ECON 452* -- NOTE 15

Marginal Effects in Probit Models: Interpretation and Testing

This note introduces you to the two types of marginal effects in probit models: **marginal** *index* **effects**, and **marginal** *probability* **effects**. It demonstrates how to calculate these effects for both continuous and categorical explanatory variables.

1. Interpreting Probit Coefficients

A Generic Probit Model

• The conventional formulation of a binary dependent variable model assumes that an *unobserved* (or *latent*) dependent variable Y_i^* is generated by a classical linear regression model of the form

$$Y_{i}^{*} = X_{i}^{T} \beta + u_{i} = \beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \dots + \beta_{k} X_{ik} + u_{i}$$

$$(1)$$

where:

 Y_i^* = a continuous real-valued index variable for observation i that is *unobservable*, or *latent*;

 $x_i^T = (1 X_{i1} X_{i2} \cdots X_{ik})$, a 1×K row vector of regressor values for observation i;

 $\beta = (\beta_0 \ \beta_1 \ \beta_2 \ \cdots \ \beta_k)^T$, a K×1 column vector of regression coefficients;

 $x_i^T \beta = a \ 1 \times 1$ scalar called the *index function* for observation i;

 $u_i = \text{ an iid } N(0, \sigma^2) \text{ random error term for observation i.}$

• The *observable outcomes* of the binary choice problem are represented by a binary indicator variable Y_i that is related to the unobserved dependent variable Y_i^* as follows:

$$Y_i = 1 \text{ if } Y_i^* > 0$$
 (2.1)

$$Y_i = 0 \text{ if } Y_i^* \le 0$$
 (2.2)

• The **random indicator variable Y**_i represents the observed realizations of a binomial process with the following probabilities:

$$Pr(Y_{i} = 1) = Pr(Y_{i}^{*} > 0) = Pr(X_{i}^{T}\beta + u_{i} > 0)$$
(3.1)

$$Pr(Y_{i} = 0) = Pr(Y_{i}^{*} \le 0) = Pr(x_{i}^{T}\beta + u_{i} \le 0)$$
(3.2)

• **Probit models** analytically represent the binomial probabilities (3.1) and (3.2) in terms of the standard normal c.d.f. $\Phi(Z)$ as follows:

$$Pr(Y_i = 1) = Pr(Y_i^* > 0) = \Phi(x_i^T \beta)$$
 (4.1)

$$Pr(Y_{i} = 0) = Pr(Y_{i}^{*} \le 0) = 1 - \Phi(x_{i}^{T}\beta)$$
(4.2)

- Interpretation of the probit coefficient vector β
- Under the zero conditional mean error assumption, equation (1) implies that

$$E(Y_i^* | x_i^T) = E(x_i^T \beta | x_i^T) + E(u_i | x_i^T) = x_i^T \beta \quad \text{since } E(u_i | x_i^T) = 0.$$
 (5)

- The *index function* (or regression function) $x_i^T \beta$ is thus the conditional mean value of the latent random variable Y_i^* for given values of the regressors.
- The *slope coefficients* β_j (j = 1, ..., k): If all explanatory variables are *continuous* and enter the index function *linearly*, the **partial derivatives of regression function** (5) with respect to the individual regressors are the *slope coefficients* β_j (j = 1, ..., k):

$$\frac{\partial E\left(\boldsymbol{Y}_{i}^{*} \middle| \boldsymbol{x}_{i}^{T}\right)}{\partial \boldsymbol{X}_{ij}} = \frac{\partial \boldsymbol{x}_{i}^{T} \boldsymbol{\beta}}{\partial \boldsymbol{X}_{ij}} = \frac{\partial (\boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \boldsymbol{X}_{i1} + \dots + \boldsymbol{\beta}_{j} \boldsymbol{X}_{ij} + \dots + \boldsymbol{\beta}_{k} \boldsymbol{X}_{ik})}{\partial \boldsymbol{X}_{ij}} = \boldsymbol{\beta}_{j}.$$

• But if some of the explanatory variables are *binary* or enter the index function *nonlinearly*, the **partial** derivatives of regression function (5) are not so simply interpreted.

2. Two Types of Marginal Effects in Probit Models

For each explanatory variable, there are two types of marginal effects in binary dependent variables models.

Marginal Index Effects

Marginal index effects are the partial effects of each explanatory variable on the **probit** index function $x_i^T \beta$.

• <u>Case 1</u>: X_j is a continuous explanatory variable

marginal index effect of variable
$$\mathbf{X_j} \equiv \frac{\partial E(\mathbf{Y_i^*} | \mathbf{x_i^T})}{\partial \mathbf{X_{ij}}} = \frac{\partial \mathbf{x_i^T} \beta}{\partial \mathbf{X_{ij}}}$$

• Case 2: X_j is a binary explanatory variable (a dummy or indicator variable)

The marginal index effect of a binary explanatory variable equals

- 1. the value of the index function $x_i^T \beta$ when $X_{ij} = 1$ and the other regressors equal specified fixed values minus
- 2. the value of the index function $x_i^T \beta$ when $X_{ij} = 0$ and the other regressors equal the *same* fixed values

• <u>Case 2</u>: X_i is a binary explanatory variable (a dummy or indicator variable)

Formal Definition: Define two different vectors of regressor values in which all explanatory variables except X_{ij} are held constant at fixed values:

 x_{1i}^{T} = any vector of regressor values with X_{ij} = 1 (and all other explanatory variables equal to fixed values); x_{0i}^{T} = the same vector of regressor values but with X_{ij} = 0.

The marginal index effect of the binary (dummy) variable X_i is:

marginal index effect of
$$\mathbf{X_j} = E(\mathbf{Y_i^*} \mid \mathbf{X_{ij}} = 1, \mathbf{X_{ih}} = \mathbf{X_{0h}} \ \forall \ h \neq j) - E(\mathbf{Y_i^*} \mid \mathbf{X_{ij}} = 0, \mathbf{X_{ih}} = \mathbf{X_{0h}} \ \forall \ h \neq j)$$

$$= \mathbf{X_{0i}^T} \boldsymbol{\beta} - \mathbf{X_{0i}^T} \boldsymbol{\beta}$$

Limitation: Marginal index effects are difficult to interpret because it is difficult to interpret – and impossible to measure – the latent dependent variable Y_i^* .

Marginal Probability Effects

Marginal probability effects are the partial effects of each explanatory variable on the probability that the observed dependent variable $Y_i = 1$, where in probit models

$$Pr(Y_i = 1) = \Phi(x_i^T \beta) = \text{standard normal c.d.f. evaluated at } x_i^T \beta.$$

• Case 1: Xi is a continuous explanatory variable

marginal probability effect of variable
$$\mathbf{X_j} \equiv \frac{\partial \Pr(\mathbf{Y_i} = 1)}{\partial \mathbf{X_{ij}}} = \frac{\partial \Phi(\mathbf{x_i^T} \boldsymbol{\beta})}{\partial \mathbf{X_{ij}}}$$

Using the **chain rule of differentiation**, we can obtain a general expression for the marginal probability effect of a continuous explanatory variable X_i :

marginal probability effect of Xi

$$= \frac{\partial \Phi(\mathbf{x}_{i}^{T} \boldsymbol{\beta})}{\partial \mathbf{X}_{ij}} = \frac{d \Phi(\mathbf{x}_{i}^{T} \boldsymbol{\beta})}{d(\mathbf{x}_{i}^{T} \boldsymbol{\beta})} \frac{\partial \mathbf{x}_{i}^{T} \boldsymbol{\beta}}{\partial \mathbf{X}_{ij}} = \phi(\mathbf{x}_{i}^{T} \boldsymbol{\beta}) \frac{\partial \mathbf{x}_{i}^{T} \boldsymbol{\beta}}{\partial \mathbf{X}_{ij}}$$

where

$$\phi(x_i^T \beta) = \frac{d\Phi(x_i^T \beta)}{d(x_i^T \beta)} = \text{ the value of the standard normal p.d.f. at } x_i^T \beta.$$

$$\frac{\partial x_i^T \beta}{\partial X_{ij}} = \text{the marginal } index \text{ effect of } X_j$$

• <u>Case 2</u>: X_i is a binary explanatory variable (a dummy or indicator variable)

The marginal probability effect of a binary explanatory variable equals

- 1. the value of $\Phi(x_i^T\beta)$ when $X_{ij}=1$ and the other explanatory variables X_{ih} ($h \neq j$) equal the fixed values X_{0h} minus
- 2. value of $\Phi(x_i^T\beta)$ when $X_{ij}=0$ and the other explanatory variables X_{ih} ($h \neq j$) equal the *same* fixed values X_{0h}

Formal Definition: Define two different vectors of regressor values:

 \mathbf{x}_{1i}^{T} = any vector of regressor values with $\mathbf{X}_{ij} = 1$;

 x_{0i}^{T} = the same vector of regressor values but with $X_{ij} = 0$.

The marginal probability effect of the binary (dummy) variable X_i is:

$$\begin{aligned} \textbf{marginal \textit{probability effect of } X_{\textbf{j}} &= Pr\Big(Y_{i} = 1 \, \Big| \, X_{ij} = 1, X_{ih} = X_{0h} \, \, \forall \, h \neq j \Big) - Pr\Big(Y_{i} = 1 \, \Big| \, X_{ij} = 0, \, \, X_{ih} = X_{0h} \, \, \forall \, h \neq j \Big) \\ &= \Phi\Big(x_{1i}^T\beta\Big) \, - \, \Phi\Big(x_{0i}^T\beta\Big). \end{aligned}$$

Relationship Between the Two Marginal Effects for Continuous Variables

- ullet Compare the marginal index effect and marginal probability effect of a *continuous* explanatory variable X_j .
 - $\begin{aligned} & \text{marginal } \textit{index } \textit{effect of variable } \mathbf{X_j} = \frac{\partial \, x_i^T \beta}{\partial \, X_{ij}} \\ & \text{marginal } \textit{probability } \textit{effect of variable } \mathbf{X_j} = \frac{\partial \, \Phi \left(x_i^T \beta \right)}{\partial \, X_{ij}} = \, \phi \! \left(x_i^T \beta \right) \frac{\partial \, x_i^T \beta}{\partial \, X_{ij}} \end{aligned}$
- *Relationship:* For a continuous explanatory variable X_j , the marginal probability effect is proportional to the marginal index effect of X_j , where the factor of proportionality is the standard normal p.d.f. at $x_i^T \beta$:
 - marginal probability effect of $X_j = \phi(x_i^T \beta) \times \text{marginal } index \text{ effect of } X_j$

3. Marginal Index and Probability Effects in Probit Models

A Simple Probit Model

$$Y_{i}^{*} = x_{i}^{T}\beta + u_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i2}^{2} + \beta_{4}X_{i3} + \beta_{5}D_{i} + \beta_{6}D_{i}X_{i3} + u_{i}$$

where:

 X_{i1} , X_{i2} and X_{i3} are *continuous* explanatory variables

 D_i is a *binary* (or *dummy*) explanatory variable defined such that $D_i = 1$ if observation i exhibits some attribute, = 0 otherwise.

• The **index function** is:

$$x_i^T \beta = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i2}^2 + \beta_4 X_{i3} + \beta_5 D_i + \beta_6 D_i X_{i3}$$

- X_{i1} enters the index function *linearly*.
- X_{i2} enters the index function *nonlinearly*.
- X_{i3} enters the index function *nonlinearly*, interacted with D_i .
- D_i enters the index function *nonlinearly*, interacted with X_{i3} .
- The *observed* binary dependent variable Y_i is related to the unobserved dependent variable Y_i^* as follows:

$$Y_{i} = 1 \text{ if } Y_{i}^{*} > 0$$

$$Y_i = 0 \text{ if } Y_i^* \leq 0$$

• The **binomial probabilities** $Pr(Y_i = 1)$ and $Pr(Y_i = 0)$ are analytically represented in probit models in terms of the standard normal c.d.f. $\Phi(Z)$:

$$\begin{split} Pr(Y_{i} = 1) &= Pr(Y_{i}^{*} > 0) = \Phi\left(x_{i}^{T}\beta\right) \\ &= \Phi\left(\beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i2}^{2} + \beta_{4}X_{i3} + \beta_{5}D_{i} + \beta_{6}D_{i}X_{i3}\right) \\ Pr(Y_{i} = 0) &= Pr(Y_{i}^{*} \leq 0) = 1 - \Phi\left(x_{i}^{T}\beta\right) \\ &= 1 - \Phi\left(\beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i2}^{2} + \beta_{4}X_{i3} + \beta_{5}D_{i} + \beta_{6}D_{i}X_{i3}\right) \end{split}$$

Marginal Effects of X_1 = a continuous variable that enters linearly

$$x_{i}^{T}\beta = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i2}^{2} + \beta_{4}X_{i3} + \beta_{5}D_{i} + \beta_{6}D_{i}X_{i3}$$

• Marginal *index* effect of X_1

marginal index effect of
$$X_1 = \frac{\partial x_i^T \beta}{\partial X_{i1}} = \beta_1$$

• Marginal *probability* effect of X_1

marginal probability effect of
$$X_1 = \phi(x_i^T \beta) \frac{\partial x_i^T \beta}{\partial X_{i1}} = \phi(x_i^T \beta) \beta_1$$

Marginal Effects of X_2 = a continuous variable that enters nonlinearly

• Marginal *index* effect of X_2

marginal index effect of
$$X_2 = \frac{\partial x_i^T \beta}{\partial X_{i2}} = \beta_2 + 2\beta_3 X_{i2}$$

• Marginal *probability* effect of X_2

marginal probability effect of
$$X_2 = \phi(x_i^T \beta) \frac{\partial x_i^T \beta}{\partial X_{i2}} = \phi(x_i^T \beta)(\beta_2 + 2\beta_3 X_{i2})$$

Marginal Effects of X_3 = a continuous variable that enters nonlinearly

$$\mathbf{x}_{i}^{T} \boldsymbol{\beta} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \mathbf{X}_{i1} + \boldsymbol{\beta}_{2} \mathbf{X}_{i2} + \boldsymbol{\beta}_{3} \mathbf{X}_{i2}^{2} + \boldsymbol{\beta}_{4} \mathbf{X}_{i3} + \boldsymbol{\beta}_{5} \mathbf{D}_{i} + \boldsymbol{\beta}_{6} \mathbf{D}_{i} \mathbf{X}_{i3}$$

• Marginal *index* effect of X_3

marginal index effect of
$$X_3 = \frac{\partial x_i^T \beta}{\partial X_{i3}} = \beta_4 + \beta_6 D_i = \beta_4 + \beta_6$$
 when $D_i = 1$
$$= \beta_4 \qquad \text{when } D_i = 0$$

• Marginal *probability* effect of X_3

marginal probability effect of
$$X_3 = \phi(x_i^T \beta) \frac{\partial x_i^T \beta}{\partial X_{i3}} = \phi(x_i^T \beta) (\beta_4 + \beta_6 D_i)$$

$$= \phi(x_i^T \beta) (\beta_4 + \beta_6) \qquad \text{when } D_i = 1$$

$$= \phi(x_i^T \beta) \beta_4 \qquad \text{when } D_i = 0$$

Marginal Effects of D = a binary variable that enters nonlinearly

The regressor vector for sample observation i is: $\mathbf{x}_{i}^{T} = \begin{pmatrix} 1 \ X_{i1} \ X_{i2} \ X_{i2}^{2} \ X_{i3} \ D_{i} \ D_{i} X_{i3} \end{pmatrix}$

• Marginal index effect of D

Define two vectors of regressor values that contain the *same values* X_{i1} , X_{i2} and X_{i3} of the other three explanatory variables X_1 , X_2 and X_3 :

one with
$$D_i = 1$$
: $x_{1i}^T = \begin{pmatrix} 1 \ X_{i1} \ X_{i2} \ X_{i2}^2 \ X_{i3} \ 1 \ X_{i3} \end{pmatrix}$ the other with $D_i = 0$: $x_{0i}^T = \begin{pmatrix} 1 \ X_{i1} \ X_{i2} \ X_{i2}^2 \ X_{i3} \ 0 \ 0 \end{pmatrix}$

The corresponding values of the index function are:

for
$$D_i = 1$$
: $x_{1i}^T \beta = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i2}^2 + \beta_4 X_{i3} + \beta_5 + \beta_6 X_{i3}$
= $\beta_0 + \beta_5 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i2}^2 + (\beta_4 + \beta_6) X_{i3}$

for
$$D_i = 0$$
: $X_{0i}^T \beta = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i2}^2 + \beta_4 X_{i3}$

The index function difference = $x_{1i}^T \beta - x_{0i}^T \beta = \beta_5 + \beta_6 X_{13}$

The marginal index effect of **D** is therefore:

marginal index effect of
$$\mathbf{D} = \mathbf{x}_{1i}^{\mathrm{T}} \boldsymbol{\beta} - \mathbf{x}_{0i}^{\mathrm{T}} \boldsymbol{\beta} = \boldsymbol{\beta}_5 + \boldsymbol{\beta}_6 \mathbf{X}_{13}$$

$$\mathbf{x}_{i}^{T} \boldsymbol{\beta} = \boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1} \mathbf{X}_{i1} + \boldsymbol{\beta}_{2} \mathbf{X}_{i2} + \boldsymbol{\beta}_{3} \mathbf{X}_{i2}^{2} + \boldsymbol{\beta}_{4} \mathbf{X}_{i3} + \boldsymbol{\beta}_{5} \mathbf{D}_{i} + \boldsymbol{\beta}_{6} \mathbf{D}_{i} \mathbf{X}_{i3}$$

Recall that the probit index functions for $D_i = 1$ and $D_i = 0$ are given respectively by:

$$\begin{aligned} x_{1i}^T \beta &= \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i2}^2 + \beta_4 X_{i3} + \beta_5 + \beta_6 X_{i3} &= \beta_0 + \beta_5 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i2}^2 + (\beta_4 + \beta_6) X_{i3} \\ x_{0i}^T \beta &= \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i2}^2 + \beta_4 X_{i3} \end{aligned}$$

• Marginal probability effect of binary dummy variable **D** with the other three explanatory variables X_1 , X_2 , and X_3 equal respectively to the fixed values X_{01} , X_{02} , and X_{03} is:

$$\begin{split} &= \text{ Pr} \big(\, Y_i = 1 \, \big| \, D_i = 1, \, X_{ih} = X_{0h} \, \, \forall \, \, h = 1, \, 2, \, 3 \big) - \text{Pr} \big(\, Y_i = 1 \, \big| \, D_i = 0, \, \, X_{ih} = X_{0h} \, \, \forall \, \, h = 1, \, 2, \, 3 \big) \\ &= \, \Phi \Big(x_{1i}^T \beta \Big) \, - \, \Phi \Big(x_{0i}^T \beta \Big) \\ &= \, \Phi \Big(\beta_0 + \beta_1 X_{01} + \beta_2 X_{02} + \beta_3 X_{02}^2 + \beta_4 X_{03} + \beta_5 + \beta_6 X_{03} \Big) \, - \, \Phi \Big(\beta_0 + \beta_1 X_{01} + \beta_2 X_{02} + \beta_3 X_{02}^2 + \beta_4 X_{03} \Big) \\ &= \, \Phi \Big(\beta_0 + \beta_5 + \beta_1 X_{01} + \beta_2 X_{02} + \beta_3 X_{02}^2 + (\beta_4 + \beta_6) X_{03} \Big) \, - \, \Phi \Big(\beta_0 + \beta_1 X_{01} + \beta_2 X_{02} + \beta_3 X_{02}^2 + \beta_4 X_{03} \Big) \\ &= \, \Phi \Big(\beta_0 + \beta_5 + \beta_1 X_{01} + \beta_2 X_{02} + \beta_3 X_{02}^2 + (\beta_4 + \beta_6) X_{03} \Big) \, - \, \Phi \Big(\beta_0 + \beta_1 X_{01} + \beta_2 X_{02} + \beta_3 X_{02}^2 + \beta_4 X_{03} \Big) \end{split}$$