}\right| dkidslt\boldsymbol{6}_{i} = 0) \\ &= \beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}\exp_{i} + \beta_{4}\exp_{i}^{2} + \beta_{5}age_{i} + \beta_{6} \\ &- \left(\beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}\exp_{i} + \beta_{4}\exp_{i}^{2} + \beta_{5}age_{i}\right) \\ &= \beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}\exp_{i} + \beta_{4}\exp_{i}^{2} + \beta_{5}age_{i} + \beta_{6} \\ &- \beta_{0} - \beta_{1}nwifeinc_{i} - \beta_{2}ed_{i} - \beta_{3}\exp_{i} - \beta_{4}\exp_{i}^{2} - \beta_{5}age_{i} \\ &= \beta_{6} \end{aligned}$$

In Model 2, the marginal probability effect of the binary indicator variable dkidslt6_i is the difference between (1) the conditional probability that inlf_i = 1 for married women with one or more pre-school aged children and (2) the conditional probability that inlf_i = 1 for married women with no pre-school aged children:

$$\Pr\left(\operatorname{inlf}_{i}=1 \middle| \operatorname{dkidslt6}_{i}=1\right) - \Pr\left(\operatorname{inlf}_{i}=1 \middle| \operatorname{dkidslt6}_{i}=0\right) = \Phi\left(x_{1i}^{\mathrm{T}}\beta\right) - \Phi\left(x_{0i}^{\mathrm{T}}\beta\right)$$

where $\Phi(*)$ is the cumulative distribution function (cdf) of the standard normal distribution and

$$\begin{aligned} \mathbf{x}_{1i}^{T} &= \left(1 \text{ nwifeinc}_{i} \text{ ed}_{i} \exp_{i} \exp_{i}^{2} \operatorname{age}_{i} 1\right) \\ \mathbf{x}_{0i}^{T} &= \left(1 \text{ nwifeinc}_{i} \text{ ed}_{i} \exp_{i} \exp_{i}^{2} \operatorname{age}_{i} 0\right) \\ \boldsymbol{\beta} &= \left(\beta_{0} \ \beta_{1} \ \beta_{2} \ \beta_{3} \ \beta_{4} \ \beta_{5} \ \beta_{6}\right)^{T} \\ \mathbf{x}_{1i}^{T} \boldsymbol{\beta} &= \beta_{0} + \beta_{1} \text{nwifeinc}_{i} + \beta_{2} \text{ed}_{i} + \beta_{3} \exp_{i} + \beta_{4} \exp_{i}^{2} + \beta_{5} \operatorname{age}_{i} + \beta_{6} \\ \mathbf{x}_{0i}^{T} \boldsymbol{\beta} &= \beta_{0} + \beta_{1} \text{nwifeinc}_{i} + \beta_{2} \text{ed}_{i} + \beta_{3} \exp_{i} + \beta_{4} \exp_{i}^{2} + \beta_{5} \operatorname{age}_{i} \\ \text{Pr}\left(\text{inlf}_{i} = 1 | \operatorname{dkidslt6}_{i} = 1\right) = \Phi\left(\mathbf{x}_{1i}^{T} \boldsymbol{\beta}\right) = \Phi\left(\beta_{0} + \beta_{1} \text{nwifeinc}_{i} + \beta_{2} \text{ed}_{i} + \beta_{3} \exp_{i} + \beta_{4} \exp_{i}^{2} + \beta_{5} \operatorname{age}_{i} + \beta_{6}\right) \\ \text{Pr}\left(\text{inlf}_{i} = 1 | \operatorname{dkidslt6}_{i} = 0\right) = \Phi\left(\mathbf{x}_{0i}^{T} \boldsymbol{\beta}\right) = \Phi\left(\beta_{0} + \beta_{1} \text{nwifeinc}_{i} + \beta_{2} \text{ed}_{i} + \beta_{3} \exp_{i} + \beta_{4} \exp_{i}^{2} + \beta_{5} \operatorname{age}_{i} + \beta_{6}\right) \\ &= \Phi\left(\beta_{0} + \beta_{1} \text{nwifeinc}_{i} + \beta_{2} \text{ed}_{i} + \beta_{3} \exp_{i} + \beta_{4} \exp_{i}^{2} + \beta_{5} \operatorname{age}_{i} + \beta_{6} 0\right) \\ &= \Phi\left(\beta_{0} + \beta_{1} \text{nwifeinc}_{i} + \beta_{2} \text{ed}_{i} + \beta_{3} \exp_{i} + \beta_{4} \exp_{i}^{2} + \beta_{5} \operatorname{age}_{i}\right) \end{aligned}$$

Thus, the marginal probability effect of the indicator variable dkidslt6_i in Model 2 is

$$\begin{aligned} \Pr(\operatorname{inlf}_{i} = 1 | \operatorname{dkidslt6}_{i} = 1) - \Pr(\operatorname{inlf}_{i} = 1 | \operatorname{dkidslt6}_{i} = 0) &= \Phi(x_{1i}^{\mathsf{T}}\beta) - \Phi(x_{0i}^{\mathsf{T}}\beta) \\ &= \Phi(\beta_{0} + \beta_{1}\operatorname{nwifeinc}_{i} + \beta_{2}\operatorname{ed}_{i} + \beta_{3}\operatorname{exp}_{i} + \beta_{4}\operatorname{exp}_{i}^{2} + \beta_{5}\operatorname{age}_{i} + \beta_{6}) \\ &- \Phi(\beta_{0} + \beta_{1}\operatorname{nwifeinc}_{i} + \beta_{2}\operatorname{ed}_{i} + \beta_{3}\operatorname{exp}_{i} + \beta_{4}\operatorname{exp}_{i}^{2} + \beta_{5}\operatorname{age}_{i}) \end{aligned}$$

Model 3 – a full interaction model in the binary variable *dkidslt6*_i

The probit index function, or regression function, for Model 3 is:

 $\mathbf{x}_{i}^{\mathrm{T}}\boldsymbol{\beta} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \mathrm{nwifeinc}_{i} + \boldsymbol{\beta}_{2} \mathrm{ed}_{i} + \boldsymbol{\beta}_{3} \exp_{i} + \boldsymbol{\beta}_{4} \exp_{i}^{2} + \boldsymbol{\beta}_{5} \mathrm{age}_{i} + \boldsymbol{\beta}_{6} \mathrm{dkidslt6}_{i}$

 $+\beta_{7}dkidslt6_{i}nwifeinc_{i}+\beta_{8}dkidslt6_{i}ed_{i}+\beta_{9}dkidslt6_{i}exp_{i}+\beta_{10}dkidslt6_{i}exp_{i}^{2}+\beta_{11}dkidslt6_{i}age_{i}$

- *Remarks:* Model 3 is the *full-interaction* generalization of Model 2: it interacts the dkidslt6_i indicator variable with all the other regressors in Model 2, and thereby permits all index function coefficients to differ between the two groups of married women distinguished by dkidslt6_i.
- In Model 3, the **probit** *index* **function** for *married women who currently have no pre-school aged children*, for whom dkidslt6_i = 0, is obtained by setting dkidslt6_i = 0 in the index function for Model 3:

 $(\mathbf{x}_{i}^{T}\beta | dkidslt6_{i} = 0) = \beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i}$

• In Model 3, the **probit** *index* **function** for *married women who currently have one or more pre-school aged children*, for whom dkidslt6_i = 1, is obtained by setting dkidslt6_i = 1 in the index function for Model 3:

$$(x_i^{T}\beta | dkidslt6_i = 1) = \beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i + \beta_6 1 + \beta_7 1 \cdot nwifeinc_i + \beta_8 1 \cdot ed_i + \beta_9 1 \cdot exp_i + \beta_{10} 1 \cdot exp_i^2 + \beta_{11} 1 \cdot age_i$$

 $= \beta_0 + \beta_1 \text{nwifeinc}_i + \beta_2 \text{ed}_i + \beta_3 \exp_i + \beta_4 \exp_i^2 + \beta_5 \text{age}_i + \beta_6 + \beta_7 \text{nwifeinc}_i + \beta_8 \text{ed}_i + \beta_9 \exp_i + \beta_{10} \exp_i^2 + \beta_{11} \text{age}_i$ $= \beta_0 + \beta_6 + (\beta_1 + \beta_7) \text{nwifeinc}_i + (\beta_2 + \beta_8) \text{ed}_i + (\beta_3 + \beta_9) \exp_i + (\beta_4 + \beta_{10}) \exp_i^2 + (\beta_5 + \beta_{11}) \text{age}_i$

In Model 3, the marginal index effect of the binary indicator variable dkidslt6_i is simply the difference between (1) the index function for married women who currently have one or more pre-school aged children, (x^T_iβ|dkidslt6_i = 1) and (2) the index function for married women who currently have no pre-school aged children, (x^T_iβ|dkidslt6_i = 0):

$$\begin{aligned} \left(x_i^{T}\beta\right|dkidslt6_i = 1\right) - \left(x_i^{T}\beta\right|dkidslt6_i = 0) \\ &= \beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i + \beta_6 + \beta_7 nwifeinc_i + \beta_8 ed_i + \beta_9 exp_i + \beta_{10} exp_i^2 + \beta_{11} age_i \\ &- \left(\beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i\right) \\ &= \beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i + \beta_6 + \beta_7 nwifeinc_i + \beta_8 ed_i + \beta_9 exp_i + \beta_{10} exp_i^2 + \beta_{11} age_i \\ &- \beta_0 - \beta_1 nwifeinc_i - \beta_2 ed_i - \beta_3 exp_i - \beta_4 exp_i^2 - \beta_5 age_i \end{aligned}$$

$$= \beta_6 + \beta_7 nwifeinc_i + \beta_8 ed_i + \beta_9 exp_i + \beta_{10} exp_i^2 + \beta_{11} age_i$$

In Model 3, the marginal probability effect of the binary indicator variable dkidslt6_i is the difference between (1) the conditional probability that inlf_i = 1 for married women with one or more pre-school aged children and (2) the conditional probability that inlf_i = 1 for married women with no pre-school aged children:

$$\Pr\left(\operatorname{inlf}_{i}=1 \middle| \operatorname{dkidslt6}_{i}=1\right) - \Pr\left(\operatorname{inlf}_{i}=1 \middle| \operatorname{dkidslt6}_{i}=0\right) = \Phi\left(x_{1i}^{\mathrm{T}}\beta\right) - \Phi\left(x_{0i}^{\mathrm{T}}\beta\right)$$

where $\Phi(*)$ is the cumulative distribution function (cdf) of the standard normal distribution and

$$\begin{aligned} \mathbf{x}_{1i}^{T} &= \left(1 \text{ nwifeinc}_{i} \text{ ed}_{i} \exp_{i} \exp_{i}^{2} \text{ age}_{i} 1 \text{ nwifeinc}_{i} \text{ ed}_{i} \exp_{i}^{2} \text{ age}_{i} \right) \\ \mathbf{x}_{0i}^{T} &= \left(1 \text{ nwifeinc}_{i} \text{ ed}_{i} \exp_{i} \exp_{i}^{2} \text{ age}_{i} 0 0 0 0 0 \right) \\ \beta &= \left(\beta_{0} \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \beta_{6} \beta_{7} \beta_{8} \beta_{9} \beta_{10} \beta_{11}\right)^{T} \\ \mathbf{x}_{1i}^{T}\beta &= \beta_{0} + \beta_{1} \text{nwifeinc}_{i} + \beta_{2} \text{ed}_{i} + \beta_{3} \exp_{i} + \beta_{4} \exp_{i}^{2} + \beta_{5} \text{age}_{i} \\ &+ \beta_{6} + \beta_{7} \text{nwifeinc}_{i} + \beta_{8} \text{ed}_{i} + \beta_{9} \exp_{i} + \beta_{10} \exp_{i}^{2} + \beta_{11} \text{age}_{i} \end{aligned}$$

$$Pr(inlf_{i} = 1 | dkidslt6_{i} = 1) = \Phi\begin{pmatrix}\beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i} \\ + \beta_{6} + \beta_{7}nwifeinc_{i} + \beta_{8}ed_{i} + \beta_{9}exp_{i} + \beta_{10}exp_{i}^{2} + \beta_{11}age_{i} \end{pmatrix}$$
$$= \Phi\begin{pmatrix}(\beta_{0} + \beta_{6}) + (\beta_{1} + \beta_{7})nwifeinc_{i} + (\beta_{2} + \beta_{8})ed_{i} \\ + (\beta_{3} + \beta_{9})exp_{i} + (\beta_{4} + \beta_{10})exp_{i}^{2} + (\beta_{5} + \beta_{11})age_{i} \end{pmatrix}$$
$$Pr(inlf_{i} = 1 | dkidslt6_{i} = 0) = \Phi\begin{pmatrix}\beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i} \end{pmatrix}$$

$$\Phi(\inf_{i} = 1 | dkidslt6_{i} = 0) = \Phi(\begin{array}{c} \beta_{0} + \beta_{1}nwifeine_{1} + \beta_{2}ed_{1} + \beta_{3}enp_{1} + \beta_{4}enp_{1} + \beta_{5}age_{1} \\ + \beta_{6}0 + \beta_{7}0 + \beta_{8}0 + \beta_{9}0 + \beta_{10}0 + \beta_{11}0 \\ = \Phi(\beta_{0} + \beta_{1}nwifeine_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i})$$

Thus, the **marginal** probability effect of the indicator variable dkidslt6_i in Model 3 is $Pr(inlf_{i} = 1 | dkidslt6_{i} = 1) - Pr(inlf_{i} = 1 | dkidslt6_{i} = 0) = \Phi\left(\begin{array}{c} \beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i} \\ + \beta_{6} + \beta_{7}nwifeinc_{i} + \beta_{8}ed_{i} + \beta_{9}exp_{i} + \beta_{10}exp_{i}^{2} + \beta_{11}age_{i} \end{array} \right) \\ - \Phi\left(\beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i} \right)$

We are concerned with three aspects of the marginal probability effect of the indicator variable dkidslt6:

- 1. the <u>existence</u> of the marginal *probability* effect of the indicator variable *dkidslt6*_i;
- 2. the <u>direction</u> (sign) of the marginal *probability* effect of the indicator variable *dkidslt6*_i;
- 3. the magnitude (size) of the marginal probability effect of the indicator variable dkidslt6_i.

\Box Testing the marginal *probability* effect of the binary explanatory variable *dkidslt6_i* -- *test* and *lincom*

Proposition to be Tested

- Does the *conditional* **probability of labour force participation** for married women depend on the presence in the family of one or more dependent children under 6 years of age?
- Is the probability of labour force participation for married women with given values of nwifeinc_i, ed_i, exp_i, and age_i who currently have one or more pre-school aged children equal to the probability of labour force participation for married women with the same values of nwifeinc_i, ed_i, exp_i, and age_i who currently have no pre-school aged children?
- Is it true that

$$Pr(inlf_{i} = 1 | dkidslt6_{i} = 1, nwifeinc_{i}, ed_{i}, exp_{i}, age_{i}) = Pr(inlf_{i} = 1 | dkidslt6_{i} = 0, nwifeinc_{i}, ed_{i}, exp_{i}, age_{i})?$$

Null and Alternative Hypotheses: General Formulation

The *null hypothesis* in general is:

$$H_0: \quad \Pr(\inf_i = 1 | dkidslt6_i = 1, \ldots) = \Pr(\inf_i = 1 | dkidslt6_i = 0, \ldots)$$

The *alternative hypothesis* in general is:

$$H_1: \quad \Pr(inlf_i = 1 | dkidslt6_i = 1, ...) \neq \Pr(inlf_i = 1 | dkidslt6_i = 0, ...)$$

Testing the Existence of the Marginal Probability Effect of the Indicator Variable dkidslt6_i

For testing the *existence* of a relationship between any explanatory variable and the probability that the observed dependent variable equals 1, use either of the two *Stata* commands for probit estimation: use *either* the **probit** command *or* the **dprobit** command.

Null and Alternative Hypotheses: Model 2

The null hypothesis in general is:

$$H_0: \quad \Pr(\inf_i = 1 | dkidslt6_i = 1, \ldots) = \Pr(\inf_i = 1 | dkidslt6_i = 0, \ldots)$$

For Model 2,

$$Pr(inlf_{i} = 1 | dkidslt6_{i} = 1, ...) = \Phi(x_{i}^{T}\beta | dkidslt6_{i} = 1)$$

$$= \Phi(\beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i} + \beta_{6})$$

$$Pr(inlf_{i} = 1 | dkidslt6_{i} = 0, ...) = \Phi(x_{i}^{T}\beta | dkidslt6_{i} = 0)$$

$$= \Phi(\beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i})$$

These two probabilities are equal if the exclusion restriction $\beta_6 = 0$ is true. In other words, a *sufficient* condition for these two probabilities to be equal is the exclusion restriction $\beta_6 = 0$.

The *null* and *alternative* hypotheses for Model 2 are therefore:

$$\begin{array}{ll} H_0: & \beta_6 = 0 \\ H_1: & \beta_6 \neq 0 \end{array}$$

Important Point: A test of the null hypothesis that the **marginal** *probability* **effect** of pre-school aged children is zero **is equivalent to** a test of the null hypothesis that the **marginal** *index* **effect** of pre-school aged children is zero.

• Marginal probability effect of pre-school aged children equals zero in Model 2 if

$$\Phi\left(\mathbf{x}_{i}^{\mathrm{T}}\boldsymbol{\beta} \middle| \mathsf{dkidslt6}_{i} = 1\right) = \Phi\left(\mathbf{x}_{i}^{\mathrm{T}}\boldsymbol{\beta} \middle| \mathsf{dkidslt6}_{i} = 0\right).$$

In Model 2,

$$\Phi\left(x_{i}^{T}\beta | dkidslt6_{i} = 1\right) = \Phi\left(\beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i} + \beta_{6}\right)$$

 $\Phi\left(x_{i}^{T}\beta | dkidslt6_{i} = 0\right) = \Phi\left(\beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i}\right)$

Question: What coefficient restriction(s) are sufficient to make these two probabilities equal for any given values of nwifeinc_i, ed_i , exp_i , and age_i ?

Answer: By inspection – i.e., by comparing the function $\Phi(\mathbf{x}_i^T\beta | \text{dkidslt6}_i = 1)$ and the function $\Phi(\mathbf{x}_i^T\beta | \text{dkidslt6}_i = 0)$ – we can see that a sufficient condition for $\Phi(\mathbf{x}_i^T\beta | \text{dkidslt6}_i = 1) = \Phi(\mathbf{x}_i^T\beta | \text{dkidslt6}_i = 0)$ in Model 2 is the single coefficient exclusion restriction $\beta_6 = 0$.

• Marginal *index* effect of <u>pre-school aged children</u> equals zero if

$$(\mathbf{x}_{i}^{T}\beta | dkidslt6_{i} = 1) = (\mathbf{x}_{i}^{T}\beta | dkidslt6_{i} = 0).$$

In Model 2,

$$(x_i^T\beta | dkidslt6_i = 1) = \beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i + \beta_6$$

$$\left(\mathbf{x}_{i}^{\mathrm{T}}\boldsymbol{\beta}\right|\mathrm{dkidslt6}_{i}=0\right) = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1}\mathrm{nwifeinc}_{i} + \boldsymbol{\beta}_{2}\mathrm{ed}_{i} + \boldsymbol{\beta}_{3}\exp_{i} + \boldsymbol{\beta}_{4}\exp_{i}^{2} + \boldsymbol{\beta}_{5}\mathrm{age}_{i}$$

Question: What coefficient restriction(s) are sufficient to make these two index functions equal for any given values of nwifeinc_i, ed_i , exp_i , and age_i ?

Answer: By inspection – i.e., by comparing the index function $(x_i^T\beta | dkidslt6_i = 1)$ and the index function $(x_i^T\beta | dkidslt6_i = 0)$ – we can see that a sufficient condition for $(x_i^T\beta | dkidslt6_i = 1) = (x_i^T\beta | dkidslt6_i = 0)$ in Model 2 is the single coefficient exclusion restriction $\beta_6 = 0$.

 $\square \underline{Result}: \text{ The single coefficient exclusion restriction } \beta_6 = 0 \text{ is sufficient to make the$ *both*the marginal*probability*effect*and*the marginal*index* $effect of pre-school aged children equal to zero in Model 2.}$

u How to Perform this Test for Model 2 in *Stata*

• First, compute ML estimates of probit Model 2 and display the full set of saved results. Enter the following commands:

probit inlf nwifeinc ed exp expsq age dkidslt6 ereturn list

• To calculate a **Wald test** of H₀ against H₁ and the p-value for the calculated W-statistic, enter the following **test**, **return list** and **display** commands:

```
test dkidslt6 or test dkidslt6 = 0
return list
display sqrt(r(chi2))
```

• To calculate a **two-tail asymptotic t-test** of H₀ against H₁, enter the following **lincom**, **return list** and **display** commands:

```
lincom _b[dkidslt6]
return list
display r(estimate)/r(se)
```

The results of this two-tail t-test are identical with those of the previous Wald test.

Note that this **lincom** command merely replicates the test statistic and p-value that are displayed in the output of the **probit** command for the regressor *dkidslt6*.

Null and Alternative Hypotheses: Model 3

The null hypothesis in general is:

$$H_0: \quad \Pr(inlf_i = 1 | dkidslt6_i = 1, ...) = \Pr(inlf_i = 1 | dkidslt6_i = 0, ...)$$

For Model 3,

$$Pr(inlf_{i} = 1 | dkidslt6_{i} = 1) = \Phi(x_{i}^{T}\beta | dkidslt6_{i} = 1)$$

$$= \Phi\begin{pmatrix}\beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i} \\ + \beta_{6} + \beta_{7}nwifeinc_{i} + \beta_{8}ed_{i} + \beta_{9}exp_{i} + \beta_{10}exp_{i}^{2} + \beta_{11}age_{i} \end{pmatrix}$$

$$Pr(inlf_{i} = 1 | dkidslt6_{i} = 0) = \Phi(x_{i}^{T}\beta | dkidslt6_{i} = 0)$$

= $\Phi(\beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i})$

These two probabilities are equal if the six exclusion restrictions $\beta_6 = \beta_7 = \beta_8 = \beta_9 = \beta_{10} = \beta_{11} = 0$ are true. In other words, a *sufficient condition* for **these two probabilities to be** *equal* is the set of six coefficient exclusion restrictions $\beta_j = 0$ for all j = 6, ..., 11.

 \Rightarrow

The *null* and *alternative* hypotheses for Model 3 are therefore:

$$\begin{array}{ll} H_{0} \colon & \beta_{j} = 0 \quad \forall \ j = 6, 7, 8, 9, 10, 11 \\ \Rightarrow & \beta_{6} = 0 \ and \ \beta_{7} = 0 \ and \ \beta_{8} = 0 \ and \ \beta_{9} = 0 \ and \ \beta_{10} = 0 \ and \ \beta_{11} = 0 \\ H_{1} \colon & \beta_{j} \neq 0 \qquad j = 6, 7, 8, 9, 10, 11 \\ \Rightarrow & \beta_{6} \neq 0 \ and/or \ \beta_{7} \neq 0 \ and/or \ \beta_{8} \neq 0 \ and/or \ \beta_{9} \neq 0 \ and/or \ \beta_{10} \neq 0 \ and/or \ \beta_{11} \neq 0 \end{array}$$

Important Point: A test of the null hypothesis that the marginal *probability* effect of pre-school aged children is zero is equivalent to a test of the null hypothesis that the marginal index effect of pre-school aged children is zero.

• Marginal probability effect of pre-school aged children equals zero in Model 3 if

$$\Phi(x_{i}^{T}\beta | dkidslt6_{i} = 1) = \Phi(x_{i}^{T}\beta | dkidslt6_{i} = 0).$$

In Model 3,

$$\Phi(\mathbf{x}_{i}^{\mathrm{T}}\boldsymbol{\beta}|\mathrm{dkidslt6}_{i}=1) = \Phi\begin{pmatrix}\beta_{0} + \beta_{1}\mathrm{nwifeinc}_{i} + \beta_{2}\mathrm{ed}_{i} + \beta_{3}\exp_{i} + \beta_{4}\exp_{i}^{2} + \beta_{5}\mathrm{age}_{i}\\ + \beta_{6} + \beta_{7}\mathrm{nwifeinc}_{i} + \beta_{8}\mathrm{ed}_{i} + \beta_{9}\exp_{i} + \beta_{10}\exp_{i}^{2} + \beta_{11}\mathrm{age}_{i}\end{pmatrix}$$

 $\Phi\left(x_{i}^{T}\beta \middle| dkidslt6_{i} = 0\right) = \Phi\left(\beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i}\right)$

Question: What coefficient restriction(s) are sufficient to make these two probabilities equal for any given values of nwifeinc_i, ed_i , exp_i , and age_i ?

Answer: By inspection – i.e., by comparing the function $\Phi(x_i^T\beta | dkidslt6_i = 1)$ and the function $\Phi(x_i^T\beta | dkidslt6_i = 0)$ – we can see that a sufficient condition for $\Phi(x_i^T\beta | dkidslt6_i = 1) = \Phi(x_i^T\beta | dkidslt6_i = 0)$ in Model 3 is the set of *six* coefficient exclusion restrictions $\beta_6 = \beta_7 = \beta_8 = \beta_9 = \beta_{10} = \beta_{11} = 0.$

• Marginal index effect of pre-school aged children equals zero in Model 3 if

$$(\mathbf{x}_{i}^{T}\beta | dkidslt6_{i} = 1) = (\mathbf{x}_{i}^{T}\beta | dkidslt6_{i} = 0).$$

In Model 3,

$$\left(x_i^{\mathrm{T}}\beta \middle| \mathrm{dkidslt6}_i = 1 \right) = \beta_0 + \beta_1 \mathrm{nwifeinc}_i + \beta_2 \mathrm{ed}_i + \beta_3 \exp_i + \beta_4 \exp_i^2 + \beta_5 \mathrm{age}_i$$
$$+ \beta_6 + \beta_7 \mathrm{nwifeinc}_i + \beta_8 \mathrm{ed}_i + \beta_9 \exp_i + \beta_{10} \exp_i^2 + \beta_{11} \mathrm{age}_i$$

 $(x_i^T\beta | dkidslt6_i = 0) = \beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i$

Question: What coefficient restriction(s) are sufficient to make these two index functions equal for any given values of nwifeinc_i, ed_i , exp_i , and age_i ?

Answer: By inspection – i.e., by comparing the index function $(x_i^T\beta | dkidslt6_i = 1)$ and the index function $(x_i^T\beta | dkidslt6_i = 0)$ – we can see that a sufficient condition for $(x_i^T\beta | dkidslt6_i = 1) = (x_i^T\beta | dkidslt6_i = 0)$ in Model 3 is the set of *six* coefficient exclusion restrictions $\beta_6 = \beta_7 = \beta_8 = \beta_9 = \beta_{10} = \beta_{11} = 0$.

 $\square \underline{Result}: \text{ The six coefficient exclusion restrictions } \beta_6 = \beta_7 = \beta_8 = \beta_9 = \beta_{10} = \beta_{11} = 0 \text{ are sufficient to make the both the marginal probability effect and the marginal index effect of pre-school aged children equal to zero in Model 3.}$

u How to Perform this Test for Model 3 in *Stata*

```
H<sub>0</sub>: \beta_i = 0 \quad \forall j = 6, 7, 8, 9, 10, 11
```

```
H<sub>1</sub>: \beta_i \neq 0  j = 6, 7, 8, 9, 10, 11
```

• Before estimating Model 3, it is necessary to create the *dkidslt6*_i interaction variables. Enter the following generate commands:

```
generate d6nwinc = dkidslt6*nwifeinc
generate d6ed = dkidslt6*ed
generate d6exp = dkidslt6*exp
generate d6expsq = dkidslt6*expsq
generate d6age = dkidslt6*age
```

• Next, compute ML estimates of probit Model 3 and display the full set of saved results. Enter the following commands:

```
probit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age ereturn list
```

• To calculate a **Wald test** of H₀ against H₁ and the p-value for the calculated W-statistic, enter the following **test** and **return list** commands:

```
test dkidslt6 d6nwinc d6ed d6exp d6expsq d6age return list
```

• A second hypothesis test you should perform on Model 3 is a test of the null hypothesis that *all slope* **coefficient differences** between married women who have one or more pre-school aged children and married women who have no pre-school aged children **equal zero**. The null and alternative hypotheses are:

$$\begin{array}{ll} H_{0} \colon & \beta_{j} = 0 & \forall \ j = 7, 8, 9, 10, 11 \\ \\ \Rightarrow & \beta_{7} = 0 \ and \ \beta_{8} = 0 \ and \ \beta_{9} = 0 \ and \ \beta_{10} = 0 \ and \ \beta_{11} = 0 \\ \\ H_{1} \colon & \beta_{j} \neq 0 \qquad j = 7, 8, 9, 10, 11 \end{array}$$

 $\Rightarrow \quad \beta_7 \neq 0 \text{ and/or } \beta_8 \neq 0 \text{ and/or } \beta_9 \neq 0 \text{ and/or } \beta_{10} \neq 0 \text{ and/or } \beta_{11} \neq 0$

Note that the null hypothesis H_0 implies Model 2, whereas the alternative hypothesis H_1 implies Model 3. Enter the **test** command:

test d6nwinc d6ed d6exp d6expsq d6age

M.G. Abbott

. probit inlf	nwifeinc ed e	exp expsq age	e dkidslt	6 d6nwin	c d6ed o	16exp	d6expsq (d6age
<pre>Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -406.48086 Iteration 2: log likelihood = -402.63328 Iteration 3: log likelihood = -402.61111 Iteration 4: log likelihood = -402.61111</pre>								
Probit estimat	es			Numbe	r of obs	5 =	7	53
				LR ch	i2(11)	=	224.	52
				Prob	> chi2	=	0.00	00
Log likelihood	d = -402.61111			Pseud	o R2	=	0.21	80
inlf	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interva	1]
nwifeinc	0109103	.0056007	-1.95	0.051	0218	3874	.00006	68
ed	.1215786	.0280427	4.34	0.000	.0666	5159	.17654	13
exp	.137317	.0208939	6.57	0.000	.0963	3657	.17826	82
expsq	0022349	.0006495	-3.44	0.001	003	3508	00096	19
age	0593504	.0085496	-6.94	0.000	0761	1072	04259	35
dkidslt6	-2.527031	1.267708	-1.99	0.046	-5.011	1694	04236	84
d6nwinc	0059201	.0109624	-0.54	0.589	0274	405 9	.01556	58
d6ed	.0327202	.0623143	0.53	0.600	0894	4135	.1548	54
d6exp	1128835	.0663563	-1.70	0.089	2429	9394	.01717	24
d6expsq	.0030026	.0033465	0.90	0.370	0035	5564	.00956	16
d6age	.0503914	.0260813	1.93	0.053	0005	7271	.10150	99
_cons	.6084091	.4961565	1.23	0.220	3640	0398	1.5808	58

. ereturn list

scalars:

e(N) =	753
e(ll_0) =	-514.8732045671461
e(ll) =	-402.6111063731551
$e(df_m) =$	11
e(chi2) =	224.5241963879821
e(r2_p) =	.2180383387563736

macros:

e(depvar)	:	"inlf"
e(cmd)	:	"probit"
e(crittype)	:	"log likelihood"
e(predict)	:	"probit_p"
e(chi2type)	:	"LR"

matrices:

e(b)	:	1×12
e(V)	:	12 x 12

functions:

e(sample)

```
. * Test 1:
. test dkidslt6 d6nwinc d6ed d6exp d6expsq d6age
(1) dkidslt6 = 0
(2) d6nwinc = 0
(3) d6ed = 0
(4) d6exp = 0
(5) d6expsq = 0
(6) d6age = 0
          chi2(6) = 58.11
        Prob > chi2 = 0.0000
. return list
scalars:
            r(drop) = 0
            r(chi2) = 58.11036668348744
              r(df) = 6
               r(p) = 1.08838734793e-10
```

```
. * Test 2:

. test d6nwinc d6ed d6exp d6expsq d6age

( 1) d6nwinc = 0

( 2) d6ed = 0

( 3) d6exp = 0

( 4) d6expsq = 0

( 5) d6age = 0

chi2( 5) = 9.03

Prob > chi2 = 0.1078

. return list

scalars:

r(drop) = 0

r(chi2) = 9.031191992371875

r(df) = 5

r(p) = .1078264635420236
```

753

= 224.52

= 0.0000

= 0.2180

. dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age

Iteration 0: Iteration 1: Iteration 2: Iteration 3: Iteration 4:	<pre>log likelihood = -514.8732 log likelihood = -406.48086 log likelihood = -402.63328 log likelihood = -402.61111 log likelihood = -402.61111</pre>		
Probit estimate	≥S	Number of obs LR chi2(11)	=
Log likelihood	= -402.61111	Prob > chi2 Pseudo R2	=

inlf	dF/dx	Std. Err.	Z	P> z	x-bar	[95%	C.I.]
nwifeinc	0042484	.0021794	-1.95	0.051	20.129	00852	.000023
ed	.0473425	.0108958	4.34	0.000	12.2869	.025987	.068698
exp	.053471	.0081365	6.57	0.000	10.6308	.037524	.069418
expsq	0008703	.0002531	-3.44	0.001	178.039	001366	000374
age	0231109	.0033213	-6.94	0.000	42.5378	029621	016601
dkidslt6*	7273305	.1555487	-1.99	0.046	.195219	-1.0322	422461
d6nwinc	0023053	.00427	-0.54	0.589	4.04408	010674	.006064
d6ed	.0127412	.0242742	0.53	0.600	2.47809	034835	.060318
d6exp	0439567	.0258347	-1.70	0.089	1.37317	094592	.006678
d6expsq	.0011692	.0013032	0.90	0.370	15.012	001385	.003723
d6age	.0196223	.0101508	1.93	0.053	6.87251	000273	.039518
obs. P	.5683931						
pred. P	.5870885	(at x-bar)					
<pre>(*) dF/dx is for discrete change of dummy variable from 0 to 1 z and P> z are the test of the underlying coefficient being 0</pre>							

. ereturn list

scalars:

e(N)	=	753
e(ll_0)	=	-514.8732045671461
e(11)	=	-402.6111063731551
e(df_m)	=	11
e(chi2)	=	224.5241963879821
e(r2_p)	=	.2180383387563736
e(pbar)	=	.5683930942895087
e(xbar)	=	.220061785738521
e(offbar)	=	0

macros:

```
e(cmd) : "dprobit"
e(dummy) : " 0 0 0 0 0 1 0 0 0 0 0 0"
e(depvar) : "inlf"
e(crittype) : "log likelihood"
e(predict) : "probit_p"
e(chi2type) : "LR"
```

matrices:

e(b)	:	1 x 12
e(V)	:	12×12
e(se_dfdx)	:	1 x 11
e(dfdx)	:	1 x 11

functions:

e(sample)

```
. * Test 1:
. test dkidslt6 d6nwinc d6ed d6exp d6expsq d6age
(1) dkidslt6 = 0
(2) d6nwinc = 0
(3) d6ed = 0
(4) d6exp = 0
(5) d6expsq = 0
(6) d6age = 0
          chi2(6) = 58.11
        Prob > chi2 = 0.0000
. return list
scalars:
            r(drop) = 0
            r(chi2) = 58.11036668348744
              r(df) = 6
               r(p) = 1.08838734793e-10
```

```
. * Test 2:

. test d6nwinc d6ed d6exp d6expsq d6age

( 1) d6nwinc = 0

( 2) d6ed = 0

( 3) d6exp = 0

( 4) d6expsq = 0

( 5) d6age = 0

chi2( 5) = 9.03

Prob > chi2 = 0.1078

. return list

scalars:

r(drop) = 0

r(chi2) = 9.031191992371875

r(df) = 5

r(p) = .1078264635420236
```

□ Interpreting the coefficient estimates in full-interaction Model 3

Full-interaction Model 3 estimates *two* distinct sets of probit coefficients: (1) the probit coefficients for married women who have no pre-school aged children (for whom dkidslt $6_i = 0$); and (2) the probit coefficients for married women who have one or more pre-school aged children (for whom dkidslt $6_i = 1$).

• Recall that the **probit** *index* **function for Model 3** is:

 $\begin{aligned} \mathbf{x}_{i}^{T}\boldsymbol{\beta} &= \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1}nwifeinc_{i} + \boldsymbol{\beta}_{2}ed_{i} + \boldsymbol{\beta}_{3}\exp_{i} + \boldsymbol{\beta}_{4}\exp_{i}^{2} + \boldsymbol{\beta}_{5}age_{i} \\ &+ \boldsymbol{\beta}_{6}dkidslt\boldsymbol{6}_{i} + \boldsymbol{\beta}_{7}dkidslt\boldsymbol{6}_{i}nwifeinc_{i} + \boldsymbol{\beta}_{8}dkidslt\boldsymbol{6}_{i}ed_{i} \\ &+ \boldsymbol{\beta}_{9}dkidslt\boldsymbol{6}_{i}\exp_{i} + \boldsymbol{\beta}_{10}dkidslt\boldsymbol{6}_{i}\exp_{i}^{2} + \boldsymbol{\beta}_{11}dkidslt\boldsymbol{6}_{i}age_{i} \end{aligned}$

The probit index function for married women who have no pre-school aged children (for whom dkidslt6_i = 0) is obtained by setting the indicator variable dkidslt6_i = 0 in the probit index function for Model 3:

 $(x_i^T\beta | dkidslt6_i = 0) = \beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i$

Implication: The probit coefficient estimates for married women who have no pre-school aged children (for whom $dkidslt6_i = 0$) are given directly by the coefficient estimates of the first six terms in the above index function. In particular, **for married women who currently have no pre-school aged children**:

The probit coefficient estimates for married women who have no pre-school aged children are:

 β_0 = the intercept coefficient for women for whom dkidslt $6_i = 0$

 β_1 = the slope coefficient of nwifeinc, for women for whom dkidslt $6_i = 0$

 β_2 = the slope coefficient of ed_i for women for whom dkidslt6_i = 0

 β_3 = the slope coefficient of exp_i for women for whom dkidslt6_i = 0

 β_4 = the slope coefficient of \exp_i^2 for women for whom dkidslt $6_i = 0$

 β_5 = the slope coefficient of age_i for women for whom dkidslt6_i = 0.

• The probit index function for married women who currently have one or more pre-school aged children (for whom dkidslt6_i = 1) is obtained by setting the indicator variable dkidslt6_i = 1 in the probit index function for Model 3:

$$\left(x_i^{T} \beta \left| dkidslt6_i = 1 \right) = \beta_0 + \beta_1 nwifeinc_i + \beta_2 ed_i + \beta_3 exp_i + \beta_4 exp_i^2 + \beta_5 age_i \right. \\ \left. + \beta_6 + \beta_7 nwifeinc_i + \beta_8 ed_i + \beta_9 exp_i + \beta_{10} exp_i^2 + \beta_{11} age_i \right)$$

Implication: The probit coefficient estimates for married women who have one or more pre-school aged children (for whom $dkidslt6_i = 1$) are obtained from Model 3 by summing pairs of coefficient estimates. In particular, for married women who have one or more pre-school aged children:

- $\beta_0 + \beta_6 =$ the intercept coefficient for women for whom dkidslt $6_i = 1$ $\beta_1 + \beta_7 =$ the slope coefficient of nwifeinc_i for women for whom dkidslt $6_i = 1$ $\beta_2 + \beta_8 =$ the slope coefficient of ed_i for women for whom dkidslt $6_i = 1$ $\beta_3 + \beta_9 =$ the slope coefficient of exp_i for women for whom dkidslt $6_i = 1$ $\beta_4 + \beta_{10} =$ the slope coefficient of exp_i² for women for whom dkidslt $6_i = 1$ $\beta_5 + \beta_{11} =$ the slope coefficient of age_i for women for whom dkidslt $6_i = 1$.
- Compute from Model 3 the probit coefficient estimates, t-ratios and p-values for those married women who have one or more pre-school aged children (for whom dkidslt $6_i = 1$). Enter the following **lincom** commands:

```
lincom _b[_cons] + _b[dkidslt6]
lincom _b[nwifeinc] + _b[d6nwinc]
lincom _b[ed] + _b[d6ed]
lincom _b[exp] + _b[d6exp]
lincom _b[expsq] + _b[d6expsq]
lincom _b[age] + _b[d6age]
```

```
. * Model 3 probit coefficients for women for whom dkidslt6 = 1
. lincom b[ cons] + b[dkidslt6]
(1) dkidslt6 + _cons = 0
  inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
     (1) -1.918622 1.166582 -1.64 0.100 -4.205081 .3678365
       _____
. lincom _b[nwifeinc] + _b[d6nwinc]
(1) nwifeinc + d6nwinc = 0
     inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
(1) -.0168304 .0094237 -1.79 0.074 -.0353004 .0016397
. lincom _b[ed] + _b[d6ed]
(1) ed + d6ed = 0
          _____
inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
     (1) | .1542988 .0556478 2.77 0.006 .0452311 .2633665
```

```
. lincom b[exp] + b[d6exp]
(1) \exp + d6 \exp = 0
                    -----
    inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
(1) .0244335 .062981 0.39 0.698 -.0990069 .1478739
                 _____
. lincom b[expsq] + b[d6expsq]
(1) \exp q + d \exp q = 0
      _____
    inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
     ....+------
   (1) .0007676 .0032829 0.23 0.815 -.0056666 .0072019
          _____
. lincom _b[age] + _b[d6age]
(1) age + d6age = 0
 inlf | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    (1) -.0089589 .0246402 -0.36 0.716 -.0572529 .039335
           -----
```
□ Computing the marginal *probability* effect of the binary explanatory variable *dkidslt6*^{*i*} in Model 3 – *dprobit* with *at*(*vecname*) option

This section demonstrates how to use the **dprobit** command with the at(vecname) option to compute the **marginal** *probability* effect of the dummy variable *dkidslt6_i* in Model 3 for married women who have the sample median values of the explanatory variables nwifeinc_i, ed_i, exp_i, and age_i.

Here we are concerned with obtaining an estimate of the <u>direction</u> and <u>magnitude</u> of the marginal *probability* effect of the dummy variable *dkidslt6_i* in Model 3.

The marginal probability effect of the dummy variable dkidslt6_i in Model 3 is:

$$\begin{aligned} \Pr(\operatorname{inlf}_{i} = 1 | \operatorname{dkidslt6}_{i} = 1) - \Pr(\operatorname{inlf}_{i} = 1 | \operatorname{dkidslt6}_{i} = 0) &= \Phi(x_{1i}^{T}\beta) - \Phi(x_{0i}^{T}\beta) \\ &= \Phi\begin{pmatrix} \beta_{0} + \beta_{1}\operatorname{nwifeinc}_{i} + \beta_{2}\operatorname{ed}_{i} + \beta_{3}\operatorname{exp}_{i} + \beta_{4}\operatorname{exp}_{i}^{2} + \beta_{5}\operatorname{age}_{i} \\ &+ \beta_{6} + \beta_{7}\operatorname{nwifeinc}_{i} + \beta_{8}\operatorname{ed}_{i} + \beta_{9}\operatorname{exp}_{i} + \beta_{10}\operatorname{exp}_{i}^{2} + \beta_{11}\operatorname{age}_{i} \end{pmatrix} \\ &- \Phi(\beta_{0} + \beta_{1}\operatorname{nwifeinc}_{i} + \beta_{2}\operatorname{ed}_{i} + \beta_{3}\operatorname{exp}_{i} + \beta_{4}\operatorname{exp}_{i}^{2} + \beta_{5}\operatorname{age}_{i}) \end{aligned}$$

The procedure for this computation consists of three steps.

Three-step procedure for computing the marginal *probability* effect of the dummy variable *dkidslt6_i* in Model 3

<u>Step 1</u>: Estimate the probability of labour force participation for married women with the specified characteristics who currently have *one or more* dependent children under 6 years of age, for whom dkidslt $6_i = 1$: i.e., compute an estimate of

$$\Phi(\mathbf{x}_{1i}^{\mathrm{T}}\boldsymbol{\beta}) = \Phi\begin{pmatrix}\beta_{0} + \beta_{1}\mathrm{nwifeinc}_{i} + \beta_{2}\mathrm{ed}_{i} + \beta_{3}\exp_{i} + \beta_{4}\exp_{i}^{2} + \beta_{5}\mathrm{age}_{i}\\ + \beta_{6} + \beta_{7}\mathrm{nwifeinc}_{i} + \beta_{8}\mathrm{ed}_{i} + \beta_{9}\exp_{i} + \beta_{10}\exp_{i}^{2} + \beta_{11}\mathrm{age}_{i}\end{pmatrix}$$

<u>Step 2</u>: Estimate the probability of labour force participation for married women with the specified characteristics who currently have *no* dependent children under 6 years of age, for whom dkidslt6_i = 0: i.e., compute an estimate of

$$\Phi\left(\mathbf{x}_{0i}^{\mathrm{T}}\boldsymbol{\beta}\right) = \Phi\left(\beta_{0} + \beta_{1}\mathrm{nwifeinc}_{i} + \beta_{2}\mathrm{ed}_{i} + \beta_{3}\mathrm{exp}_{i} + \beta_{4}\mathrm{exp}_{i}^{2} + \beta_{5}\mathrm{age}_{i}\right)$$

<u>Step 3</u>: Compute an estimate of the difference $\Phi(\mathbf{x}_{1i}^{T}\beta) - \Phi(\mathbf{x}_{0i}^{T}\beta)$, which is the **marginal** *probability* effect of having one or more pre-school aged children for married women who have the specified characteristics.

• Compute (or select) the values of the explanatory variables at which you wish to compute the marginal probability effect of the binary variable dkidslt6_i.

Use the **pooled sample** *medians* of the explanatory variables $nwifeinc_i$, ed_i , exp_i , and age_i . Enter the following commands:

```
summarize nwifeinc, detail
return list
scalar nwinc50p = r(p50)
summarize ed, detail
scalar ed50p = r(p50)
summarize exp, detail
scalar exp50p = r(p50)
scalar expsq50p = exp50p^2
summarize age, detail
scalar age50p = r(p50)
scalar list nwinc50p ed50p exp50p expsq50p age50p
```

The sample median values of the explanatory variables computed by these commands are as follows:

nwinc50p :	=	17.700001
ed50p :	=	12
exp50p :	=	9
expsq50p :	=	81
age50p :	=	43

<u>Step 1</u>: Use the dprobit command *with* the at(*vecname*) option to compute the marginal probability effects in Model 3 for median married women whose non-wife family income is \$17,700 per year (nwifeinc = 17.700), who have 12 years of formal education (ed = 12) and 9 years of actual work experience (exp = 9, expsq = 81), who are 43 years of age (age = 43), and who have *one or more* dependent children under 6 years of age (dkidslt6 = 1).

First create the vector \mathbf{x}_{1i}^{T} containing the median values of the regressors in Model 3 when dkidslt6_i = 1. The coefficient vector β for Model 3 in *Stata* format is:

 $\boldsymbol{\beta} = \begin{pmatrix} \beta_1 & \beta_2 & \beta_3 & \beta_4 & \beta_5 & \beta_6 & \beta_7 & \beta_8 & \beta_9 & \beta_{10} & \beta_{11} & \beta_0 \end{pmatrix}^T$

In *Stata* format, the vector \mathbf{x}_{1i}^{T} for Model 3 thus takes the form:

$$x_{1i}^{T} = \left(\text{nwifeinc}_{i} \text{ ed}_{i} \exp_{i} \exp_{i}^{2} \text{ age}_{i} 1 \text{ nwifeinc}_{i} \text{ ed}_{i} \exp_{i} \exp_{i}^{2} \text{ age}_{i} 1 \right)$$

$$= \left(\begin{array}{c} \text{nwinc50p ed50p exp50p expsq50p age50p 1} \\ \text{nwinc50p ed50p exp50p expsq50p age50p 1} \end{array} \right)$$

Step 1 Stata commands are:

```
matrix x1median = (nwinc50p, ed50p, exp50p, expsq50p, age50p, 1, nwinc50p, ed50p,
exp50p, expsq50p, age50p, 1)
matrix list x1median
dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age,
at(x1median)
ereturn list
```

Display and save the value of $\Phi(\mathbf{x}_{1i}^{T}\hat{\boldsymbol{\beta}})$, an estimate of $\Pr(\inf_{i} = 1 | \text{dkidslt6}_{i} = 1)$. The value of $\Phi(\mathbf{x}_{1i}^{T}\hat{\boldsymbol{\beta}})$ is temporarily stored as the scalar **e(at)** following the above **dprobit** command. Enter the commands:

```
display e(at)
scalar PHIx1med = e(at)
scalar list PHIx1med
```

These commands save the value of $\Phi(x_{1i}^T \hat{\beta})$ as the scalar **PHIx1med**.

• <u>Step 2</u>: Now use the **dprobit** command *with* the **at**(*vecname*) option to compute the marginal probability effects in Model 3 for median married women whose non-wife family income is \$17,700 per year (nwifeinc = 17.700), who have 12 years of formal education (ed = 12) and 9 years of actual work experience (exp = 9, expsq = 81), who are 43 years of age (age = 43), and **who have** *no* **dependent children under 6 years of age** (**dkidslt6 = 0**). Again, you will first have to create the vector x_{0i}^{T} containing the median values of the regressors in Model 3 when dkidslt6_i = 0.

In *Stata* format, the vector \mathbf{x}_{0i}^{T} for Model 3 takes the form:

$$\begin{aligned} \mathbf{x}_{0i}^{T} &= \left(\text{nwifeinc}_{i} \ \text{ed}_{i} \ \exp_{i} \ \exp_{i}^{2} \ \text{age}_{i} \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \right) \\ &= \left(\text{nwinc50p ed50p exp50p exp50p age50p } 0 \ 0 \ 0 \ 0 \ 0 \ 1 \right) \end{aligned}$$

Step 2 Stata commands are:

matrix x0median = (nwinc50p, ed50p, exp50p, expsq50p, age50p, 0, 0, 0, 0, 0, 0, 1)
matrix list x0median
dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age,
at(x0median)
ereturn list

Display and save the value of $\Phi(\mathbf{x}_{0i}^{T}\hat{\boldsymbol{\beta}})$, an estimate of $\Pr(\inf_{i} = 1 | \text{dkidslt6}_{i} = 0)$. The value of $\Phi(\mathbf{x}_{0i}^{T}\hat{\boldsymbol{\beta}})$ is temporarily stored as the scalar **e**(**a**t) following the above **dprobit** command. Enter the commands:

```
display e(at)
scalar PHIx0med = e(at)
scalar list PHIx0med
```

These commands save the value of $\Phi(\mathbf{x}_{0i}^{T}\hat{\boldsymbol{\beta}})$ as the scalar **PHIx0med**.

• <u>Step 3</u>: Finally, compute the estimate of the difference $\Phi(\mathbf{x}_{1i}^{T}\beta) - \Phi(\mathbf{x}_{0i}^{T}\beta)$, which is the marginal probability effect having one or more dependent children under 6 years of age for married women who have the specified characteristics. **Step 3** *Stata* **commands** are:

scalar diffPHImed = PHIx1med - PHIx0med
scalar list PHIx1med PHIx0med diffPHImed

The value of the scalar diffPHImed is the estimate for Model 3 of

 $\Pr\left(inlf_{i}=1 \middle| dkidslt6_{i}=1\right) - \Pr\left(inlf_{i}=1 \middle| dkidslt6_{i}=0\right) = \Phi\left(x_{1i}^{T}\beta\right) - \Phi\left(x_{0i}^{T}\beta\right)$

i.e., of the **marginal** *probability* **effect of having one or more dependent children under 6 years of age** for married women who have the median characteristics of women in the full sample.

$$\texttt{diffPHImed} = \hat{P}r\big(inlf_i = 1 \big| dkidslt6_i = 1\big) - \hat{P}r\big(inlf_i = 1 \big| dkidslt6_i = 0\big) = \Phi\big(x_{1i}^T \hat{\beta}\big) - \Phi\big(x_{0i}^T \hat{\beta}\big)$$

Output of Step 1 Stata Commands

. dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age, at(x1median)

Iteration	0:	log	likelihood	=	-514.8732
Iteration	1:	log	likelihood	=	-406.48086
Iteration	2:	log	likelihood	=	-402.63328
Iteration	3:	log	likelihood	=	-402.61111
Iteration	4:	log	likelihood	=	-402.61111

Probit estimates

Number of obs = 753 LR chi2(11) = 224.52 Prob > chi2 = 0.0000 Pseudo R2 = 0.2180

Log likelihood = -402.61111

inlf	dF/dx	Std. Err.	z	P> z	x	[95%	с.і.]
nwifeinc	0039009	.0020603	-1.95	0.051	17.7	(07939	.000	 137
ed	.0434699	.0113882	4.34	0.000	12	. (021149	.06	579
exp	.0490971	.009644	6.57	0.000	9	.(030195	.067	999
expsq	0007991	.0002526	-3.44	0.001	81	(01294	000	304
age	0212205	.0040365	-6.94	0.000	43	(029132	013	309
dkidslt6*	6603895	.0730752	-1.99	0.046	1	8	303614	517	165
d6nwinc	0021167	.0039297	-0.54	0.589	17.7	(09819	.005	585
d6ed	.011699	.0221757	0.53	0.600	12	(031765	.055	162
d6exp	040361	.0215344	-1.70	0.089	9	(082568	.001	846
d6expsq	.0010736	.0011221	0.90	0.370	81	(001126	.003	273
d6age	.0180172	.0111044	1.93	0.053	43	(003747	.039	781
obs. P	.5683931								
pred. P	.5870885	(at x-bar)							
pred. P	.3198606	(at x)							

(*) dF/dx is for discrete change of dummy variable from 0 to 1 z and P>|z| are the test of the underlying coefficient being 0

M.G. Abbott

. ereturn list

```
scalars:
```

```
e(N) = 753
e(11_0) = -514.8732045671461
e(11) = -402.6111063731551
e(df_m) = 11
e(chi2) = 224.5241963879821
e(r2_p) = .2180383387563736
e(pbar) = .5683930942895087
e(xbar) = .220061785738521
e(offbar) = 0
e(at) = .3198606279066483
```

[output omitted]

- . display e(at) .31986063
- . scalar PHIx1med = e(at)
- . scalar list PHIx1med
 PHIx1med = .31986063

Output of Step 2 Stata Commands

. dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age, at(x0median);

Iteration	0:	log	likelihood	=	-514.8732
Iteration	1:	log	likelihood	=	-406.48086
Iteration	2:	log	likelihood	=	-402.63328
Iteration	3:	log	likelihood	=	-402.61111
Iteration	4:	log	likelihood	=	-402.61111

Probit estimates

Number of obs = 753 LR chi2(11) = 224.52 Prob > chi2 = 0.0000 Pseudo R2 = 0.2180

Log likelihood = -402.61111

nwifeinc 004054 .0020554 -1.95 0.051 17.7 008083 0000 ed .0451757 .0104184 4.34 0.000 12 .024756 .06559 exp .0510237 .0074085 6.57 0.000 9 .036503 .06559 expsq 0008305 .0002325 -3.44 0.001 81 001286 .00037 age 0220532 .003204 -6.94 0.000 43 028333 01577 dkidslt6* 6311359 .0559456 -1.99 0.046 0 740787 52148 d6nwinc 0021998 .0040816 -0.54 0.589 0 010199 .005 d6exp 0419448 .0245612 -1.70 0.089 0 090084 .00619 d6expsq .0011157 .0012413 0.90 0.370 0 001317 .00354	inlf	f dF/dx	Std. Err.	z	P> z	x	[95%	c.1.]
ed .0451757 .0104184 4.34 0.000 12 .024756 .06559 exp .0510237 .0074085 6.57 0.000 9 .036503 .06559 expsq 0008305 .0002325 -3.44 0.001 81 001286 00037 age 0220532 .003204 -6.94 0.000 43 028333 01577 dkidslt6* 6311359 .0559456 -1.99 0.046 0 740787 52148 d6nwinc 0021998 .0040816 -0.54 0.589 0 010199 .005 d6ed .012158 .0231649 0.53 0.600 0 033244 .0575 d6expsq 0419448 .0245612 -1.70 0.089 0 001317 .00354	wifeinc	.c 004054	.0020554	-1.95	0.051	17.7		008083	000	025
exp.0510237.00740856.570.0009.036503.06554expsq0008305.0002325-3.440.001810012860003age0220532.003204-6.940.000430283330157dkidslt6*6311359.0559456-1.990.046074078752148d6nwinc0021998.0040816-0.540.5890010199.005d6ed.012158.02316490.530.6000033244.0575d6exp0419448.0245612-1.700.0890001317.00354d6expsq.0011157.00124130.900.3700001317.00354	ed	d .0451757	.0104184	4.34	0.000	12	•	024756	.065	595
expsq0008305.0002325-3.440.001810012860003age0220532.003204-6.940.000430283330157dkidslt6*6311359.0559456-1.990.046074078752148d6nwinc0021998.0040816-0.540.5890010199.005d6ed.012158.02316490.530.6000033244.0575d6exp0419448.0245612-1.700.0890001317.00354d6expsq.0011157.00124130.900.3700001317.00354	exp	p .0510237	.0074085	6.57	0.000	9	•	036503	.065	544
age 0220532 .003204 -6.94 0.000 43 028333 0157 dkidslt6* 6311359 .0559456 -1.99 0.046 0 740787 52148 d6nwinc 0021998 .0040816 -0.54 0.589 0 010199 .005 d6ed .012158 .0231649 0.53 0.600 0 033244 .0575 d6exp 0419448 .0245612 -1.70 0.089 0 001317 .00354 d6expsq .0011157 .0012413 0.90 0.370 0 001317 .00354	expsq	q0008305	.0002325	-3.44	0.001	81		001286	000	375
dkidslt6* 6311359 .0559456 -1.99 0.046 0 740787 52148 d6nwinc 0021998 .0040816 -0.54 0.589 0 010199 .005 d6ed .012158 .0231649 0.53 0.600 0 033244 .0575 d6exp 0419448 .0245612 -1.70 0.089 0 090084 .00619 d6expsq .0011157 .0012413 0.90 0.370 0 001317 .00354	age	e0220532	.003204	-6.94	0.000	43		028333	015	773
d6nwinc 0021998 .0040816 -0.54 0.589 0 010199 .009 d6ed .012158 .0231649 0.53 0.600 0 033244 .0579 d6exp 0419448 .0245612 -1.70 0.089 0 090084 .00619 d6expsq .0011157 .0012413 0.90 0.370 0 001317 .00354	kidslt6*	6*6311359	.0559456	-1.99	0.046	0		740787	521	485
d6ed .012158 .0231649 0.53 0.600 0 033244 .057 d6exp 0419448 .0245612 -1.70 0.089 0 090084 .00612 d6expsq .0011157 .0012413 0.90 0.370 0 001317 .00354	d6nwinc	c0021998	.0040816	-0.54	0.589	0		010199	.0	058
d6exp 0419448 .0245612 -1.70 0.089 0 090084 .00619 d6expsq .0011157 .0012413 0.90 0.370 0 001317 .00354	d6ed	d .012158	.0231649	0.53	0.600	0		033244	.05	756
d6expsq .0011157 .0012413 0.90 0.370 0001317 .00354	d6exp	p0419448	.0245612	-1.70	0.089	0		090084	.006	194
	d6expsq	q .0011157	.0012413	0.90	0.370	0		001317	.003	549
dbage .0187242 .0096966 1.93 0.053 0000281 .03772	d6age	e .0187242	.0096966	1.93	0.053	0		000281	.037	729
obs. P .5683931	+ obs. P	P .5683931								
pred. P .5870885 (at x-bar)	pred. P	P .5870885	(at x-bar)							
pred. P <u>.6469122</u> (at x)	pred. P	р <u>.6469122</u>	(at x)							

(*) dF/dx is for discrete change of dummy variable from 0 to 1 z and P>|z| are the test of the underlying coefficient being 0

M.G. Abbott

. ereturn list

```
scalars:
```

```
e(N) = 753
e(11_0) = -514.8732045671461
e(11) = -402.6111063731551
e(df_m) = 11
e(chi2) = 224.5241963879821
e(r2_p) = .2180383387563736
e(pbar) = .5683930942895087
e(xbar) = .220061785738521
e(offbar) = 0
e(at) = <u>.6469121653332525</u>
```

[output omitted]

```
. display e(at)
.64691217
```

```
. scalar PHIx0med = e(at)
```

```
. scalar list PHIx0med
PHIx0med = .64691217
```

Output of Step 3 *Stata* **Commands**

```
. * Model 3: compute marginal probability effect of dkidslt6
. scalar diffPHImed = PHIx1med - PHIx0med
. scalar list PHIx1med PHIx0med diffPHImed
PHIx1med = .31986063
PHIx0med = .64691217
diffPHImed = <u>-.32705154</u>
```

The value of the scalar diffPHImed is the estimate for Model 3 of

 $\Pr\left(inlf_{i}=1 \middle| dkidslt6_{i}=1\right) - \Pr\left(inlf_{i}=1 \middle| dkidslt6_{i}=0\right) = \Phi\left(x_{1i}^{T}\beta\right) - \Phi\left(x_{0i}^{T}\beta\right)$

In Model 3, the estimated **marginal** *probability* **effect of having one or more dependent children under 6 years of age** for married women who have the median characteristics of women in the full sample is:

$$\Phi(\mathbf{x}_{1i}^{T}\hat{\boldsymbol{\beta}}) - \Phi(\mathbf{x}_{0i}^{T}\hat{\boldsymbol{\beta}}) = -0.32705154 = -0.3271$$

□ Marginal *probability* effects of *continuous* explanatory variables in Model 3 -- *dprobit*

Background

• The marginal *probability* effects of *continuous* explanatory variables in probit models are the partial derivatives of the standard normal c.d.f. $\Phi(x_i^T\beta)$ with respect to the individual explanatory variables:

marginal *probability* effect of
$$\mathbf{X}_{j} = \frac{\partial \Phi(\mathbf{x}_{i}^{T}\beta)}{\partial X_{ij}} = \frac{\partial \Phi(\mathbf{x}_{i}^{T}\beta)}{\partial \mathbf{x}_{i}^{T}\beta} \frac{\partial \mathbf{x}_{i}^{T}\beta}{\partial X_{ij}} = \phi(\mathbf{x}_{i}^{T}\beta) \frac{\partial \mathbf{x}_{i}^{T}\beta}{\partial X_{ij}}$$

where

$$\phi(\mathbf{x}_{i}^{T}\beta) = \text{ the value of the standard normal p.d.f. evaluated at } \mathbf{x}_{i}^{T}\beta$$
$$\frac{\partial \mathbf{x}_{i}^{T}\beta}{\partial \mathbf{X}_{ij}} = \text{ the marginal index effect of the continuous variable } \mathbf{X}_{j}.$$

• Recall that the **probit index function for Model 3** is:

$$x_{i}^{T}\beta = \beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}exp_{i} + \beta_{4}exp_{i}^{2} + \beta_{5}age_{i}$$
$$+ \beta_{6}dkidslt6_{i} + \beta_{7}dkidslt6_{i}nwifeinc_{i} + \beta_{8}dkidslt6_{i}ed_{i}$$
$$+ \beta_{9}dkidslt6_{i}exp_{i} + \beta_{10}dkidslt6_{i}exp_{i}^{2} + \beta_{11}dkidslt6_{i}age_{i}$$

Marginal Index Effects of Continuous Explanatory Variables – Model 3

- For Model 3, there are *two* sets of marginal index effects, one for women with no pre-school aged children (for whom dkidslt6_i = 0), and the other for women with one or more pre-school aged children (for whom dkidslt6_i = 1).
- The marginal *index* effects of the *continuous* explanatory variables in Model 3 are obtained by partially differentiating the index function x_i^Tβ for Model 3 with respect to each of the four continuous explanatory variables nwifeinc_i, ed_i, exp_i, and age_i.

The **probit index function**, or regression function, **for Model 3** is:

$$\begin{aligned} x_{i}^{T}\beta &= \beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}\exp_{i} + \beta_{4}\exp_{i}^{2} + \beta_{5}age_{i} \\ &+ \beta_{6}dkidslt6_{i} + \beta_{7}dkidslt6_{i}nwifeinc_{i} + \beta_{8}dkidslt6_{i}ed_{i} \\ &+ \beta_{9}dkidslt6_{i}\exp_{i} + \beta_{10}dkidslt6_{i}\exp_{i}^{2} + \beta_{11}dkidslt6_{i}age_{i} \end{aligned}$$

$$\begin{aligned} \mathbf{x}_{i}^{T}\beta &= \beta_{0} + \beta_{1}nwifeinc_{i} + \beta_{2}ed_{i} + \beta_{3}\exp_{i} + \beta_{4}\exp_{i}^{2} + \beta_{5}age_{i} \\ &+ \beta_{6}dkidslt6_{i} + \beta_{7}dkidslt6_{i}nwifeinc_{i} + \beta_{8}dkidslt6_{i}ed_{i} \\ &+ \beta_{9}dkidslt6_{i}\exp_{i} + \beta_{10}dkidslt6_{i}\exp_{i}^{2} + \beta_{11}dkidslt6_{i}age_{i} \end{aligned}$$

Now partially differentiate the index function $x_i^T\beta$ for Model 3 with respect to each of the four continuous explanatory variables nwifeinc_i, ed_i, exp_i, and age_i.

<u>Note</u>: Each of these marginal *index* effects differs depending on whether dkidslt $6_i = 0$ or dkidslt $6_i = 1$.

- The marginal index effects for married women with *no pre-school aged children* are obtained by setting the indicator variable dkidslt6_i = 0 in expressions 1 to 4 above:
 - 5. marginal index effect of nwifeinc_i = $\frac{\partial x_i^T \beta}{\partial nwifeinc_i} = \beta_1$
 - 6. marginal index effect of $ed_i = \frac{\partial x_i^T \beta}{\partial ed_i} = \beta_2$

7. marginal index effect of
$$\exp_i = \frac{\partial x_i^T \beta}{\partial \exp_i} = \beta_3 + 2\beta_4 \exp_i$$

8. marginal index effect of
$$age_i = \frac{\partial x_i^T \beta}{\partial age_i} = \beta_5$$

• The marginal index effects for married women with *one or more pre-school aged children* are obtained by setting the indicator variable dkidslt6_i = 1 in expressions 1 to 4 above:

9. marginal index effect of nwifeinc_i =
$$\frac{\partial x_i^T \beta}{\partial \text{nwifeinc}_i} = \beta_1 + \beta_7$$

10.marginal index effect of $ed_i = \frac{\partial x_i^T \beta}{\partial ed_i} = \beta_2 + \beta_8$

11.marginal index effect of
$$\exp_i = \frac{\partial x_i^T \beta}{\partial \exp_i} = \beta_3 + 2\beta_4 \exp_i + (\beta_9 + 2\beta_{10} \exp_i)$$

= $\beta_3 + \beta_9 + 2(\beta_4 + \beta_{10}) \exp_i$

12.marginal index effect of age_i = $\frac{\partial x_i^T \beta}{\partial age_i} = \beta_5 + \beta_{11}$

Marginal Probability Effects of Continuous Explanatory Variables – Model 3

• The marginal *probability* effects of the four continuous explanatory variables in Model 3 are:

1. marginal probability effect of nwifeinc_i =
$$\frac{\partial \Phi(x_i^T \beta)}{\partial n wifeinc_i} = \phi(x_i^T \beta) \frac{\partial x_i^T \beta}{\partial n wifeinc_i}$$

= $\phi(x_i^T \beta)(\beta_1 + \beta_7 d k i d s l t 6_i)$
2. marginal probability effect of $ed_i = \frac{\partial \Phi(x_i^T \beta)}{\partial ed_i} = \phi(x_i^T \beta) \frac{\partial x_i^T \beta}{\partial ed_i}$
= $\phi(x_i^T \beta)(\beta_2 + \beta_8 d k i d s l t 6_i)$
3. marginal probability effect of $exp_i = \frac{\partial \Phi(x_i^T \beta)}{\partial exp_i} = \phi(x_i^T \beta) \frac{\partial x_i^T \beta}{\partial exp_i}$
= $\phi(x_i^T \beta)(\beta_3 + 2\beta_4 exp_i + (\beta_9 + 2\beta_{10} exp_i) d k i d s l t 6_i)$
4. marginal probability effect of $age_i = \frac{\partial \Phi(x_i^T \beta)}{\partial age_i} = \phi(x_i^T \beta) \frac{\partial x_i^T \beta}{\partial age_i}$
= $\phi(x_i^T \beta)(\beta_5 + \beta_{11} d k i d s l t 6_i)$

Notes: There are three features of these marginal probability effects for Model 3 that you should recognize.

- 1. These marginal *probability* effects differ depending on whether $dkidslt6_i = 0$ or $dkidslt6_i = 1$.
- 2. The marginal probability effect of a continuous explanatory variable X_j is proportional to the marginal index effect of X_j , where the factor of proportionality is the standard normal p.d.f. at $x_i^T\beta$:

marginal *probability* effect of $\mathbf{X}_{j} = \phi(\mathbf{x}_{i}^{T}\beta) \times \text{marginal index effect of } \mathbf{X}_{j}$

3. Estimation of the marginal probability effects of a continuous explanatory variable X_j requires one to choose a specific vector of regressor values x_i^T . Common choices for x_i^T are the **sample** *mean* and **sample** *median* values of the regressors.

• The marginal *probability* effects for married women with *no pre-school aged children* are obtained by setting the indicator variable **dkidslt6**_i = **0** in expressions 1 to 4 above:

5. marginal probability effect of nuifeinc_i = $\frac{\partial \Phi(\mathbf{x}_i^T \beta)}{\partial nuifeinc_i} = \phi(\mathbf{x}_i^T \beta) \frac{\partial \mathbf{x}_i^T \beta}{\partial nuifeinc_i} = \phi(\mathbf{x}_i^T \beta) \beta_1$

6. marginal probability effect of
$$ed_i = \frac{\partial \Phi(x_i^T \beta)}{\partial ed_i} = \phi(x_i^T \beta) \frac{\partial x_i^T \beta}{\partial ed_i} = \phi(x_i^T \beta) \beta_2$$

7. marginal probability effect of
$$\exp_i = \frac{\partial \Phi(\mathbf{x}_i^T \beta)}{\partial \exp_i} = \phi(\mathbf{x}_i^T \beta) \frac{\partial \mathbf{x}_i^T \beta}{\partial \exp_i} = \phi(\mathbf{x}_i^T \beta) (\beta_3 + 2\beta_4 \exp_i)$$

8. marginal probability effect of age_i =
$$\frac{\partial \Phi(\mathbf{x}_i^T \beta)}{\partial age_i} = \phi(\mathbf{x}_i^T \beta) \frac{\partial \mathbf{x}_i^T \beta}{\partial age_i} = \phi(\mathbf{x}_i^T \beta) \beta_5$$

- The marginal probability effects for married women with one or more pre-school aged children are obtained by setting the indicator variable dkidslt6_i = 1 in expressions 1 to 4 above:
 - 9. marginal probability effect of nuifeinc_i = $\frac{\partial \Phi(\mathbf{x}_i^T \beta)}{\partial nuifeinc_i} = \phi(\mathbf{x}_i^T \beta) \frac{\partial \mathbf{x}_i^T \beta}{\partial nuifeinc_i}$ = $\phi(\mathbf{x}_i^T \beta)(\beta_1 + \beta_7)$ 10. marginal probability effect of $\mathbf{ed}_i = \frac{\partial \Phi(\mathbf{x}_i^T \beta)}{\partial \mathbf{ed}_i} = \phi(\mathbf{x}_i^T \beta) \frac{\partial \mathbf{x}_i^T \beta}{\partial \mathbf{ed}_i}$ = $\phi(\mathbf{x}_i^T \beta)(\beta_2 + \beta_8)$
 - 11. marginal probability effect of $\exp_{i} = \frac{\partial \Phi(x_{i}^{T}\beta)}{\partial \exp_{i}} = \phi(x_{i}^{T}\beta)\frac{\partial x_{i}^{T}\beta}{\partial \exp_{i}}$ $= \phi(x_{i}^{T}\beta)(\beta_{3} + 2\beta_{4}\exp_{i} + \beta_{9} + 2\beta_{10}\exp_{i})$ $= \phi(x_{i}^{T}\beta)(\beta_{3} + \beta_{9} + 2(\beta_{4} + \beta_{10})\exp_{i})$

12. marginal probability effect of age_i =
$$\frac{\partial \Phi(\mathbf{x}_i^T \beta)}{\partial age_i} = \phi(\mathbf{x}_i^T \beta) \frac{\partial \mathbf{x}_i^T \beta}{\partial age_i}$$

= $\phi(\mathbf{x}_i^T \beta)(\beta_5 + \beta_{11})$

□ Testing for zero marginal *probability* effects of *continuous* explanatory variables in Model 3 – *probit* or *dprobit*

Background:

For any explanatory variable, there are *two* **distinct empirical questions** that an econometric investigation of married women's labour force participation (or any other binary outcome) should address.

• The first question concerns the *existence* of a relationship: is a particular explanatory variable related to the probability of married women's labour force participation, conditional on other explanatory variables included in the model?

In other words, is the marginal probability effect of a particular explanatory variable on the probability of married women's labour force participation zero or non-zero?

• The second question concerns the *direction* and *magnitude* of the relationship: how large a change in the conditional probability of married women's labour force participation is associated with a one-unit increase in the value of a particular continuous explanatory variable, holding constant the values of all other explanatory variables included in the model?

This section addresses the first question for each of the four continuous variables in Model 3.

<u>Objective</u>: To test the proposition that the **marginal effect of each** *continuous* **explanatory variable** on the probability of married women's labour force participation **is equal to** *zero* for each of the *two* **groups of married women**:

1. married women with one or more pre-school aged children and

2. married women with no pre-school aged children

Important Point:

The marginal probability effect of a continuous explanatory variable X_j is proportional to the marginal index effect of X_j , where the factor of proportionality is the standard normal p.d.f. at $x_j^T\beta$:

marginal *probability* effect of $\mathbf{X}_{j} = \phi(\mathbf{x}_{i}^{T}\beta) \times \text{marginal index effect of } \mathbf{X}_{j}$

Implication: Any set of coefficient restrictions that is sufficient to make the **marginal** *index* **effect** of a continuous explanatory variable **equal to zero** is also sufficient to make the **marginal** *probability* **effect** of that continuous explanatory variable **equal to zero**.

In other words, testing the null hypothesis that the marginal *index* effect of a continuous explanatory variable equals zero is equivalent to testing the null hypothesis that the marginal *probability* effect of that continuous explanatory variable equals zero.

• First, re-estimate probit Model 3. Enter the **probit** command:

probit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age

- <u>Test 1 Model 3</u>: for married women with no pre-school aged children
- *Proposition:* The non-wife income of the family has no effect on the probability of labour force participation for married women who have no pre-school aged children; the marginal *probability* (and *index*) effect of nwifeinc_i equals zero for married women for whom dkidslt6_i = 0.
- For married women for whom dkidslt6_i = 0: marginal probability effect of nwifeinc_i = $\phi(\mathbf{x}_i^T \beta)\beta_1$

A sufficient condition for the marginal probability effect of nwifeinc_i to equal zero for any given values of the regressors x_i^T is $\beta_1 = 0$.

• Null and Alternative Hypotheses:

 $H_0: \beta_1 = 0$ versus $H_1: \beta_1 \neq 0$

• To calculate a **Wald test** of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following **test**, **return list** and **display** commands:

```
test nwifeinc Or test nwifeinc = 0
return list
display sqrt(r(chi2))
```

• To calculate a **two-tail asymptotic t-test** of H_0 against H_1 , enter the following *Stata* commands:

```
lincom _b[nwifeinc]
return list
display r(estimate)/r(se)
```

- <u>Test 1 Model 3</u>: for married women with one or more pre-school aged children
- *Proposition:* The non-wife income of the family has no effect on the probability of labour force participation for married women who have one or more pre-school aged children; the marginal *probability* (and *index*) effect of nwifeinc_i equals zero for married women for whom dkidslt6_i = 1.
- For married women for whom dkidslt6_i = 1: marginal probability effect of nwifeinc_i = $\phi(\mathbf{x}_i^T\beta)(\beta_1 + \beta_7)$

A sufficient condition for the marginal probability effect of nwifeinc_i to equal zero for any given values of the regressors x_i^T is $\beta_1 + \beta_7 = 0$.

• Null and Alternative Hypotheses:

H₀: $\beta_1 + \beta_7 = 0$ versus H₁: $\beta_1 + \beta_7 \neq 0$

• To calculate a **Wald test** of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following **test**, **return list** and **display** commands:

test nwifeinc + d6nwinc = 0
return list
display sqrt(r(chi2))

• To calculate a **two-tail asymptotic t-test** of H_0 against H_1 , enter the following *Stata* commands:

```
lincom _b[nwifeinc] + _b[d6nwinc]
return list
display r(estimate)/r(se)
```

- <u>Test 2 Model 3</u>: for married women with no pre-school aged children
- *Proposition:* For married women who have no pre-school aged children, the probability of labour force participation does not depend on their education; the marginal probability (and index) effect of ed_i equals zero for married women for whom dkidslt6_i = 0.
- For married women for whom dkidslt6_i = 0: marginal probability effect of $ed_i = \phi(x_i^T\beta)\beta_2$

A sufficient condition for the marginal probability effect of ed_i to equal zero for any given values of the regressors x_i^T is $\beta_2 = 0$.

• Null and Alternative Hypotheses:

 $H_0: \beta_2 = 0 \qquad \text{versus} \quad H_1: \beta_2 \neq 0$

• To calculate a **Wald test** of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following **test**, **return list** and **display** commands:

test ed or test ed = 0
return list
display sqrt(r(chi2))

• To calculate a **two-tail asymptotic t-test** of H_0 against H_1 , enter the following *Stata* commands:

```
lincom _b[ed]
return list
display r(estimate)/r(se)
```

- <u>Test 2 Model 3</u>: for married women with one or more pre-school aged children
- *Proposition:* For married women who have one or more pre-school aged children, the probability of labour force participation does not depend on their education; the marginal *probability* (and *index*) effect of ed_i equals zero for married women for whom dkidslt6_i = 1.
- For married women for whom dkidslt6_i = 1: marginal probability effect of $ed_i = \phi(x_i^T\beta)(\beta_2 + \beta_8)$

A sufficient condition for the marginal probability effect of ed_i to equal zero for any given values of the regressors x_i^T is $\beta_2 + \beta_8 = 0$.

• Null and Alternative Hypotheses:

 $H_0: \beta_2 + \beta_8 = 0 \qquad \text{versus} \qquad H_1: \beta_2 + \beta_8 \neq 0$

• To calculate a **Wald test** of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following **test**, **return list** and **display** commands:

```
test ed + d6ed = 0
return list
display sqrt(r(chi2))
```

• To calculate a **two-tail asymptotic t-test** of H_0 against H_1 , enter the following *Stata* commands:

```
lincom _b[ed] + _b[d6ed]
return list
display r(estimate)/r(se)
```

- <u>Test 3 Model 3</u>: for married women with no pre-school aged children
- *Proposition:* Years of actual work experience have no effect on the probability of labour force participation for married women who have no pre-school aged children; the marginal probability (and index) effect of expi equals zero for married women for whom dkidslt6_i = 0.
- For married women for whom dkidslt6_i = 0: marginal probability effect of $\exp_i = \phi(x_i^T\beta)(\beta_3 + 2\beta_4 \exp_i)$

A sufficient condition for the marginal probability effect of exp_i to equal zero for any given values of the regressors x_i^T is $\beta_3 = 0$ and $\beta_4 = 0$.

• Null and Alternative Hypotheses:

H₀: $\beta_3 = 0$ and $\beta_4 = 0$ versus H₁: $\beta_3 \neq 0$ and/or $\beta_4 \neq 0$

• To calculate a **Wald test** of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following **test**, **return list** and **display** commands:

test exp expsq return list

- <u>Test 3 Model 3</u>: for married women with one or more pre-school aged children
- *Proposition:* Years of actual work experience have no effect on the probability of labour force participation for married women who have one or more pre-school aged children; the marginal *probability* (and *index*) effect of exp_i equals zero for married women for whom dkidslt6_i = 1.
- For married women for whom $dkidslt6_i = 1$:

marginal probability effect of $\exp_i = \phi(x_i^T \beta)(\beta_3 + \beta_9 + 2(\beta_4 + \beta_{10})\exp_i)$

A sufficient condition for the marginal probability effect of exp_i to equal zero for any given values of the regressors x_i^T is $\beta_3 + \beta_9 = 0$ and $\beta_4 + \beta_{10} = 0$.

• Null and Alternative Hypotheses:

H₀: $\beta_3 + \beta_9 = 0$ and $\beta_4 + \beta_{10} = 0$ H₁: $\beta_3 + \beta_9 \neq 0$ and/or $\beta_4 + \beta_{10} \neq 0$

• To calculate a **Wald test** of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following **test** and **return list** commands:

```
test exp + d6exp = 0, notest
test expsq + d6expsq = 0, accumulate
return list
```

- <u>Test 4 Model 3</u>: for married women with no pre-school aged children
- *Proposition:* For married women who have no pre-school aged children, their age has no effect on their probability of labour force participation; the **marginal** *probability* (and *index*) effect of age_i equals zero for married women for whom dkidslt6_i = 0.
- For married women for whom dkidslt6_i = 0: marginal probability effect of age_i = $\phi(x_i^T\beta)\beta_5$

A sufficient condition for the marginal probability effect of ed_i to equal zero for any given values of the regressors x_i^T is $\beta_5 = 0$.

• Null and Alternative Hypotheses:

 $H_0: \beta_5 = 0$ versus $H_1: \beta_5 \neq 0$

• To calculate a **Wald test** of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following **test**, **return list** and **display** commands:

test age or test age = 0
return list
display sqrt(r(chi2))

• To calculate a **two-tail asymptotic t-test** of H_0 against H_1 , enter the following *Stata* commands:

```
lincom _b[age]
return list
display r(estimate)/r(se)
```

- <u>Test 4 Model 3</u>: for married women with one or more pre-school aged children
- *Proposition:* For married women who have one or more pre-school aged children, their age has no effect on their probability of labour force participation; the **marginal** *probability* (and *index*) effect of age_i equals zero for married women for whom dkidslt6_i = 1.
- For married women for whom dkidslt6_i = 1: marginal probability effect of age_i = $\phi(\mathbf{x}_i^T\beta)(\beta_5 + \beta_{11})$

A sufficient condition for the marginal probability effect of age_i to equal zero for any given values of the regressors x_i^T is $\beta_5 + \beta_{11} = 0$.

• Null and Alternative Hypotheses:

 $H_0: \beta_5 + \beta_{11} = 0 \qquad \text{versus} \quad H_1: \beta_5 + \beta_{11} \neq 0$

• To calculate a **Wald test** of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following **test**, **return list** and **display** commands:

```
test age + d6age = 0
return list
display sqrt(r(chi2))
```

• To calculate a **two-tail asymptotic t-test** of H_0 against H_1 , enter the following *Stata* commands:

```
lincom _b[age] + _b[d6age]
return list
display r(estimate)/r(se)
```

□ Testing for *differences* in the marginal *probability* effects of *continuous* explanatory variables in Model 3 – *probit* or *dprobit*

<u>Objective</u>: To test the proposition that the marginal effect of each *continuous* explanatory variable on the probability of married women's labour force participation is equal for the *two* groups of married women: married women with no pre-school aged children, for whom dkidslt $6_i = 0$; and married women with one or more pre-school aged children, for whom dkidslt $6_i = 1$.

- <u>Test 5 Model 3</u>: equal marginal probability effects of nwifeinc_i
- *Proposition:* The marginal probability (and index) effect of nwifeinc_i is equal for zero for married women for whom dkidslt6_i = 1.
- Marginal *probability* effects for *nwifeinc*_i are:

 $= \phi(\mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta}) \boldsymbol{\beta}_1 \qquad \text{when } \mathrm{dkidslt} \boldsymbol{6}_i = 0$

 $= \phi(\mathbf{x}_i^{\mathrm{T}}\beta)(\beta_1 + \beta_7)$ when dkidslt6_i = 1

A sufficient condition for the marginal probability effect of nwifeinc_i to be equal for married women with and without pre-school aged children is $\beta_7 = 0$.

• Null and Alternative Hypotheses:

 $H_0: \beta_7 = 0 \qquad \text{versus} \quad H_1: \beta_7 \neq 0$

• To calculate a **Wald test** of this hypothesis, enter the following **test** command:

```
test d6nwinc = 0
```

• To calculate a **two-tail asymptotic t-test** of H_0 against H_1 , enter the following **lincom** command:

```
lincom _b[d6nwinc]
```

- <u>Test 6 Model 3</u>: equal marginal probability effects of ed_i
- *Proposition:* The marginal probability (and index) effect of ed_i is equal for married women with pre-school aged kids and married women with no pre-school aged kids.
- Marginal *probability* effects for *ed*_i are:

 $= \phi(\mathbf{x}_i^T \boldsymbol{\beta}) \boldsymbol{\beta}_2$ when dkidslt $\mathbf{6}_i = 0$

 $= \phi(\mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta})(\boldsymbol{\beta}_2 + \boldsymbol{\beta}_8)$ when dkidslt6_i = 1

A sufficient condition for the marginal probability effect of ed_i to be equal for married women with and without pre-school aged children is $\beta_8 = 0$.

• Null and Alternative Hypotheses:

 $H_0: \beta_8 = 0 \qquad \text{versus} \quad H_1: \beta_8 \neq 0$

• To calculate a **Wald test** of this hypothesis, enter the following **test** command:

test d6ed = 0

• To calculate a **two-tail asymptotic t-test** of H₀ against H₁, enter the following **lincom** command:

```
lincom _b[d6ed]
```

- <u>Test 7 Model 3</u>: equal marginal probability effects of exp_i
- *Proposition:* The marginal probability (and index) effect of exp_i is equal for married women with pre-school aged kids and married women with no pre-school aged kids.
- Marginal *probability* effects for *exp*_i are:

 $= \phi(\mathbf{x}_{i}^{T}\beta)(\beta_{3} + 2\beta_{4} \exp_{i}) \qquad \text{when } dkidslt6_{i} = 0$

 $= \phi(\mathbf{x}_{i}^{T}\beta)(\beta_{3} + \beta_{9} + 2(\beta_{4} + \beta_{10})\exp_{i}) \quad \text{when } dkidslt6_{i} = 1$

Sufficient conditions for the marginal probability effect of exp_i to be equal for married women with and without pre-school aged children are $\beta_9 = 0$ and $\beta_{10} = 0$.

• Null and Alternative Hypotheses:

H₀: $\beta_9 = 0$ and $\beta_{10} = 0$ versus H₁: $\beta_9 \neq 0$ and/or $\beta_{10} \neq 0$

• To calculate a **Wald test** of this hypothesis, enter the following **test** commands:

```
test d6exp = 0
test d6expsq = 0, accumulate
```
- <u>Test 8 Model 3</u>: equal marginal probability effects of age_i
- *Proposition:* The marginal probability (and index) effect of age_i is equal for married women with pre-school aged kids and married women with no pre-school aged kids.
- Marginal *probability* effects for *age*_i are:

 $= \phi(\mathbf{x}_{i}^{T}\beta)\beta_{5} \qquad \text{when } dkidslt6_{i} = 0$ $= \phi(\mathbf{x}_{i}^{T}\beta)(\beta_{5} + \beta_{11}) \qquad \text{when } dkidslt6_{i} = 1$

A sufficient condition for the marginal probability effect of age_i to be equal for married women with and without pre-school aged children is $\beta_{11} = 0$.

• Null and Alternative Hypotheses:

 $H_0: \beta_{11} = 0 \qquad \text{versus} \qquad H_1: \beta_{11} \neq 0$

• To calculate a **Wald test** of this hypothesis, enter the following **test** command:

test d6age = 0

• To calculate a **two-tail asymptotic t-test** of H₀ against H₁, enter the following **lincom** command:

```
lincom _b[d6age]
```

The results of this two-tail t-test are identical with those of the previous Wald test.

□ Computing estimates of the marginal *probability* effects of *continuous* explanatory variables in Model 3 -- *dprobit*

Objective

To estimate the *magnitude* of the relationship between a continuous explanatory variable and the conditional probability of married women's labour force participation.

Question addressed is: How large a change in the conditional probability of married women's labour force participation is associated with a one-unit *increase* in the value of a particular continuous explanatory variable, holding constant the values of all other explanatory variables included in the model?

This section demonstrates how to address this second question for each of the continuous explanatory variables $nwifeinc_i$, ed_i , exp_i , and age_i .

Procedure

Recall that the marginal *probability* effect of a *continuous* explanatory variable X_j is proportional to the marginal *index* effect of X_j , where the factor of proportionality is the standard normal p.d.f. evaluated at $x_i^T \beta$:

marginal *probability* effect of $X_j = \phi(x_i^T \beta) \times \text{marginal index}$ effect of X_j

This expression implies that to compute estimates of the marginal *probability* effect of each *continuous* explanatory variable, we must first do two things.

- First, we must compute an estimate $x_i^T \hat{\beta}$ of $x_i^T \beta$.
- Second, we must compute the value of $\phi(\mathbf{x}_i^T \hat{\boldsymbol{\beta}})$, i.e., the value of the standard normal density function evaluated at $\mathbf{x}_i^T \hat{\boldsymbol{\beta}}$.

Which Stata command to use Use the dprobit command with the at(vecname) option

Marginal *probability* effects for married women for whom *dkidslt6_i* = 0

Compute the marginal probability effects of the four *continuous* explanatory variables in Model 3 for married women who have the sample *median* values of nwifeinc_i, ed_i , exp_i , and age_i , and **no pre-schooled aged** children (for whom dkidslt6_i = 0).

First re-estimate Model 3 using the **dprobit** command with the **at**(*vecname*) option. The vector to use in the **at**(*vecname*) option is the vector x^T_{0i} containing the median values of the regressors in Model 3 when dkidslt6_i = 0:

$$\mathbf{x}_{0i}^{T} = (\text{nwifeinc}_{i} \text{ ed}_{i} \exp_{i} \exp_{i}^{2} \text{ age}_{i} 0 0 0 0 0 1)$$

 $= (nwinc50p \ ed50p \ exp50p \ exp50p \ age50p \ 0 \ 0 \ 0 \ 0 \ 1)$

You previously created the vector \mathbf{x}_{0i}^{T} and named it **x0median**. So simply enter the commands:

dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age, at(x0median) ereturn list display e(at)

Recall that the scalar **e**(**a**t) contains the value of $\Phi(\mathbf{x}_{0i}^T\hat{\boldsymbol{\beta}})$ generated by the previous **dprobit** command, where $\Phi(\mathbf{x}_{0i}^T\hat{\boldsymbol{\beta}})$ is an estimate of $\Pr(\inf_i = 1 | \text{dkidslt6}_i = 0)$.

• Second, use the *Stata* statistical function **invnormal()** to save the value of $x_{0i}^{T}\hat{\beta}$. Enter the commands:

```
scalar x0medbhat = invnormal(e(at))
scalar list x0medbhat
```

• Third, use the *Stata* statistical function **normalden**() to save as a scalar the value of $\phi(\mathbf{x}_{0i}^T\hat{\boldsymbol{\beta}})$, which is the standard normal density function (or p.d.f.) evaluated at $\mathbf{x}_{0i}^T\hat{\boldsymbol{\beta}}$. Enter the commands:

```
scalar phix0med = normalden(x0medbhat)
scalar list phix0med
```

These commands save the value of $\phi(\mathbf{x}_{0i}^{\mathrm{T}}\hat{\boldsymbol{\beta}})$ as the scalar **phix0med**.

• Compute the **estimated marginal** *probability* **effect of explanatory variable** *nwifeinc*_i for the *median* **married woman who has** *no pre-school aged children*, which when **dkidslt6**_i = **0** is given by the function:

estimated marginal probability effect of nuifeinc_i = $\phi(x_{0i}^T\hat{\beta})\hat{\beta}_1$

Enter the **lincom** command:

```
lincom phix0med*_b[nwifeinc]
```

• Compute the **estimated marginal** *probability* **effect of explanatory variable** *ed*_{*i*} for the *median* **married woman who has** *no pre-school aged children*, which when **dkidslt6**_{*i*} = **0** is given by the function:

estimated marginal probability effect of $ed_i = \phi(x_{0i}^T \hat{\beta}) \hat{\beta}_2$

Enter the **lincom** command:

lincom phix0med*_b[ed]

• Compute the **estimated marginal** *probability* **effect of explanatory variable** *exp*_{*i*} for the *median* **married woman who has** *no pre-school aged children*, which when **dkidslt6**_i = **0** is given by the function:

estimated marginal probability effect of $\exp_{i} = \phi(x_{0i}^{T}\hat{\beta})(\hat{\beta}_{3} + 2\hat{\beta}_{4}\exp 50p)$

Enter the **lincom** command:

```
lincom phix0med*(_b[exp] + 2*_b[expsq]*exp50p)
```

• Compute the **estimated marginal** *probability* **effect of explanatory variable** *age*_{*i*} for the *median* **married woman who has** *no pre-school aged children*, which when **dkidslt6**_{*i*} = **0** is given by the function:

estimated marginal probability effect of age_i = $\phi(x_{0i}^T \hat{\beta}) \hat{\beta}_5$

Enter the **lincom** command:

lincom phix0med*_b[age]

Marginal *probability* effects for married women for whom $dkidslt6_i = 1$

Compute the marginal probability effects of the four *continuous* explanatory variables in Model 3 for married women who have the sample *median* values of nwifeinc_i, ed_i , exp_i , and age_i , and one or more pre-schooled aged children (for whom dkidslt6_i = 1).

First re-estimate Model 3 using the **dprobit** command with the **at**(*vecname*) option. The vector to use in the **at**(*vecname*) option is the vector x^T_{1i} containing the median values of the regressors in Model 3 when dkidslt6_i = 1:

$$\begin{aligned} \mathbf{x}_{1i}^{T} &= \left(\text{nwifeinc}_{i} \ \text{ed}_{i} \ \exp_{i} \ \exp_{i}^{2} \ \text{age}_{i} \ 1 \ \text{nwifeinc}_{i} \ \text{ed}_{i} \ \exp_{i} \ \exp_{i}^{2} \ \text{age}_{i} \ 1 \right) \\ &= \left(\begin{array}{c} \text{nwinc50p ed50p exp50p expsq50p age50p 1} \\ \text{nwinc50p ed50p exp50p expsq50p age50p 1} \end{array} \right) \end{aligned}$$

You previously created the vector \mathbf{x}_{1i}^{T} and named it **x1median**. So simply enter the commands:

dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age, at(x1median) ereturn list display e(at)

Recall that the scalar **e**(**at**) contains the value of $\Phi(\mathbf{x}_{1i}^T\hat{\boldsymbol{\beta}})$ generated by the previous **dprobit** command, where $\Phi(\mathbf{x}_{1i}^T\hat{\boldsymbol{\beta}})$ is an estimate of $\Pr(\inf_i = 1 | dkidslt6_i = 1)$.

• Second, use the *Stata* statistical function **invnormal()** to save the value of $x_{1i}^{T}\hat{\beta}$. Enter the commands:

```
scalar x1medbhat = invnormal(e(at))
scalar list x1medbhat
```

• Third, use the *Stata* statistical function **normalden**() to save as a scalar the value of $\phi(\mathbf{x}_{1i}^T\hat{\beta})$, which is the standard normal density function (or p.d.f.) evaluated at $\mathbf{x}_{1i}^T\hat{\beta}$. Enter the commands:

```
scalar phix1med = normalden(x1medbhat)
scalar list phix1med
```

These commands save the value of $\phi(\mathbf{x}_{1i}^T\hat{\boldsymbol{\beta}})$ as the scalar **phix1med**.

• Compute the **estimated marginal** *probability* **effect of explanatory variable** *nwifeinc*_{*i*} for the *median* **married woman who has** *one or more pre-school aged children*, which when **dkidslt6**_{*i*} = **1** is given by the function:

estimated marginal probability effect of nuifeinc_i = $\phi(x_{1i}^T\hat{\beta})(\hat{\beta}_1 + \hat{\beta}_7)$

Enter the **lincom** command:

```
lincom phix1med*(_b[nwifeinc] + _b[d6nwinc])
```

• Compute the **estimated marginal** *probability* **effect of explanatory variable** *ed*_{*i*} for the *median* **married woman who has** *one or more pre-school aged children*, which when **dkidslt6**_{*i*} = **1** is given by the function:

estimated marginal probability effect of $\mathbf{ed}_{i} = \phi(\mathbf{x}_{1i}^{T}\hat{\boldsymbol{\beta}})(\hat{\boldsymbol{\beta}}_{2} + \hat{\boldsymbol{\beta}}_{8})$

Enter the **lincom** command:

```
lincom phix1med*(_b[ed] + _b[d6ed])
```

• Compute the **estimated marginal** *probability* **effect of explanatory variable** *exp*_{*i*} for the *median* **married woman who has** *one or more pre-school aged children*, which when **dkidslt6**_i = **1** is given by the function:

estimated marginal probability effect of $\exp_{\mathbf{i}} = \phi(\mathbf{x}_{1\mathbf{i}}^{\mathrm{T}}\hat{\boldsymbol{\beta}})(\hat{\boldsymbol{\beta}}_{3} + \hat{\boldsymbol{\beta}}_{9} + 2(\hat{\boldsymbol{\beta}}_{4} + \hat{\boldsymbol{\beta}}_{10})\exp 50p)$

Enter the **lincom** command:

lincom phix1med*(_b[exp] + _b[d6exp] + 2*(_b[expsq] + _b[d6expsq])*exp50p)

• Compute the **estimated marginal** *probability* **effect of explanatory variable** *age_i* for the *median* **married woman who has** *one or more pre-school aged children*, which when **dkidslt6**_i = **1** is given by the function:

estimated marginal *probability* effect of age_i = $\phi(x_i^T\beta)(\beta_5 + \beta_{11})$

Enter the **lincom** command:

```
lincom phix1med*(_b[age] + _b[d6age])
```

ECON 452*: Stata 11 Tutorial 9 Excerpts (452tutorial09_slides.doc)