Stata 12/13 Tutorial 9

TOPIC: Estimating and Interpreting Probit Models with Stata: Extensions

DATA: mroz.dta (a Stata-format dataset you created in Stata 12/13 Tutorial 8)
TASKS: Stata 12/13 Tutorial 9 is an extension of Stata 12/13 Tutorial 8, and therefore deals with the estimation, testing, and interpretation of probit models for binary dependent variables. In particular, it illustrates how to use a cross-sectional sample of married women in the United States to investigate whether and how the probability of labour force participation differs between two distinct groups of married women, namely married women who have one or more pre-school aged children and married women who have no pre-school aged children. It demonstrates how Stata can be used to conduct an econometric investigation into differences in the conditional probability of labour force participation between these two distinct groups of married women.

- The Stata commands that constitute the primary subject of this tutorial are:
probit Used to compute ML estimates of probit coefficients in probit models of binary dependent variables.
dprobit Used to compute ML estimates of the marginal probability effects of explanatory variables in probit models.
test Used after probit estimation to compute Wald tests of linear coefficient equality restrictions on probit coefficients.
lincom Used after probit estimation to compute and test the marginal effects of individual explanatory variables.
margins Used after probit estimation to compute estimates of the marginal probability effects of both continuous and categorical (binary) explanatory variables.
- The Stata statistical functions used in this tutorial are:
normalden(z) Computes value of the standard normal density function (p.d.f.) for a given value \mathbf{z} of a standard normal random variable.
normal(z) Computes value of the standard normal distribution function (c.d.f.) for a given value \mathbf{z} of a standard normal random variable. invnormal (p) Computes the inverse of the standard normal distribution function; if normal $(z)=p$, then invnormal $(p)=z$.

NOTE: Stata commands are case sensitive. All Stata command names must be typed in the Command window in lower case letters.

Preparing for Your Stata Session

Before beginning your Stata session, use Windows Explorer to copy the Stata-format data set mroz.dta you created in Stata 12/13 Tutorial 8 to the Stata working directory on the C:-drive or D:-drive of the computer at which you are working.

- On the computers in Dunning 350, the default Stata working directory is usually C:\data.
- On the computers in MC B111, the default Stata working directory is usually D: \courses.

If you did not save the Stata-format data set mroz.dta you created in Stata 12 Tutorial 8 , you will have to recreate it from the text-format data file mroz.raw, which can be downloaded from the course web site. Consult Stata 12/13 Tutorial 8 to refresh your memory on how to do this.

Start Your Stata Session

To start your Stata session, double-click on the Stata icon on the Windows desktop. After you double-click the Stata icon, you will see the familiar screen of four Stata windows.

Record Your Stata Session and Stata Commands - log using, cmdlog using

To record your Stata session, including all the Stata commands you enter and the results (output) produced by these commands, make a text-format .log file named 452tutorial9.log. To open (begin) the log file 452tutorial9.log, enter in the Command window:
log using 452tutorial9.log

This command opens a text-format (ASCII) file called 452tutorial9.log in the current Stata working directory.

Note: It is important to include the .log file extension when opening a log file; if you do not, your \log file will be in smcl format, a format that only Stata can read. Once you have opened the 452tutorial9.log file, a copy of all the commands you enter during your Stata session and of all the results they produce is recorded in that 452tutorial9.log file.

To record only the Stata commands you type during your Stata session, use the Stata cmdlog using command. To start (open) the command log file 452tutorial9.txt, enter in the Command window:

```
cmdlog using 452tutorial9
```

This command opens a plain text-format (ASCII) file called 452tutorial9.txt in the current Stata working directory. All commands you enter during your Stata session are recorded in this file.

Loading a Stata-Format Dataset into Stata - use

In Stata 12/13 Tutorial 8, you created the Stata-format dataset mroz.dta. If you saved the dataset mroz.dta on your own flash memory stick and copied this dataset to the Stata working directory before beginning your current Stata session, you can simply use the use command to read or load mroz.dta into memory. If, however, you did not save the Stata-format dataset mroz.dta you created during Stata 12/13 Tutorial 8 and bring it with you on a flash memory stick (or other electronic portable storage device), you will have to repeat most of the section of Stata 12/13 Tutorial 8 that explains how to create a Stata-format dataset from a text-format data file.

- To load, or read, into memory the Stata-format dataset mroz.dta, type in the Command window:

use mroz

This command loads into memory the Stata-format dataset mroz.dta.

Familiarize yourself with the current data set - describe, summarize

- To summarize the contents of the current dataset, use the describe command. Recall from Stata 12/13 Tutorial 1 that the describe command displays a summary of the contents of the current dataset in memory, which in this case is the Stataformat data file mroz.dta. Enter the commands:

```
describe, short
describe
```

- To compute summary statistics for the variables in the current dataset, use the summarize command. Recall from Stata 12/13 Tutorial 1 that the summarize command computes descriptive summary statistics for all numeric variables in the current dataset in memory. Enter the command:

```
summarize
```

- To display summary statistics only for the variables that are used in this tutorial, enter the command:
summarize inlf nwifeinc ed exp expsq age dkidslt6
Note that the variable inlf is a binary variable that takes only the two values 0 and 1 . It is the observed dependent variable in the probit models estimated in this tutorial.

[Two Probit Models of Married Women's Participation: Specification

In this section, we consider two different models of married women's labour force participation. Model 2 was introduced in Stata 12/13 Tutorial 8. Model 3 is a generalization of Model 2: it allows all probit coefficients to differ between (1) married women who currently have one or more pre-school aged children and (2) married women who currently have no pre-school aged children.

The observed dependent variable in both models is the binary variable inlf $\boldsymbol{f}_{\boldsymbol{i}}$ defined as follows:
$\operatorname{inlf}_{\mathrm{i}}=1$ if the i -th married woman is in the employed labour force
$=0$ if the i-th married woman is not in the employed labour force

The explanatory variables in Models 2 and 3 are:
nwifeinc $_{i}=$ non-wife family income of the i-th woman (in thousands of dollars per year);
$\mathrm{ed}_{\mathrm{i}} \quad=$ years of formal education of the i-th woman (in years);
$\exp _{i} \quad=$ years of actual work experience of the i-th woman (in years);
age $_{i} \quad=$ age of the i-th woman (in years);
dkidslt $_{i}=1$ if the i-th woman has one or more children less than 6 years of age, $=0$ otherwise.

Four of these explanatory variables - nwifeinc ${ }_{i}$, ed $_{i}$, exp $_{i}$, and age ${ }_{i}$ - are continuous variables, whereas the fifth explanatory variable - dkidslt 6_{i} - is a binary indicator (dummy) variable.

Note: Refer to Stata 12/13 Tutorial 8 to learn how the indicator variable dkidslt $_{\mathrm{i}}$ is created from the data in the source data file.

Model 2

The probit index function, or regression function, for Model 2 is:

$$
\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \operatorname{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0} \text { dkidslt }_{\mathrm{i}}
$$

Remarks: In Model 2, the binary explanatory variable dkidslt 6_{i} enters only additively; only the intercept coefficient in the index function differs between the two groups of married women, those who have pre-school aged children and those who do not.

- In Model 2, the probit index function for married women who have no pre-school aged children, for whom dkidslt $_{i}=0$, is obtained by setting dkidslt $6_{i}=0$ in the index function for Model 2:

$$
\begin{aligned}
\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } \left.6_{\mathrm{i}}=0\right)}=\right. & \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0} 0 \\
& =\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}
\end{aligned}
$$

- In Model 2, the probit index function for married women who have one or more pre-school aged children, for whom dkidslt $6_{i}=1$, is obtained by setting dkidslt $6_{i}=$ 1 in the index function for Model 2:

$$
\begin{aligned}
\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidsltt }_{\mathrm{i}}=1\right) & =\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \operatorname{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i}+\delta_{0} 1 \\
& =\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}
\end{aligned}
$$

- In Model 2, the marginal index effect of the binary indicator variable dkidslt $\boldsymbol{b}_{\boldsymbol{i}}$ is simply the difference between (1) the index function for married women who currently have one or more pre-school aged children, $\left(x_{i}^{T} \beta \mid \operatorname{dkidslt}_{i}=1\right)$ and (2) the index function for married women who currently have no pre-school aged children, $\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$:

$$
\begin{aligned}
&\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right) \\
&= \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0} \\
& \quad-\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right) \\
&= \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0} \\
&-\beta_{0}-\beta_{1} \text { nwifeinc }_{\mathrm{i}}-\beta_{2} \mathrm{ed}_{\mathrm{i}}-\beta_{3} \exp _{\mathrm{i}}-\beta_{4} \exp _{\mathrm{i}}^{2}-\beta_{5} \text { age }_{\mathrm{i}} \\
&= \delta_{0}
\end{aligned}
$$

- In Model 2, the marginal probability effect of the binary indicator variable $\boldsymbol{d k i d s}_{\boldsymbol{I}} \boldsymbol{f}_{\boldsymbol{i}}$ is the difference between (1) the conditional probability that inl $_{\mathbf{i}}=1$ for married women with one or more pre-school aged children and (2) the conditional probability that inlf $_{\mathrm{i}}=1$ for married women with no pre-school aged children:

$$
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\operatorname{inlf}_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)
$$

where $\Phi(*)$ is the cumulative distribution function (c.d.f.) of the standard normal distribution and

$$
\begin{aligned}
& x_{1 i}^{T}=\left(1 \text { nwifeinc }_{i} \operatorname{ed}_{i} \exp _{i} \exp _{i}^{2} \operatorname{age}_{i} 1\right) \\
& x_{0 i}^{T}=\left(1 \text { nwifeinc }_{i} \operatorname{ed}_{i} \exp _{i} \exp _{\mathrm{i}}^{2} \operatorname{age}_{\mathrm{i}} 0\right) \\
& \beta=\left(\begin{array}{lllllllllll}
\beta_{0} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4} & \beta_{5} & \delta_{0}
\end{array}\right)^{\mathrm{T}} \\
& \mathrm{x}_{\mathrm{if}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \mathrm{age}_{\mathrm{i}}+\delta_{0} \\
& \mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \operatorname{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidsltt }_{\mathrm{i}}=1\right)=\Phi\left(\mathrm{x}_{\mathrm{ij}}^{\mathrm{T}} \beta\right) \\
& =\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}\right) \\
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right) \\
& =\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i}+\delta_{0} 0\right) \\
& =\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{aligned}
$$

Thus, the marginal probability effect of the indicator variable dkidslt $\boldsymbol{f}_{\boldsymbol{i}}$ in Model 2 is

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \left\lvert\,{\text { dkidslt } \left.6_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=} \begin{array}{l}
\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}\right) \\
\\
-\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{array}\right.\right.
\end{aligned}
$$

Model 3

The probit index function, or regression function, for Model 3 is:

$$
\begin{aligned}
\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{0} & +\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\delta_{0}{\text { dkidslt } 6_{\mathrm{i}}}+\delta_{1}{\text { dkidslt } 6_{\mathrm{i}} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { dkidslt }_{\mathrm{i}} \text { ed }_{\mathrm{i}}} \\
& +\delta_{3}{\text { dkidslt } 6_{\mathrm{i}}} \exp _{\mathrm{i}}+\delta_{4} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { dkidslt }_{\mathrm{i}} \text { age }_{\mathrm{i}}
\end{aligned}
$$

Remarks: Model 3 is the full-interaction generalization of Model 2: it interacts the dkidslt 6_{i} indicator variable with all the other regressors in Model 2, and thereby permits all index function coefficients to differ between the two groups of married women distinguished by dkidslt 6_{i}.

- In Model 3, the probit index function for married women who currently have no pre-school aged children, for whom dkidslt $6_{i}=0$, is obtained by setting dkidslt $6_{i}=$ 0 in the index function for Model 3:
$\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=0\right)=\beta_{0}+\beta_{1}$ nwifeinc $_{i}+\beta_{2}$ ed $_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5}$ age $_{i}$
- In Model 3, the probit index function for married women who currently have one or more pre-school aged children, for whom dkidslt $6_{i}=1$, is obtained by setting dkidslt $6_{\mathrm{i}}=1$ in the index function for Model 3:

$$
\begin{aligned}
\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}=1}\right)= & \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
+ & \delta_{0} 1+\delta_{1} 1 \cdot \text { nwifeinc }_{\mathrm{i}}+\delta_{2} 1 \cdot \text { ed }_{\mathrm{i}}+\delta_{3} 1 \cdot \exp _{\mathrm{i}}+\delta_{4} 1 \cdot \exp _{\mathrm{i}}^{2}+\delta_{5} 1 \cdot \text { age }_{\mathrm{i}} \\
= & \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}} \\
= & \left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \text { nwifeinc }_{\mathrm{i}}+\left(\beta_{2}+\delta_{2}\right) \text { ed }_{\mathrm{i}} \\
& +\left(\beta_{3}+\delta_{3}\right) \exp _{\mathrm{i}}+\left(\beta_{4}+\delta_{4}\right) \exp _{\mathrm{i}}^{2}+\left(\beta_{5}+\delta_{5}\right) \text { age }_{\mathrm{i}}
\end{aligned}
$$

- In Model 3, the marginal index effect of the binary indicator variable dkidslt $\boldsymbol{b}_{\boldsymbol{i}}$ is simply the difference between (1) the index function for married women who currently have one or more pre-school aged children, $\left(x_{i}^{T} \beta \mid \operatorname{dkidslt}_{i}=1\right)$ and (2) the index function for married women who currently have no pre-school aged children, $\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$:

$$
\begin{aligned}
&\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right) \\
&= \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
&+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}} \\
& \quad-\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right) \\
&=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
&+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}} \\
& \quad-\beta_{0}-\beta_{1} \text { nwifeinc }_{\mathrm{i}}-\beta_{2} \mathrm{ed}_{\mathrm{i}}-\beta_{3} \exp _{\mathrm{i}}-\beta_{4} \exp _{\mathrm{i}}^{2}-\beta_{5} \text { age }_{\mathrm{i}} \\
&=\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}}
\end{aligned}
$$

- In Model 3, the marginal probability effect of the binary indicator variable $\boldsymbol{d k i d s l t} \boldsymbol{f}_{\boldsymbol{i}}$ is the difference between (1) the conditional probability that inl $_{\mathbf{i}}=1$ for married women with one or more pre-school aged children and (2) the conditional probability that inlf $_{\mathrm{i}}=1$ for married women with no pre-school aged children:

$$
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)
$$

where $\Phi(*)$ is the cumulative distribution function (c.d.f.) of the standard normal distribution and

$$
\begin{aligned}
& X_{1 i}^{T}=\left(1 \text { nwifeinc }_{i} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 1 \text { nwifeinc }_{\mathrm{i}} \operatorname{ed}_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}}\right) \\
& x_{0 i}^{T}=\left(\begin{array}{l}
1 \text { nwifeinc }_{i} \text { ed }_{i} \exp _{i} \exp _{i}^{2} \operatorname{age}_{i} 0000000
\end{array}\right) \\
& \beta=\left(\beta_{0} \beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \delta_{0} \delta_{1} \delta_{2} \delta_{3} \delta_{4} \delta_{5}\right)^{\mathrm{T}} \\
& \mathrm{x}_{1 i}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i} \\
& +\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}} \\
& \mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \operatorname{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right) \\
& =\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}}} \\
& =\Phi\binom{\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \text { nwifeinc }_{\mathrm{i}}+\left(\beta_{2}+\delta_{2}\right) \text { ed }_{\mathrm{i}}}{+\left(\beta_{3}+\delta_{3}\right) \exp _{\mathrm{i}}+\left(\beta_{4}+\delta_{4}\right) \exp _{\mathrm{i}}^{2}+\left(\beta_{5}+\delta_{5}\right) \text { age }_{\mathrm{i}}} \\
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right) \\
& =\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\delta_{0} 0+\delta_{1} 0+\delta_{2} 0+\delta_{3} 0+\delta_{4} 0+\delta_{5} 0} \\
& =\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{i}^{2}+\beta_{5} \text { age }_{i}\right)
\end{aligned}
$$

Thus, the marginal probability effect of the indicator variable dkidslt $\boldsymbol{f}_{\boldsymbol{i}}$ in Model 3 is

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)= \\
& \\
& \qquad \begin{array}{l}
\Phi\binom{\beta_{0}+\beta_{1} \mathrm{nwifeinc}_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}}} \\
\\
\\
\quad-\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{array}
\end{aligned}
$$

Testing the marginal probability effect of the binary explanatory variable dkidslt $_{i}$-- test and lincom

Proposition to be Tested

- Does the conditional probability of labour force participation for married women depend on the presence in the family of one or more dependent children under 6 years of age?
- Is the probability of labour force participation for married women with given values of nwifeinc ${ }_{i}$, ed $_{i}, \exp _{i}$, and age ${ }_{i}$ who currently have one or more pre-school aged children equal to the probability of labour force participation for married women
with the same values of nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$ who currently have no preschool aged children?
- Is it true that

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right. \text {, nwifeinc } \\
& \left.\quad=\operatorname{Pd}, \text { ed }_{\mathrm{i}}, \exp _{\mathrm{i}}, \text { age }_{\mathrm{i}}\right) \\
& \quad=\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0, \text { nwifeinc }_{\mathrm{i}}, \text { ed }_{\mathrm{i}}, \exp _{\mathrm{i}}, \text { age }_{\mathrm{i}}\right) \text { ? }
\end{aligned}
$$

Null and Alternative Hypotheses: General Formulation

The null hypothesis in general is:

$$
\mathrm{H}_{0}: \quad \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1, \ldots\right)=\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \operatorname{dkidslt}_{\mathrm{i}}=0, \ldots\right)
$$

The alternative hypothesis in general is:

$$
\mathrm{H}_{1}: \quad \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidsltt }_{\mathrm{i}}=1, \ldots\right) \neq \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \operatorname{dkidsltt}_{\mathrm{i}}=0, \ldots\right)
$$

Null and Alternative Hypotheses: Model 2

The null hypothesis in general is:

$$
\mathrm{H}_{0}: \quad \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1, \ldots\right)=\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0, \ldots\right)
$$

For Model 2,

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1, \ldots\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right) \\
\quad=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}\right)
\end{array} \\
& \begin{array}{r}
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0, \ldots\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right) \\
\quad=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{array}
\end{aligned}
$$

These two probabilities are equal if the exclusion restriction $\delta_{0}=0$ is true. In other words, a sufficient condition for these two probabilities to be equal is the exclusion restriction $\delta_{0}=0$.

The null and alternative hypotheses for Model $\mathbf{2}$ are therefore:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \delta_{0}=0 \\
\mathrm{H}_{1}: & \delta_{0} \neq 0
\end{array}
$$

Important Point: A test of the null hypothesis that the marginal probability effect of pre-school aged children is zero is equivalent to a test of the null hypothesis that the marginal index effect of pre-school aged children is zero.

- Marginal probability effect of pre-school aged children equals zero if

$$
\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \operatorname{dkidslt}_{\mathrm{i}}=1\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \operatorname{dkidslt}_{\mathrm{i}}=0\right) .
$$

In Model 2,

$$
\begin{aligned}
& \begin{aligned}
& \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}}=1\right) \\
&=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}+\delta_{0}\right)
\end{aligned} \\
& \begin{aligned}
& \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{i}}=0\right) \\
&=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{aligned}
\end{aligned}
$$

Question: What coefficient restriction(s) are sufficient to make these two probabilities equal for any given values of nwifeinc $c_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$?

Answer: By inspection - i.e., by comparing the function $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \mathrm{dkidslt}_{\mathrm{i}}=1\right)$ and
 $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=1\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{i}}^{\mathrm{i}}=0\right)$ in Model 2 is the single coefficient exclusion restriction $\delta_{0}=0$.

- Marginal index effect of pre-school aged children equals zero if

$$
\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}=1}\right)=\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}=0}=0 .\right.
$$

In Model 2,

$$
\begin{aligned}
& \left(x_{i}^{\mathrm{T}} \beta \mid \text { dkidslt }_{i}=1\right)=\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i}+\delta_{0} \\
& \left(x_{i}^{\mathrm{T}} \beta \mid \text { dkidsltt }_{i}=0\right)=\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i}
\end{aligned}
$$

Question: What coefficient restriction(s) are sufficient to make these two index functions equal for any given values of nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$?

Answer: By inspection - i.e., by comparing the index function $\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \operatorname{dkidslt}_{\mathrm{i}}=1\right)$ and the index function $\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=0\right)$ - we can see that a sufficient condition for $\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=1\right)=\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=0\right)$ in Model 2 is the single coefficient exclusion restriction $\delta_{0}=0$.

- Result: The single coefficient exclusion restriction $\delta_{0}=0$ is sufficient to make the both the marginal probability effect and the marginal index effect of pre-school aged children equal to zero in Model 2.
- First, compute ML estimates of probit Model 2 and display the full set of saved results. Enter the following commands:
probit inlf nwifeinc ed exp expsq age dkidslt6 ereturn list
- To calculate a Wald test of H_{0} against H_{1} and the p-value for the calculated Wstatistic, enter the following test, return list and display commands:

```
test dkidslt6 or test dkidslt6 = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following lincom, return list and display commands:

```
lincom _b[dkidslt6]
return list
display r(estimate)/r(se)
```

Compare the results of this two-tail t-test with those of the previous Wald test. You should be able to explain why the two tests are equivalent. Note that this lincom command merely replicates the test statistic and p-value that are displayed in the output of the probit command for the regressor dkidsltt.

Null and Alternative Hypotheses: Model 3

The null hypothesis in general is:

$$
\mathrm{H}_{0}: \quad \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \operatorname{dkidslt}_{\mathrm{i}}=1, \ldots\right)=\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \operatorname{dkidslt}_{\mathrm{i}}=0, \ldots\right)
$$

For Model 3,

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right) \\
& =\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{i}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \text { nwifeinc }_{i}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}}} \\
& \operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right) \\
& =\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{aligned}
$$

These two probabilities are equal if the six exclusion restrictions $\delta_{0}=\delta_{1}=\delta_{2}=\delta_{3}=\delta_{4}$ $=\delta_{5}=0$ are true. In other words, a sufficient condition for these two probabilities to be equal is the set of six coefficient exclusion restrictions $\delta_{j}=0$ for all $\mathrm{j}=0,1, \ldots, 5$.

The null and alternative hypotheses for Model $\mathbf{3}$ are therefore:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \delta_{\mathrm{j}}=0 \quad \forall \mathrm{j}=0,1,2,3,4,5 \\
\Rightarrow & \delta_{0}=0 \text { and } \delta_{1}=0 \text { and } \delta_{2}=0 \text { and } \delta_{3}=0 \text { and } \delta_{4}=0 \text { and } \delta_{5}=0
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{H}_{1}: & \delta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=0,1,2,3,4,5 \\
\Rightarrow \quad & \delta_{0} \neq 0 \text { and/or } \delta_{1} \neq 0 \text { and/or } \delta_{2} \neq 0 \text { and/or } \delta_{3} \neq 0 \text { and/or } \\
& \delta_{4} \neq 0 \text { and/or } \delta_{5} \neq 0
\end{array}
$$

Important Point: A test of the null hypothesis that the marginal probability effect of pre-school aged children is zero is equivalent to a test of the null hypothesis that the marginal index effect of pre-school aged children is zero.

- Marginal probability effect of pre-school aged children equals zero if

$\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{i}}=1\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$.

In Model 3,

$$
\begin{aligned}
& \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=1\right) \\
& \qquad=\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \text { nwifeinc }_{i}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}}} \\
& \begin{array}{r}
\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right) \\
\quad=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{array}
\end{aligned}
$$

Question: What coefficient restriction(s) are sufficient to make these two probabilities equal for any given values of nwifeinc ${ }_{i}, \operatorname{ed}_{i}$, $\exp _{i}$, and age ${ }_{i}$?

Answer: By inspection - i.e., by comparing the function $\Phi\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=1\right)$ and the function $\Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$ - we can see that a sufficient condition for $\Phi\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=1\right)=\Phi\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=0\right)$ in Model 3 is the set of six coefficient exclusion restrictions $\delta_{0}=\delta_{1}=\delta_{2}=\delta_{3}=\delta_{4}=\delta_{5}=0$.

- Marginal index effect of pre-school aged children equals zero if

$$
\left(x_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{\mathrm{i}}}=1\right)=\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \text { dkidslt }_{\mathrm{i}}=0\right)
$$

In Model 3,

$$
\begin{aligned}
&\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } \left.6_{\mathrm{i}}=1\right)=} \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right. \\
&+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { ed }_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}}
\end{aligned}
$$

$\left(x_{i}^{T} \beta \mid\right.$ dkidslt $\left._{i}=0\right)=\beta_{0}+\beta_{1}$ nwifeinc $_{i}+\beta_{2}$ ed $_{i}+\beta_{3} \exp _{i}+\beta_{4} \exp _{i}^{2}+\beta_{5}$ age $_{i}$
Question: What coefficient restriction(s) are sufficient to make these two index functions equal for any given values of nwifeinc ${ }_{i}$, $\operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$?

Answer: By inspection - i.e., by comparing the index function ($\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid \operatorname{dkidslt}_{\mathrm{i}}=1$) and the index function $\left(x_{i}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{i}}=0\right)$ - we can see that a sufficient condition for $\left(x_{i}^{\mathrm{T}} \beta \mid{\text { dkidslt } 6_{i}}=1\right)=\left(x_{i}^{\mathrm{T}} \beta \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$ in Model 3 is the set of six coefficient exclusion restrictions $\delta_{0}=\delta_{1}=\delta_{2}=\delta_{3}=\delta_{4}=\delta_{5}=0$.

- Result: The six coefficient exclusion restrictions $\delta_{0}=\delta_{1}=\delta_{2}=\delta_{3}=\delta_{4}=\delta_{5}=0$ are sufficient to make the both the marginal probability effect and the marginal index effect of pre-school aged children equal to zero in Model 3.
- Before estimating Model 3 , it is necessary to create the $\boldsymbol{d k i d s l t} \boldsymbol{\sigma}_{\boldsymbol{i}}$ interaction variables. Enter the following generate commands:

```
generate d6nwinc = dkidslt6*nwifeinc
generate d6ed = dkidslt6*ed
generate d6exp = dkidslt6*exp
generate d6expsq = dkidslt6*expsq
generate d6age = dkidslt6*age
summarize d6nwinc d6ed d6exp d6expsq d6age
```

- Next, compute ML estimates of probit Model 3 and display the full set of saved results. Enter the following commands:
probit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age ereturn list
- To calculate a Wald test of H_{0} against H_{1} and the p-value for the calculated Wstatistic, enter the following test and return list commands:
test dkidslt6 d6nwinc d6ed d6exp d6expsq d6age return list
- A second hypothesis test you should perform on Model 3 is a test of the null hypothesis that all slope coefficient differences between married women who have one or more pre-school aged children and married women who have no pre-school aged children equal zero. The null and alternative hypotheses are:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \delta_{\mathrm{j}}=0 \quad \forall \mathrm{j}=1,2,3,4,5 \\
\Rightarrow & \delta_{1}=0 \text { and } \delta_{2}=0 \text { and } \delta_{3}=0 \text { and } \delta_{4}=0 \text { and } \delta_{5}=0 \\
\mathrm{H}_{1}: & \delta_{\mathrm{j}} \neq 0 \quad \mathrm{j}=1,2,3,4,5 \\
\Rightarrow & \delta_{1} \neq 0 \text { and/or } \delta_{2} \neq 0 \text { and/or } \delta_{3} \neq 0 \text { and/or } \delta_{4} \neq 0 \text { and/or } \delta_{5} \neq 0
\end{array}
$$

Note that the null hypothesis H_{0} implies Model 2, whereas the alternative hypothesis H_{1} implies Model 3. Enter the test command:

test d6nwinc d6ed d6exp d6expsq d6age

Based on the outcome of this test, would you retain the null hypothesis at the 10 percent significance level? Would you retain the null hypothesis at the 20 percent significance level?

Interpreting the coefficient estimates in full-interaction Model 3

Full-interaction Model 3 estimates two distinct sets of probit coefficients: (1) the probit coefficients for married women who have no pre-school aged children (for whom dkidslt $_{i}=0$); and (2) the probit coefficients for married women who have one or more pre-school aged children (for whom dkidslt6 $\mathrm{i}_{\mathrm{i}}=1$).

- Recall that the probit index function for Model 3 is:

$$
\begin{aligned}
\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{0} & +\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\delta_{0} \text { dkidslt }_{\mathrm{i}}+\delta_{1} \text { dkidslt }_{\mathrm{i}} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { dkidslt }_{\mathrm{i}} \text { ed }_{\mathrm{i}} \\
& +\delta_{3} \text { dkidslt } 6_{\mathrm{i}} \exp _{\mathrm{i}}+\delta_{4} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { dkidslt }_{\mathrm{i}} \text { age }_{\mathrm{i}}
\end{aligned}
$$

- The probit index function for married women who have no pre-school aged children (for whom dkidslt $6_{i}=0$) is obtained by setting the indicator variable dkidslt $_{\mathrm{i}}=0$ in the probit index function for Model 3:

$$
\left(x_{i}^{\mathrm{T}} \beta \mid \text { dkidsltc }_{\mathrm{i}}=0\right)=\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{i}
$$

Implication: The probit coefficient estimates for married women who have no preschool aged children (for whom dkidslt $6_{i}=0$) are given directly by the coefficient estimates of the first six terms in the above index function. In particular, for married women who currently have no pre-school aged children:
$\beta_{0}=$ the intercept coefficient for women for whom dkidsltt $_{i}=0$
$\beta_{1}=$ the slope coefficient of nwifeinc ${ }_{i}$ for women for whom dkidsltt $6_{i}=0$
$\beta_{2}=$ the slope coefficient of ed_{i} for women for whom dkidsltt $_{\mathrm{i}}=0$
$\beta_{3}=$ the slope coefficient of $\exp _{i}$ for women for whom dkidslt $6_{i}=0$
$\beta_{4}=$ the slope coefficient of $\exp _{i}^{2}$ for women for whom dkidslt $6_{i}=0$
$\beta_{5}=$ the slope coefficient of age ${ }_{i}$ for women for whom dkidsltt $6_{i}=0$.

- The probit index function for married women who currently have one or more pre-school aged children (for whom dkidslt $_{i}=1$) is obtained by setting the indicator variable dkidslt $_{i}=1$ in the probit index function for Model 3:

$$
\begin{aligned}
&\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \mid{\text { dkidslt } \left.6_{\mathrm{i}}=1\right)=} \beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right. \\
&+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}}
\end{aligned}
$$

Implication: The probit coefficient estimates for married women who have one or more pre-school aged children (for whom dkidslt $_{i}=1$) are obtained from Model 3 by summing pairs of coefficient estimates. In particular, for married women who have one or more pre-school aged children:
$\beta_{0}+\delta_{0}=$ the intercept coefficient for women for whom dkidsltt $6_{i}=1$
$\beta_{1}+\delta_{1}=$ the slope coefficient of nwifeinc ${ }_{i}$ for women for whom dkidslt $6_{i}=1$
$\beta_{2}+\delta_{2}=$ the slope coefficient of ed_{i} for women for whom dkidslt $6_{\mathrm{i}}=1$
$\beta_{3}+\delta_{3}=$ the slope coefficient of $\exp _{\mathrm{i}}$ for women for whom dkidslt $6_{i}=1$
$\beta_{4}+\delta_{4}=$ the slope coefficient of $\exp _{i}^{2}$ for women for whom dkidsltt $6_{i}=1$
$\beta_{5}+\delta_{5}=$ the slope coefficient of age i_{i} for women for whom dkidsltt $\mathrm{C}_{\mathrm{i}}=1$.

- To compute from Model 3 the probit coefficient estimates, t-ratios and p-values for those married women who have one or more pre-school aged children (for whom dkidslt $6_{i}=1$), enter the following lincom commands:

```
lincom _b[_cons] + _b[dkidslt6]
lincom _b[nwifeinc] + _b[d6nwinc]
lincom _b[ed] + _b[d6ed]
lincom _b[exp] + _b[d6exp]
lincom _b[expsq] + _b[d6expsq]
lincom _b[age] + _b[d6age]
```

- Use the estimates of Model 3 to compute a test of the joint significance of all the probit slope coefficient estimates for those married women who have one or more pre-school aged children (for whom dkidslt $6_{i}=1$).

The null and alternative hypotheses are:

$$
\begin{aligned}
\mathrm{H}_{0}: & \beta_{1}+\delta_{1}=0 \text { and } \beta_{2}+\delta_{2}=0 \text { and } \beta_{3}+\delta_{3}=0 \\
& \text { and } \beta_{4}+\delta_{4}=0 \text { and } \beta_{5}+\delta_{5}=0
\end{aligned}
$$

$$
\mathrm{H}_{1}: \quad \beta_{1}+\delta_{1} \neq 0 \text { and/or } \beta_{2}+\delta_{2} \neq 0 \text { and/or } \beta_{3}+\delta_{3} \neq 0
$$

$$
\text { and/or } \beta_{4}+\delta_{4} \neq 0 \text { and/or } \beta_{5}+\delta_{5} \neq 0
$$

Enter the following series of linked test commands, noting the use of the notest and accumulate options on the test commands:

```
test nwifeinc + d6nwinc = 0, notest
test ed + d6ed = 0, notest accumulate
test exp + d6exp = 0, notest accumulate
test expsq + d6expsq = 0, notest accumulate
test age + d6age = 0, accumulate
```

- Now use the estimates of Model 3 to compute a test of the joint significance of all the probit slope coefficient estimates for those married women who have no pre-

The null and alternative hypotheses are:
$\mathrm{H}_{0}: \quad \beta_{1}=0$ and $\beta_{2}=0$ and $\beta_{3}=0$ and $\beta_{4}=0$ and $\beta_{5}=0$
$\mathrm{H}_{1}: \quad \beta_{1} \neq 0$ and/or $\beta_{2} \neq 0$ and/or $\beta_{3} \neq 0$ and/or $\beta_{4} \neq 0$ and/or $\beta_{5} \neq 0$

Enter the following test command:
test nwifeinc ed exp expsq age

- Computing the marginal probability effect of the binary explanatory variable dkidslt 6_{i} in Model 3 - dprobit with at(vecname) option

This section demonstrates how to use the dprobit command with the at(vecname) option to compute the marginal probability effect of the dummy variable dkidslt $\boldsymbol{b}_{\boldsymbol{i}}$ in Model 3 for married women who have the sample median values of the explanatory variables nwifeinc $_{i}$, ed ${ }_{i}, \exp _{i}$, and age ${ }_{i}$.

Recall that the marginal probability effect of the dummy variable dkidslt \boldsymbol{f}_{i} in Model 3 is given by:

$$
\begin{gathered}
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidslt }_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right) \\
\\
\qquad\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}}} \\
-\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{i}+\beta_{2} \text { ed }_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
\end{gathered}
$$

The procedure for this computation consists of three steps.
Step 1: Compute an estimate of the probability of labour force participation for married women with the specified characteristics who currently have one or more dependent children under 6 years of age, for whom dkidslt $\boldsymbol{i}_{\mathbf{i}}=1$: i.e., compute an estimate of

$$
\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)=\Phi\binom{\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}}{+\delta_{0}+\delta_{1} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \mathrm{ed}_{\mathrm{i}}+\delta_{3} \exp _{\mathrm{i}}+\delta_{4} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { age }_{\mathrm{i}}}
$$

Step 2: Compute an estimate of the probability of labour force participation for married women with the specified characteristics who currently have no dependent children under $\mathbf{6}$ years of age, for whom dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{0}$: i.e., compute an estimate of

$$
\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)=\Phi\left(\beta_{0}+\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}}\right)
$$

Step 3: Compute an estimate of the difference $\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)$, which is the marginal probability effect of having one or more pre-school aged children for married women who have the specified characteristics.

- Compute (or select) the values of the explanatory variables at which you wish to compute the marginal probability effect of the binary variable dkidslt 6_{i}. For this purpose, we will use the pooled sample medians of the explanatory variables nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$. Enter the following commands:

```
summarize nwifeinc, detail
return list
scalar nwinc50p = r(p50)
summarize ed, detail
scalar ed50p = r(p50)
summarize exp, detail
scalar exp50p = r(p50)
scalar exp50psq = exp50p^2
summarize age, detail
scalar age50p = r(p50)
scalar list nwinc50p ed50p exp50p exp50psq age50p
```

The sample median values of the explanatory variables computed by these commands are as follows:

nwinc50p	$=17.700001$	
ed50p	$=$	12
exp50p	$=$	9
exp50psq	$=$	81
age50p	$=$	43

- Step 1: Use the dprobit command with the at(vecname) option to compute the marginal probability effects in Model 3 for median married women whose non-wife family income is $\$ 17,700$ per year (nwifeinc ${ }_{i}=17.700$), who have 12 years of formal education $\left(\mathrm{ed}_{\mathrm{i}}=12\right)$ and 9 years of actual work experience $\left(\exp _{\mathrm{i}}=9, \operatorname{expsq}_{\mathrm{i}}=\right.$ $81)$, who are 43 years of age ($\mathrm{age}_{\mathrm{i}}=43$), and who have one or more dependent children under 6 years of age (dkidslt6 = 1). You will first have to create the vector $\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}}$ containing the median values of the regressors in Model 3 when dkidslt 6_{i} $=1$, since the dprobit command does not permit number lists in the at() option.

Remember that Stata places the equation intercept coefficient β_{0} in the last, not the first, element of the probit coefficient vector β, so that the coefficient vector β for Model 3 is written in Stata format as:

$$
\beta=\left(\beta_{1} \beta_{2} \beta_{3} \beta_{4} \beta_{5} \delta_{0} \delta_{1} \delta_{2} \delta_{3} \delta_{4} \delta_{5} \beta_{0}\right)^{\mathrm{T}}
$$

In Stata format, the vector $\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}}$ for Model 3 thus takes the form:

$$
\begin{aligned}
x_{1 i}^{T} & =\left(\text { nwifeinc }_{i} \text { ed }_{i} \exp _{i} \exp _{i}^{2} \operatorname{age}_{i} 1 \text { nwifeinc }_{i} \operatorname{ed}_{i} \exp _{i} \exp _{i}^{2} \operatorname{age}_{i} 1\right) \\
& =\binom{\text { nwinc50p ed50p exp50p exp50psq age50p 1 }}{\text { nwinc50p ed50p exp50p exp50psq age50p 1 }}
\end{aligned}
$$

Enter the following commands:

```
matrix x1median = (nwinc50p, ed50p, exp50p, exp50psq, age50p, 1,
```

nwinc50p, ed50p, exp50p, exp50psq, age50p, 1)
matrix list x1median
dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age, at(x1median)
ereturn list
Display and save the value of $\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ generated by the above dprobit command, where $\Phi\left(\mathrm{x}_{1 i}^{T} \hat{\beta}\right)$ is an estimate of $\operatorname{Pr}\left(\right.$ inlf $_{\mathrm{i}}=1 \mid$ dkidsltt $\left._{i}=1\right)$. The value of $\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ is temporarily stored as the scalar $\mathbf{e}(a t)$ following execution of the above dprobit command. Enter the commands:

```
display e(at)
scalar PHIx1med = e(at)
scalar list PHIx1med
```

These commands save the value of $\Phi\left(\mathrm{x}_{1 i}^{\mathrm{T}} \hat{\beta}\right)$ as the scalar PHIx1med.

- Step 2: Now use the dprobit command with the at(vecname) option to compute the marginal probability effects in Model 3 for median married women whose non-wife family income is $\$ 17,700$ per year (nwifeinc $_{i}=17.700$), who have 12 years of formal education $\left(\mathrm{ed}_{\mathrm{i}}=12\right)$ and 9 years of actual work experience $\left(\exp _{\mathrm{i}}=9\right.$, $\operatorname{expsq}_{\mathrm{i}}=$ 81), who are 43 years of age $\left(\mathrm{age}_{\mathrm{i}}=43\right)$, and who have no dependent children under 6 years of age (dkidslt6 = 0). Again, you will first have to create the vector $x_{0 i}^{T}$ containing the median values of the regressors in Model 3 when dkidslt6 ${ }_{i}=0$.

In Stata format, the vector $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}}$ for Model 3 takes the form:

$$
\begin{aligned}
\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} & =\left(\text { nwifeinc }_{\mathrm{i}} \text { ed }_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 00000001\right) \\
& =(\text { nwinc50p ed50p exp50p exp50psq age50p } 00000001)
\end{aligned}
$$

Enter the following commands:
matrix x0median $=$ (nwinc50p, ed50p, exp50p, exp50psq, age50p, 0, $0,0,0,0,0,1)$
matrix list x0median
dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age, at(x0median)
ereturn list

Display and save the value of $\Phi\left(x_{0 i}^{T} \hat{\beta}\right)$ generated by the above dprobit command, where $\Phi\left(x_{0 i}^{T} \hat{\beta}\right)$ is an estimate of $\operatorname{Pr}\left(\operatorname{inlf}_{i}=1 \mid\right.$ dkidslt $\left._{i}=0\right)$. The value of $\Phi\left(x_{0 i}^{T} \hat{\beta}\right)$ is temporarily stored as the scalar $\mathbf{e}($ at) following execution of the above dprobit command. Enter the commands:

```
display e(at)
scalar PHIx0med = e(at)
scalar list PHIx0med
```

These commands save the value of $\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ as the scalar PHIx0med.

- Step 3: Finally, compute the estimate of the difference $\Phi\left(\mathrm{x}_{\mathrm{i} i}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)$, which is the marginal probability effect having one or more dependent children under 6 years of age for married women who have the specified characteristics. Enter the commands:

```
scalar diffPHImed = PHIx1med - PHIx0med
scalar list PHIx1med PHIx0med diffPHImed
```

The value of the scalar diffPHImed is the estimate for Model 3 of

$$
\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \text { dkidsltt }_{\mathrm{i}}=1\right)-\operatorname{Pr}\left(\text { inlf }_{\mathrm{i}}=1 \mid \operatorname{dkidslt}_{\mathrm{i}}=0\right)=\Phi\left(\mathrm{x}_{\mathrm{di}}^{\mathrm{T}} \beta\right)-\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \beta\right)
$$

i.e., of the marginal probability effect of having one or more dependent children under 6 years of age for married women who have the median characteristics of women in the full sample.

. Marginal probability effects of continuous explanatory variables in Model 3 -dprobit

Background

- The marginal probability effects of continuous explanatory variables in probit models are the partial derivatives of the standard normal c.d.f. $\Phi\left(x_{i}^{T} \beta\right)$ with respect to the individual explanatory variables:
marginal probability effect of $\mathbf{X}_{\mathbf{j}}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{X}_{\mathrm{ij}}}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta} \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{X}_{\mathrm{ij}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{X}_{\mathrm{ij}}}$
where

$$
\begin{aligned}
& \phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)=\text { the value of the standard normal p.d.f. evaluated at } \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta \\
& \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{X}_{\mathrm{ij}}}=\text { the marginal index effect of the continuous variable } \mathrm{X}_{\mathrm{j}} .
\end{aligned}
$$

- Recall that the probit index function for Model 3 is:

$$
\begin{aligned}
\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta=\beta_{0} & +\beta_{1} \text { nwifeinc }_{\mathrm{i}}+\beta_{2} \mathrm{ed}_{\mathrm{i}}+\beta_{3} \exp _{\mathrm{i}}+\beta_{4} \exp _{\mathrm{i}}^{2}+\beta_{5} \text { age }_{\mathrm{i}} \\
& +\delta_{0}{\text { dkidslt } 6_{\mathrm{i}}}+\delta_{1}{\text { dkidslt } 6_{\mathrm{i}} \text { nwifeinc }_{\mathrm{i}}+\delta_{2} \text { dkidslt }_{\mathrm{i}} \text { ed }_{\mathrm{i}}} \\
& +\delta_{3}{\text { dkidslt } 6_{\mathrm{i}}} \exp _{\mathrm{i}}+\delta_{4} \text { dkidslt }_{\mathrm{i}} \exp _{\mathrm{i}}^{2}+\delta_{5} \text { dkidslt }_{\mathrm{i}} \text { age }_{\mathrm{i}}
\end{aligned}
$$

Marginal Index Effects of Continuous Explanatory Variables - Model 3

- For Model 3, there are two sets of marginal index effects, one for women who currently have no pre-school aged children (for whom dkidslt $6_{i}=0$), and the other for women who currently have one or more pre-school aged children (for whom dkidslt $6_{i}=1$).
- The marginal index effects of the continuous explanatory variables in Model 3 are obtained by partially differentiating the index function $x_{i}^{T} \beta$ for Model 3 with respect to each of the four continuous explanatory variables nwifeinc ${ }_{i}$, ed ${ }_{i}, \exp _{i}$, and age ${ }_{i}$:

1. marginal index effect of nwifeinc ${ }_{i}=\frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \text { nwifeinc }_{\mathrm{i}}}=\beta_{1}+\delta_{1}$ dkidslt $_{\mathrm{i}}$
2. marginal index effect of ed ${ }_{i}=\frac{\partial x_{i}^{T} \beta}{\partial \mathrm{ed}_{\mathrm{i}}}=\beta_{2}+\delta_{2} \mathrm{dkidslt}_{\mathrm{i}}$
3. marginal index effect of $\exp _{i}=\frac{\partial x_{i}^{T} \beta}{\partial \exp _{i}}$

$$
=\beta_{3}+2 \beta_{4} \exp _{\mathrm{i}}+\left(\delta_{3}+2 \delta_{4} \exp _{\mathrm{i}}\right) \mathrm{dkidslt}_{\mathrm{i}}
$$

4. marginal index effect of age ${ }_{i}=\frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \text { age }_{\mathrm{i}}}=\beta_{5}+\delta_{5} \mathrm{dkidslt}_{\mathrm{i}}$
$\underline{\text { Note: }}$ Each of these marginal index effects differs depending on whether dkidslt $6_{\mathrm{i}}=$ 0 or dkidslt $6_{i}=1$.

- The marginal index effects for married women who currently have no preschool aged children are obtained by setting the indicator variable dkidslt $6_{i}=0$ in expressions 1 to 4 above:

5. marginal index effect of nwifeinc $\mathrm{c}_{\mathrm{i}}=\frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \text { nwifeinc }_{\mathrm{i}}}=\beta_{1}$
6. marginal index effect of ed ${ }_{i}=\frac{\partial x_{i}^{\mathrm{T}} \beta}{\partial \mathrm{ed}_{\mathrm{i}}}=\beta_{2}$
7. marginal index effect of $\exp _{\mathrm{i}}=\frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \exp _{\mathrm{i}}}=\beta_{3}+2 \beta_{4} \exp _{\mathrm{i}}$
8. marginal index effect of age ${ }_{i}=\frac{\partial x_{i}^{T} \beta}{\partial \text { age }_{i}}=\beta_{5}$

- The marginal index effects for married women who currently have one or more pre-school aged children are obtained by setting the indicator variable dkidslt $6_{i}=1$ in expressions 1 to 4 above:

9. marginal index effect of nwifeinc $\mathrm{c}_{\mathrm{i}}=\frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \text { nwifeinc }_{\mathrm{i}}}=\beta_{1}+\delta_{1}$
10. marginal index effect of ed ${ }_{i}=\frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{ed}_{\mathrm{i}}}=\beta_{2}+\delta_{2}$
11. marginal index effect of $\exp _{\mathrm{i}}=\frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \exp _{\mathrm{i}}}=\beta_{3}+2 \beta_{4} \exp _{\mathrm{i}}+\left(\delta_{3}+2 \delta_{4} \exp _{\mathrm{i}}\right)$

$$
=\beta_{3}+\delta_{3}+2\left(\beta_{4}+\delta_{4}\right) \exp _{i}
$$

12. marginal index effect of age ${ }_{i}=\frac{\partial x_{i}^{\mathrm{T}} \beta}{\partial \text { age }_{i}}=\beta_{5}+\delta_{5}$

Marginal Probability Effects of Continuous Explanatory Variables - Model 3

- The marginal probability effects of the four continuous explanatory variables in Model 3 are:

1. marginal probability effect of nwifeinc ${ }_{i}=\frac{\partial \Phi\left(x_{i}^{T} \beta\right)}{\partial \text { nwifeinc }_{i}}=\phi\left(x_{i}^{T} \beta\right) \frac{\partial x_{i}^{T} \beta}{\partial \text { nwifeinc }_{i}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{1}+\delta_{1} \mathrm{dkidslt}_{\mathrm{i}}\right)
$$

2. marginal probability effect of ed ${ }_{i}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{ed}_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{ed}_{\mathrm{i}}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{2}+\delta_{2} \text { dkidsltt } 6_{\mathrm{i}}\right)
$$

3. marginal probability effect of $\exp _{i}=\frac{\partial \Phi\left(x_{i}^{T} \beta\right)}{\partial \exp _{i}}=\phi\left(x_{i}^{T} \beta\right) \frac{\partial x_{i}^{T} \beta}{\partial \exp _{i}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{3}+2 \beta_{4} \exp _{\mathrm{i}}+\left(\delta_{3}+2 \delta_{4} \exp _{\mathrm{i}}\right) \mathrm{dkidslt}_{\mathrm{i}}\right)
$$

4. marginal probability effect of age ${ }_{i}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{age}_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{age}_{\mathrm{i}}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{5}+\delta_{5} \mathrm{dkidslt} 6_{\mathrm{i}}\right)
$$

Notes: There are three features of these marginal probability effects for Model 3 that you should recognize.

1. Each of these marginal probability effects differs depending on whether dkidslt 6_{i} $=0$ or dkidslt $\mathrm{i}_{\mathrm{i}}=1$.
2. The marginal probability effect of a continuous explanatory variable X_{j} is proportional to the marginal index effect of X_{j}, where the factor of proportionality is the standard normal p.d.f. at $x_{i}^{T} \beta$:
marginal probability effect of $\mathbf{X}_{\mathbf{j}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \times$ marginal index effect of $\mathbf{X}_{\mathbf{j}}$
3. Estimation of the marginal probability effects of a continuous explanatory variable X_{j} requires one to choose a specific vector of regressor values X_{i}^{T}. Common choices for $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ are the sample mean and sample median values of the regressors.

- The marginal probability effects for married women who currently have no preschool aged children are obtained by setting the indicator variable dkidslt $6_{i}=0$ in expressions 1 to 4 above:

5. marginal probability effect of nwifeinc $\mathrm{c}_{\mathrm{i}}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \text { nwifeinc }_{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \text { nwifeinc }_{i}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \beta_{1}
$$

6. marginal probability effect of ed ${ }_{i}=\frac{\partial \Phi\left(x_{i}^{\mathrm{T}} \beta\right)}{\partial \mathrm{ed}_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{i}^{\mathrm{T}} \beta}{\partial \mathrm{ed}_{\mathrm{i}}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \beta_{2}
$$

7. marginal probability effect of $\exp _{\mathrm{i}}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \exp _{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \exp _{\mathrm{i}}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{3}+2 \beta_{4} \exp _{\mathrm{i}}\right)
$$

8. marginal probability effect of age ${ }_{i}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{age}_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{age}_{\mathrm{i}}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \beta_{5}
$$

- The marginal probability effects for married women who currently have one or more pre-school aged children are obtained by setting the indicator variable dkidslt $_{i}=1$ in expressions 1 to 4 above:

9. marginal probability effect of nwifeinc $\mathrm{c}_{\mathrm{i}}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \text { nwifeinc }_{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{i}^{\mathrm{T}} \beta}{\partial \text { nwifeinc }_{i}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{1}+\delta_{1}\right)
$$

10. marginal probability effect of $\mathrm{ed}_{\mathrm{i}}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{ed}_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{ed}_{\mathrm{i}}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{2}+\delta_{2}\right)
$$

11. marginal probability effect of $\exp _{i}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \exp _{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \exp _{\mathrm{i}}}$

$$
\begin{aligned}
& =\phi\left(x_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{3}+2 \beta_{4} \exp _{\mathrm{i}}+\delta_{3}+2 \delta_{4} \exp _{\mathrm{i}}\right) \\
& =\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{3}+\delta_{3}+2\left(\beta_{4}+\delta_{4}\right) \exp _{\mathrm{i}}\right)
\end{aligned}
$$

12. marginal probability effect of age ${ }_{i}=\frac{\partial \Phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)}{\partial \mathrm{age}_{\mathrm{i}}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \frac{\partial \mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta}{\partial \mathrm{age}_{\mathrm{i}}}$

$$
=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{5}+\delta_{5}\right)
$$

Testing for zero marginal probability effects of continuous explanatory variables in Model 3 - dprobit

In Model 3, we want to test the proposition that the marginal effect of each continuous explanatory variable on the probability of married women's labour force participation is equal to zero. But since Model 3 incorporates different models of labour force participation for married women who have one or more pre-school aged children and married women who have no pre-school aged children, we will want to test each of these propositions for both groups of married women.

Important Point:

The marginal probability effect of a continuous explanatory variable X_{j} is proportional to the marginal index effect of X_{j}, where the factor of proportionality is the standard normal p.d.f. at $x_{i}^{T} \beta$:
marginal probability effect of $\mathbf{X}_{\mathbf{j}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \times$ marginal index effect of $\mathbf{X}_{\mathbf{j}}$

Implication: Any set of coefficient restrictions that is sufficient to make the marginal index effect of a continuous explanatory variable equal to zero is also sufficient to make the marginal probability effect of that continuous explanatory variable equal to zero. In other words, testing the null hypothesis that the marginal index effect of a continuous explanatory variable equals zero is equivalent to testing the null hypothesis that the marginal probability effect of that continuous explanatory variable equals zero.

This section demonstrates how to test for zero marginal probability effects (and zero marginal index effects) of each continuous explanatory variable in Model 3 for each of the two groups of married women: (1) married women who currently have no preschool aged children, for whom the indicator variable dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{0}$; and (2) married women who currently have one or more pre-school aged children, for whom the indicator variable dkidslt $\mathbf{6}_{\mathrm{i}}=\mathbf{1}$.

- First, re-estimate probit Model 3. Enter the probit command:
probit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age

- Test 1 - Model 3: for married women with no pre-school aged children

- Proposition: The non-wife income of the family has no effect on the probability of labour force participation for married women who have no pre-school aged children; the marginal probability (and index) effect of nwifeinc c_{i} equals zero for married women for whom dkidslt $6_{i}=0$.
- For married women for whom dkidslt $6_{i}=0$:

$$
\text { marginal probability effect of nwifeinc } c_{i}=\phi\left(x_{i}^{T} \beta\right) \beta_{1}
$$

A sufficient condition for the marginal probability effect of nwifeinc c_{i} to equal zero for any given values of the regressors $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ is $\beta_{1}=0$.

- Null and Alternative Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}=0 \\
& \mathrm{H}_{1}: \beta_{1} \neq 0
\end{aligned}
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W -statistic, enter the following test, return list and display commands:

```
test nwifeinc or test nwifeinc = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following lincom, return list and display commands:

```
lincom _b[nwifeinc]
return list
display r(estimate)/r(se)
```

Compare the results of this two-tail t-test with those of the previous Wald test. You should be able to explain why the two tests are equivalent.

- Test 1 - Model 3: for married women with one or more pre-school aged children
- Proposition: The non-wife income of the family has no effect on the probability of labour force participation for married women who have one or more pre-school aged children; the marginal probability (and index) effect of nwifeinc equals zero for $^{\text {e }}$ married women for whom dkidslt $6_{\mathrm{i}}=1$.
- For married women for whom dkidslt $\boldsymbol{6}_{i}=1$:
marginal probability effect of nwifeinc ${ }_{i}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{1}+\delta_{1}\right)$
A minimally sufficient condition for the marginal probability effect of nwifeinc c_{i} to equal zero for any given values of the regressors $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ is $\beta_{1}+\delta_{1}=0$.
- Null and Alternative Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}+\delta_{1}=0 \\
& \mathrm{H}_{1}: \beta_{1}+\delta_{1} \neq 0
\end{aligned}
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W -statistic, enter the following test, return list and display commands:

```
test nwifeinc + d6nwinc = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following lincom, return list and display commands:

```
lincom _b[nwifeinc] + _b[d6nwinc]
return list
display r(estimate)/r(se)
```

Compare the results of this two-tail t-test with those of the previous Wald test. You should be able to explain why the two tests are equivalent.

- Test 2 - Model 3: for married women with no pre-school aged children

- Proposition: For married women who have no pre-school aged children, the probability of labour force participation does not depend on their education; the marginal probability (and index) effect of ed_{i} equals zero for married women for whom dkidslt $6_{\mathrm{i}}=0$.
- For married women for whom dkidslt $\boldsymbol{6}_{i}=0$:

$$
\text { marginal probability effect of ed }{ }_{\mathrm{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \beta_{2}
$$

A sufficient condition for the marginal probability effect of ed d_{i} to equal zero for any given values of the regressors $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ is $\beta_{2}=0$.

- Null and Alternative Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{2}=0 \\
& \mathrm{H}_{1}: \beta_{2} \neq 0
\end{aligned}
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W -statistic, enter the following test, return list and display commands:

```
test ed or test ed = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following lincom, return list and display commands:

```
lincom _b[ed]
return list
display r(estimate)/r(se)
```

Compare the results of this two-tail t-test with those of the previous Wald test. You should be able to explain why the two tests are equivalent.

- Test 2 - Model 3: for married women with one or more pre-school aged children
- Proposition: For married women who have one or more pre-school aged children, the probability of labour force participation does not depend on their education; the marginal probability (and index) effect of e_{i} equals zero for married women for whom dkidslt6 $_{\mathrm{i}}=1$.
- For married women for whom dkidslt ${ }_{i}=1$:

$$
\text { marginal probability effect of } \mathrm{ed}_{\mathrm{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{2}+\delta_{2}\right)
$$

A minimally sufficient condition for the marginal probability effect of ed ${ }_{i}$ to equal zero for any given values of the regressors $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ is $\beta_{2}+\delta_{2}=0$.

- Null and Alternative Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{2}+\delta_{2}=0 \\
& \mathrm{H}_{1}: \beta_{2}+\delta_{2} \neq 0
\end{aligned}
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W -statistic, enter the following test, return list and display commands:

```
test ed + d6ed = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following lincom, return list and display commands:

```
lincom _b[ed] + _b[d6ed]
return list
display r(estimate)/r(se)
```

Compare the results of this two-tail t-test with those of the previous Wald test. You should be able to explain why the two tests are equivalent.

- Test 3-Model 3: for married women with no pre-school aged children

- Proposition: Years of actual work experience have no effect on the probability of labour force participation for married women who have no pre-school aged children; the marginal probability (and index) effect of $\exp _{\mathrm{i}}$ equals zero for married women for whom dkidslt $6_{i}=0$.
- For married women for whom dkidslt $\boldsymbol{6}_{i}=0$:
marginal probability effect of $\exp _{\mathrm{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{3}+2 \beta_{4} \exp _{\mathrm{i}}\right)$
A sufficient condition for the marginal probability effect of $\exp _{\mathrm{i}}$ to equal zero for any given values of the regressors $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ is $\beta_{3}=0$ and $\beta_{4}=0$.

- Null and Alternative Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{3}=0 \text { and } \beta_{4}=0 \\
& \mathrm{H}_{1}: \beta_{3} \neq 0 \text { and/or } \beta_{4} \neq 0
\end{aligned}
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W -statistic, enter the following test, and return list commands:

```
test exp expsq
```

return list

- Test 3-Model 3: for married women with one or more pre-school aged children
- Proposition: Years of actual work experience have no effect on the probability of labour force participation for married women who have one or more pre-school aged children; the marginal probability (and index) effect of $\exp _{i}$ equals zero for married women for whom dkidslt $6_{i}=1$.
- For married women for whom dkidslt $\boldsymbol{6}_{i}=1$:
marginal probability effect of $\exp _{\mathrm{i}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{3}+\delta_{3}+2\left(\beta_{4}+\delta_{4}\right) \exp _{\mathrm{i}}\right)$
A minimally sufficient condition for the marginal probability effect of exp ${ }_{i}$ to equal zero for any given values of the regressors $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ is $\beta_{3}+\delta_{3}=0$ and $\beta_{4}+\delta_{4}=0$.
- Null and Alternative Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{3}+\delta_{3}=0 \text { and } \beta_{4}+\delta_{4}=0 \\
& \mathrm{H}_{1}: \beta_{3}+\delta_{3} \neq 0 \text { and/or } \beta_{4}+\delta_{4} \neq 0
\end{aligned}
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W-statistic, enter the following test and return list commands:

```
test exp + d6exp = 0, notest
test expsq + d6expsq = 0, accumulate
return list
```


- Test 4 - Model 3: for married women with no pre-school aged children

- Proposition: For married women who have no pre-school aged children, their age has no effect on their probability of labour force participation; the marginal probability (and index) effect of age equals zero for married women for whom dkidslt $_{\mathrm{i}}=0$.
- For married women for whom dkidslt $6_{i}=0$:
marginal probability effect of age ${ }_{i}=\phi\left(x_{i}^{\mathrm{T}} \beta\right) \beta_{5}$
A sufficient condition for the marginal probability effect of age to equal zero for any given values of the regressors X_{i}^{T} is $\beta_{5}=0$.

- Null and Alternative Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{5}=0 \\
& \mathrm{H}_{1}: \beta_{5} \neq 0
\end{aligned}
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W -statistic, enter the following test, return list and display commands:

```
test age or test age = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following lincom, return list and display commands:

```
lincom _b[age]
return list
display r(estimate)/r(se)
```

Compare the results of this two-tail t-test with those of the previous Wald test. You should be able to explain why the two tests are equivalent.

- Test 4-Model 3: for married women with one or more pre-school aged children

- Proposition: For married women who have one or more pre-school aged children, their age has no effect on their probability of labour force participation; the marginal probability (and index) effect of age e_{i} equals zero for married women for whom dkidslt $_{i}=1$.

- For married women for whom dkidslt $\boldsymbol{6}_{i}=1$:

marginal probability effect of age ${ }_{i}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right)\left(\beta_{5}+\delta_{5}\right)$
A minimally sufficient condition for the marginal probability effect of age ${ }_{i}$ to equal zero for any given values of the regressors $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$ is $\beta_{5}+\delta_{5}=0$.

- Null and Alternative Hypotheses:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{5}+\delta_{5}=0 \\
& \mathrm{H}_{1}: \beta_{5}+\delta_{5} \neq 0
\end{aligned}
$$

- To calculate a Wald test of this hypothesis and the corresponding p-value for the calculated W -statistic, enter the following test, return list and display commands:

```
test age + d6age = 0
return list
display sqrt(r(chi2))
```

- To calculate a two-tail asymptotic t-test of H_{0} against H_{1}, enter the following lincom, return list and display commands:

```
lincom _b[age] + _b[d6age]
return list
display r(estimate)/r(se)
```

Compare the results of this two-tail t-test with those of the previous Wald test. You should be able to explain why the two tests are equivalent.

- Computing estimates of the marginal probability effects of continuous explanatory variables in Model 3 -- dprobit

Introduction

For any explanatory variable, there are two distinct empirical questions that an econometric investigation of married women’s labour force participation (or any other binary outcome) should address.

- The first question concerns the existence of a relationship: is a particular explanatory variable related to the probability of married women's labour force participation, conditional on other explanatory variables included in the model? In other words, is the marginal probability effect of a particular explanatory variable on the probability of married women's labour force participation non-zero?
- The second question concerns the magnitude of the relationship: how large a change in the conditional probability of married women's labour force participation is associated with a one-unit increase in the value of a particular continuous explanatory variable, holding constant the values of all other explanatory variables included in the model?

The previous section addressed the first question for each of the four continuous explanatory variables in Model 3 . This section demonstrates how to address the second question for each of the continuous explanatory variables nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age $_{i}$.

Procedure

Recall that the marginal probability effect of a continuous explanatory variable $\mathbf{X}_{\mathbf{j}}$ is proportional to the marginal index effect of X_{j}, where the factor of proportionality is the standard normal p.d.f. evaluated at $x_{i}^{T} \beta$:

marginal probability effect of $\mathbf{X}_{\mathbf{j}}=\phi\left(\mathrm{x}_{\mathrm{i}}^{\mathrm{T}} \beta\right) \times$ marginal index effect of $\mathbf{X}_{\mathbf{j}}$

This expression implies that to compute estimates of the marginal probability effect of each continuous explanatory variable, we must first do two things. First, we must compute an estimate $x_{i}^{T} \hat{\beta}$ of $x_{i}^{T} \beta$. Second, we must compute the value of $\phi\left(x_{i}^{T} \hat{\beta}\right)$, i.e., the value of the standard normal density function evaluated at $x_{i}^{T} \hat{\beta}$.

Marginal probability effects for married women for whom dkidslt $\boldsymbol{6}_{i}=0$

In this section, we compute the marginal probability effects of the four continuous explanatory variables in Model 3 for married women who have the sample median values of nwifeinc ${ }_{i}$, ed $_{i}, \exp _{i}$, and age ${ }_{i}$, and no pre-schooled aged children (for whom dkidsltt $\mathbf{6}_{\mathrm{i}}=\mathbf{0}$).

- To compute marginal probability effects for the median married woman who has no pre-school aged children, we first re-estimate Model 3 using the dprobit command with the at(vecname) option. The vector to use in the at(vecname) option is the vector $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}}$ containing the median values of the regressors in Model 3 when dkidslt 6_{i} $=0$:

$$
\left.\begin{array}{rl}
x_{0 \mathrm{i}}^{\mathrm{T}} & =\left(\text { nwifeinc }_{\mathrm{i}} \text { ed }_{\mathrm{i}} \exp _{\mathrm{i}} \exp _{\mathrm{i}}^{2} \text { age }_{\mathrm{i}} 000000001\right.
\end{array}\right) .
$$

You previously created the vector $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}}$ and named it x0median. So simply enter the commands:
dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed d6exp d6expsq d6age, at(x0median)
ereturn list
display e(at)
Recall that the scalar $\mathbf{e}(\mathbf{a t})$ contains the value of $\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ generated by the previous dprobit command, where $\Phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ is an estimate of $\operatorname{Pr}\left(\operatorname{inlf}_{\mathrm{i}}=1 \mid\right.$ dkidslt $\left._{\mathrm{i}}=0\right)$.

- Second, use the Stata statistical function invnormal() to save the value of $\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}$. Enter the commands:

```
scalar x0medbhat = invnormal(e(at))
scalar list x0medbhat
```

- Third, use the Stata statistical function normalden() to save as a scalar the value of $\phi\left(x_{0 i}^{T} \hat{\beta}\right)$, which is the standard normal density function (or p.d.f.) evaluated at $x_{0 i \mathrm{i}}^{\mathrm{T}} \hat{\beta}$. Enter the commands:

```
scalar phix0med = normalden(x0medbhat)
```

scalar list phix0med

These commands save the value of $\phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ as the scalar phix0med.

- Compute the estimated marginal probability effect of explanatory variable nwifeinc c_{i} for the median married woman who has no pre-school aged children, which when $\mathbf{d k i d s l t}_{\mathbf{i}}=\mathbf{0}$ is given by the function:
estimated marginal probability effect of nwifeinc $\boldsymbol{i}_{\mathbf{i}}=\phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right) \hat{\beta}_{1}$
Enter the lincom command:
lincom phix0med*_b[nwifeinc]
- Compute the estimated marginal probability effect of explanatory variable $\boldsymbol{e d}_{\boldsymbol{i}}$ for the median married woman who has no pre-school aged children, which when $\mathbf{d k i d s l t}_{\mathbf{i}}=\mathbf{0}$ is given by the function:
estimated marginal probability effect of ed $\mathbf{i}_{\mathbf{i}}=\phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\mathrm{\beta}}\right) \hat{\boldsymbol{\beta}}_{2}$
Enter the lincom command:
lincom phix0med*_b[ed]
- Compute the estimated marginal probability effect of explanatory variable $\exp _{i}$ for the median married woman who has no pre-school aged children, which when $\mathbf{d k i d s l t}_{\mathbf{i}} \mathbf{= 0} \mathbf{0}$ is given by the function:
estimated marginal probability effect of $\exp _{\mathbf{i}}=\phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)\left(\hat{\beta}_{3}+2 \hat{\beta}_{4} \exp 50 \mathrm{p}\right)$
Enter the lincom command:
lincom phix0med*(_b[exp] + 2*_b[expsq]*exp50p)
- Compute the estimated marginal probability effect of explanatory variable age $\boldsymbol{a}_{\boldsymbol{i}}$ for the median married woman who has no pre-school aged children, which when $\mathbf{d k i d s l t}_{\mathbf{i}} \mathbf{= 0} \mathbf{0}$ is given by the function:
estimated marginal probability effect of age $\mathbf{i}_{\mathbf{i}}=\phi\left(\mathrm{x}_{0 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right) \hat{\beta}_{5}$
Enter the lincom command:
lincom phix0med*_b[age]

Marginal probability effects for married women for whom dkidslt $6_{i}=1$

In this section, we compute the marginal probability effects of the four continuous explanatory variables in Model 3 for married women who have the sample median values of nwifeinc ${ }_{i}$, ed $_{i}$, $\exp _{i}$, and age ${ }_{i}$, and one or more pre-schooled aged children (for whom dkidslt $6_{i}=1$).

- To compute marginal probability effects for the median married woman who has at least one pre-school aged child, we first re-estimate Model 3 using the dprobit command with the at(vecname) option. The vector to use in the at(vecname) option is the vector $\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}}$ containing the median values of the regressors in Model 3 when dkidslt $_{i}=1$:

$$
\begin{aligned}
x_{l i}^{T} & =\left(\text { nwifeinc }_{i} \text { ed }_{i} \exp _{i} \exp _{i}^{2} \operatorname{age}_{i} 1 \text { nwifeinc }_{i} \text { ed }_{i} \exp _{i} \exp _{i}^{2} \text { age }_{i} 1\right) \\
& =\binom{\text { nwinc50p ed50p exp50p exp50psq age50p 1 }}{\text { nwinc50p ed50p exp50p exp50psq age50p 1 }}
\end{aligned}
$$

You previously created the vector $\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}}$ and named it x1median. So simply enter the commands:

```
dprobit inlf nwifeinc ed exp expsq age dkidslt6 d6nwinc d6ed
d6exp d6expsq d6age, at(x1median)
ereturn list
display e(at)
```

Recall that the scalar $\mathbf{e}(\mathbf{a t})$ contains the value of $\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ generated by the previous dprobit command, where $\Phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ is an estimate of $\operatorname{Pr}\left(\right.$ inlf $_{\mathrm{i}}=1 \mid$ dkidslt $\left._{\mathrm{i}}=1\right)$.

- Second, use the Stata statistical function invnormal() to save the value of $x_{1 i}^{T} \hat{\beta}$. Enter the commands:

```
scalar x1medbhat = invnormal(e(at))
scalar list x1medbhat
```

- Third, use the Stata statistical function normalden() to save as a scalar the value of $\phi\left(x_{1 i}^{\top} \hat{\beta}\right)$, which is the standard normal density function (or p.d.f.) evaluated at $x_{1 i}^{\top} \hat{\beta}$. Enter the commands:
scalar phix1med = normalden(x1medbhat)
scalar list phix1med
These commands save the value of $\phi\left(\mathrm{X}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)$ as the scalar phix1med.
- Compute the estimated marginal probability effect of explanatory variable nwifeinc $_{i}$ for the median married woman who has one or more pre-school aged children, which when dkidslt $_{\mathrm{i}}=\mathbf{1}$ is given by the function:
estimated marginal probability effect of nwifeinc $\boldsymbol{i}_{\mathbf{i}}=\phi\left(\mathrm{x}_{1 i}^{\mathrm{T}} \hat{\beta}\right)\left(\hat{\beta}_{1}+\hat{\delta}_{1}\right)$
Enter the lincom command:
lincom phix1med*(_b[nwifeinc] + _b[d6nwinc])
- Compute the estimated marginal probability effect of explanatory variable $\boldsymbol{e d}_{\boldsymbol{i}}$ for the median married woman who has one or more pre-school aged children, which when dkidslt $_{\mathbf{i}}=\mathbf{1}$ is given by the function:
estimated marginal probability effect of ed ${ }_{\mathbf{i}}=\phi\left(\mathrm{x}_{1 i}^{\mathrm{T}} \hat{\beta}\right)\left(\hat{\beta}_{2}+\hat{\delta}_{2}\right)$
Enter the lincom command:

```
lincom phix1med*(_b[ed] + _b[d6ed])
```

- Compute the estimated marginal probability effect of explanatory variable $\exp _{i}$ for the median married woman who has one or more pre-school aged children, which when dkidslt $_{\mathbf{i}}=\mathbf{1}$ is given by the function:
estimated marginal probability effect of $\exp _{\mathbf{i}}=$

$$
\phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}} \hat{\beta}\right)\left(\hat{\beta}_{3}+\hat{\delta}_{3}+2\left(\hat{\beta}_{4}+\hat{\delta}_{4}\right) \exp 50 \mathrm{p}\right)
$$

Enter on one line the lincom command:

```
lincom phix1med*(_b[exp] + _b[d6exp] + 2*(_b[expsq] +
_b[d6expsq])*exp50p)
```

- Compute the estimated marginal probability effect of explanatory variable age $\boldsymbol{a}_{\boldsymbol{i}}$ for the median married woman who has one or more pre-school aged children, which when dkidslt $_{\mathbf{i}}=\mathbf{1}$ is given by the function:
estimated marginal probability effect of age $\left.\boldsymbol{i}_{\mathbf{i}}=\phi\left(\mathrm{x}_{1 \mathrm{i}}^{\mathrm{T}}\right)\right)\left(\hat{\beta}_{5}+\hat{\delta}_{5}\right)$
Enter the lincom command:

```
lincom phix1med*(_b[age] + _b[d6age])
```

- Computing the marginal probability effect of the binary explanatory variable dkidslt $_{i}$ in Model 3 - probit command followed by margins command

You have previously computed an estimate of the marginal probability effect of the binary explanatory variable dkidsltt $\boldsymbol{i}_{\boldsymbol{i}}$ in Model 3 at the sample median values of the continuous explanatory variables; however, that procedure, while completely correct, was somewhat laborious. This section demonstrates a much shorter and easier procedure that uses the margins command after Maximum Likelihood estimation of Model 3 with a probit command for computing the marginal probability effect of the dummy variable dkidslt $\boldsymbol{f}_{\boldsymbol{i}}$ in Model $\mathbf{3}$ for married women who have the sample median values of the explanatory variables nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$.

- First, use the probit command to re-estimate Model 3, with all regressors entered in factor-variable notation to distinguish between continuous and categorical explanatory variables. Model 3 contains four continuous explanatory variables, specifically nwifeinc ${ }_{\mathrm{i}}, \mathrm{ed}_{\mathrm{i}}, \exp _{\mathrm{i}}$, and age ${ }_{\mathrm{i}}$, and one binary categorical explanatory variable, dkidsltt $\mathbf{6}_{\mathbf{i}}$. Enter on one line the following command:

```
probit inlf c.nwifeinc c.ed c.exp c.exp#c.exp c.age i.dkidslt6
i.dkidslt6#(c.nwifeinc c.ed c.exp c.exp#c.exp c.age)
```

- Second, use a margins command with the at() option to compute estimates of the conditional probability of labour force participation for (1) married women with no pre-school aged children, for whom dkidsltt $6_{i}=0$, and (2) married women with one or more pre-school aged children, for whom dkidslt $6_{i}=1$. Note that the at() option is used tell Stata that these conditional probabilities of labour force participation are to be computed at the sample median values of the four continuous explanatory variables nwifeinc ${ }_{i}$, ed $_{i}$, $\exp _{i}$, and age ${ }_{i}$. Enter the following margins command:

```
margins i.dkidslt6, at((median) nwifeinc ed exp age)
```

- Third, use a second margins command with the at() option to compute an estimate of the marginal probability effect of dkidslt $\mathbf{6}_{\mathbf{i}}$, which by definition is the difference in the conditional probability of labour force participation between married women with pre-school aged children (for whom dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{1}$) and married women with no pre-school aged children (for whom dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{0}$). Enter the following two margins commands:

```
margins r.dkidslt6, at((median) nwifeinc ed exp age)
margins r.dkidslt6, at((median) nwifeinc ed exp age)
contrast(nowald effects)
```

Note that the first of the above margins commands reports a Wald test of the null hypothesis that the marginal probability effect of dkidslt $\mathbf{6}_{\mathbf{i}}$ at sample median values of nwifeinc ${ }_{i}, \operatorname{ed}_{i}, \exp _{i}$, and age ${ }_{i}$ is equal to zero, whereas the second margins command reports an equivalent large-sample \mathbf{t}-test of the same null hypothesis. Otherwise, the results produced by these two margins commands are identical.

- Computing the marginal probability effect of the continuous explanatory variables in Model 3 - probit command followed by margins command

The margins command can easily be used to compute for each of the four continuous explanatory variables in Model 3 estimates of the marginal probability effect of that continuous variable for both married women without pre-school aged children and married women with one or more pre-school aged children. The margins command can also be used to compute the difference between these two marginal effects for each continuous explanatory variable, and to perform a two-tail test of the null hypothesis
that this difference is equal to zero. This section shows you how to use the margins command to perform these calculations for each of the four continuous explanatory variables nwifeinc ${ }_{\mathbf{i}}$, ed $_{\mathbf{i}}, \exp _{\mathbf{i}}$, and $\mathbf{a g e}_{\mathbf{i}}$ in Model 3.

1. The continuous explanatory variable nwifeinc $_{i}$

- First, use a margins command to compute estimates of the marginal probability effect of non-wife family income nwifeinc $_{\boldsymbol{i}}$ for (1) the median married woman who has no pre-school aged children, for whom dkidslt $6_{i}=0$ and (2) the median married woman who has one or more pre-school aged children, for whom dkidslt $_{\mathbf{i}}=\mathbf{1}$. Enter on one line the margins command:
margins i.dkidslt6, dydx(c.nwifeinc) at((median) nwifeinc ed exp age)
- Second, use a second margins command to compute an estimate of the difference between (1) the estimated marginal probability effect of nwifeinc $_{\boldsymbol{i}}$ for the median married woman who has one or more pre-school aged children, for whom dkidslt $_{\mathrm{i}} \mathbf{i}=1$ and (2) the estimated marginal probability effect of nwifeinc $_{\boldsymbol{i}}$ for the median married woman who has no pre-school aged children, for whom dkidslt 6_{i} $=\mathbf{0}$. Enter on one line each of the following two margins commands:

```
margins r.dkidslt6, dydx(c.nwifeinc) at((median) nwifeinc ed exp
age)
margins r.dkidslt6, dydx(c.nwifeinc) at((median) nwifeinc ed exp
age) contrast(nowald effects)
```


2. The continuous explanatory variable ed $_{i}$

- First, use a margins command to compute estimates of the marginal probability effect of years of formal education $\boldsymbol{e d}_{\boldsymbol{i}}$ for (1) the median married woman who has no pre-school aged children, for whom dkidsltt $6_{i}=\mathbf{0}$ and (2) the median married woman who has one or more pre-school aged children, for whom dkidslt $_{\mathbf{i}}=\mathbf{1}$. Enter on one line the margins command:
margins i.dkidslt6, dydx(c.ed) at((median) nwifeinc ed exp age)
- Second, use a second margins command to compute an estimate of the difference between (1) the estimated marginal probability effect of $\boldsymbol{e d}_{\boldsymbol{i}}$ for the median married woman who has one or more pre-school aged children, for whom dkidslt $_{\mathrm{i}}=\mathbf{1}$ and (2) the estimated marginal probability effect of $\boldsymbol{e d}_{\boldsymbol{i}}$ for the median married woman who has no pre-school aged children, for whom dkidslt 6_{i} $=\mathbf{0}$. Enter on one line each of the following two margins commands:

```
margins r.dkidslt6, dydx(c.ed) at((median) nwifeinc ed exp age)
margins r.dkidslt6, dydx(c.ed) at((median) nwifeinc ed exp age)
contrast(nowald effects)
```


3. The continuous explanatory variable exp $_{i}$

- First, use a margins command to compute estimates of the marginal probability effect of years of work experience $\exp _{i}$ for (1) the median married woman who has no pre-school aged children, for whom dkidslt $6_{i}=\mathbf{0}$ and (2) the median married woman who has one or more pre-school aged children, for whom dkidslt $_{\mathbf{i}}=\mathbf{1}$. Enter on one line the margins command:

```
margins i.dkidslt6, dydx(c.exp) at((median) nwifeinc ed exp age)
```

- Second, use a second margins command to compute an estimate of the difference between (1) the estimated marginal probability effect of $\exp _{\boldsymbol{i}}$ for the median married woman who has one or more pre-school aged children, for whom dkidslt $_{i}=\mathbf{1}$ and (2) the estimated marginal probability effect of $\exp _{i}$ for the median married woman who has no pre-school aged children, for whom dkidslt 6_{i} $=0$. Enter on one line each of the following two margins commands:

```
margins r.dkidslt6, dydx(c.exp) at((median) nwifeinc ed exp age)
margins r.dkidslt6, dydx(c.exp) at((median) nwifeinc ed exp age)
contrast(nowald effects)
```


4. The continuous explanatory variable aqe $_{i}$

- First, use a margins command to compute estimates of the marginal probability effect of age $\boldsymbol{a g e}_{\boldsymbol{i}}$ for (1) the median married woman who has no pre-school aged children, for whom dkidslt $6_{i}=\mathbf{0}$ and (2) the median married woman who has one
or more pre-school aged children, for whom dkidslt $\mathbf{6}_{\mathbf{i}}=\mathbf{1}$. Enter on one line the margins command:

```
margins i.dkidslt6, dydx(c.age) at((median) nwifeinc ed exp age)
```

- Second, use a second margins command to compute an estimate of the difference between (1) the estimated marginal probability effect of age $_{\boldsymbol{i}}$ for the median married woman who has one or more pre-school aged children, for whom dkidslt $_{i}=1$ and (2) the estimated marginal probability effect of age $_{i}$ for the median married woman who has no pre-school aged children, for whom dkidslt 6_{i} $=\mathbf{0}$. Enter on one line each of the following two margins commands:

```
margins r.dkidslt6, dydx(c.age) at((median) nwifeinc ed exp age)
margins r.dkidslt6, dydx(c.age) at((median) nwifeinc ed exp age)
contrast(nowald effects)
```


Preparing to End Your Stata Session

Before you end your Stata session, you should do two things.

- First, you will want to save the current data set. Enter the following save command with the replace option to save the current data set as Stata-format data set mroz.dta:
save mroz, replace
- Second, close the command log file you have been recording. Enter the command: cmdlog close
- Third, close the log file you have been recording. Enter the command:
log close
- End Your Stata Session -- exit
- To end your Stata session, use the exit command. Enter the command:
exit or exit, clear

\square Cleaning Up and Clearing Out

After returning to Windows, you should copy all the files you have used and created during your Stata session to your own portable electronic storage device, such as a flash memory stick. These files will be found in the Stata working directory, which is usually C:\data on the computers in Dunning 350, and $\mathbf{D}:$:courses on the computers in MC B111. There are three files you will want to be sure you have: the Stata log file 452tutorial9.log; the Stata command log file 452tutorial9.txt; and the Stata-format data set mroz.dta. Use the Windows copy command to copy any files you want to keep to your own personal portable storage device (e.g., a flash memory stick).

Finally, as a courtesy to other users of the computing classroom, please delete all the files you have used or created from the Stata working directory.

