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ECON 452* -- NOTE 14 
 

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit  
 
This note demonstrates how to formulate binary dependent variables models for maximum likelihood estimation, 
and how to estimate by maximum likelihood the two most common formulations of such models, namely probit 
and logit models.  
 

1.  General Formulation of Binary Dependent Variables Models 
 
A conventional formulation of binary dependent variables models relates the observed binary outcome variable 
Yi to an unobserved (or latent) dependent variable *Y .  i
 

• The unobserved (or latent) dependent variable  is assumed to be generated by a classical linear regression 
model of the form 

*
iY

 
i

T
i

*
i uxY +β=                             (1) 

 
where: 

 
*
iY  =  a continuous real-valued index variable for observation i that is unobservable, or latent;  

 
T
ix  =  , a 1×K row vector of regressor values for observation i;  )XXX1( ik2i1i L

 

 β  =   , a K×1 column vector of regression coefficients;  T
k210 )( ββββ L

 

iu  =  an iid random error term for observation i.  
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• The random error terms ui are assumed to have zero conditional means and constant conditional variances for 

any set of regressor values T :  ix
 

( ) 0xuE T
ii =   ∀  i                             (2.1) 

 

( ) ( ) 2T
i

2
i

T
ii xuExuVar σ==   ∀  i                      (2.2) 

 
In addition, the conditional distribution of the  is assumed to be symmetric around their zero conditional 
mean.   

iu

 
Symmetry around mean zero means that  
 

)auPr()auPr( ii >=−≤  
 
Since by definition )auPr(1)auPr( ii ≤−=> , symmetry means that  
 

)auPr(1)auPr( ii ≤−=−≤    or  )auPr(1)auPr( ii −≤−=≤ .              (2.3) 
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• The observable outcomes of the binary choice problem are represented by a binary indicator variable Yi 

that is related to the unobserved dependent variable *  as follows:  iY
 

Yi  =  1  if   > 0                              (3.1) *
iY

Yi  =  0  if   ≤ 0                              (3.2) *
iY

 
The random indicator variable Yi represents the observed realizations of a binomial process with the 
following probabilities:  
 

)0uxPr()0YPr()1YPr( i
T
i

*
ii >+β=>==                      (5.1) 

 

)0uxPr()0YPr()0YPr( i
T
i

*
ii ≤+β=≤==                      (5.2) 

 
What is required to estimate the coefficient vector β are analytical representations of the binomial probabilities 
(5.1) and (5.2).  
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• Interpretation of the regression function 
 

Under the zero conditional mean error assumption (2.1), equation (1) implies that  
 

( ) ( ) ( ) β=+β= T
i

T
ii

T
i

T
i

T
i

*
i xxuExxExYE .                  (4)  

 
♦ The regression function  is thus the conditional mean value of the latent random variable  for given 

values of the regressors.  
βT

ix *
iY

 
♦ The slope coefficients βj (j = 1, …, k) are the partial derivatives of the regression function (4) with respect to 

the individual regressors:  
 

( )
j

ij

ikkijj1i10

ij

T
i

ij

T
i

*
i

X
)XXX(

X
x

X

xYE
β=

∂
β++β++β+β∂

=
∂

β∂
=

∂

∂ LL
. 
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2.  Analytical Representation of Binomial Probabilities 

 
The binomial probabilities  
 

)0uxPr()0YPr()1YPr( i
T
i

*
ii >+β=>==                      (5.1) 

 

)0uxPr()0YPr()0YPr( i
T
i

*
ii ≤+β=≤==                      (5.2) 

 
are represented analytically in terms of the cumulative distribution function, or c.d.f., for the random error term 
ui in regression equation (1):  
 

i
T
i

*
i uxY +β=                             (1) 
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• The cumulative distribution function (c.d.f.) for the random variable u is denoted in general by G(u) and is 

defined as 
 

( ) ( ) ( )∫ ∫∞−
∞−

==≤=
a a

du)u(gduugauPraG  

where 
 

( ) ( ) ( ) 0duuguPrG ==−∞≤=∞− ∫
−∞

∞−
 

( ) ( ) ( ) 1duuguPrG ==∞≤≤∞−=∞ ∫
∞

∞−
 

( ) (

• The probability that 

)bGaG ≤   for a < b 
 

( ) ( )auPrauPr ≥=>  is given in terms of G(a) as 
 

( ) ( ) ( ) ( )aG1aGGauPr −=−∞=>  
 

• For a < b, the probability ( )buaPr ≤≤  is given as: 
 

( ) ( ) ( )aGbGbuaPr −=≤≤ . 
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• The first derivative of the c.d.f. equals the corresponding probability density function, or p.d.f.:   

 

( ) ( )
ud
uGdug =   or  ( ) ( ) ( )

ad
aGd

ud
uGdag

au

==
=

 

 
where g(a) is the value of ud)u(Gd  evaluated at u = a.  

 
• The probability density function (p.d.f.) for the random variable u is the function g(u) defined over all real 

values of u such that:   
 

1.  ( ) 0ug ≥
 

2. g  ( )∫
∞

∞−
=1duu

3. for any real values a and b where 
 

∞<<<∞− ba , 
 

( ) ( )∫=≤≤
b

a
duugbuaPr  
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• Symmetry Property: In addition to the assumptions that the random variable u has zero mean and constant 

(finite) variance 2σ , it is assumed that the p.d.f. g(u) is symmetric about its zero mean.  
 
♦ Symmetry of g(u) around mean zero means that  

 
( ) ( )agag =−   and  ( ) ( )auPrauPr >=−≤ .  

 
Since by definition 

 
( ) ( )aGauPr −=−≤   and  ( ) ( ) ( )aG1auPr1auPr −=≤−=>  , 

 
symmetry of g(u) implies that 
 

( ) ( )aG1aG −=−   or equivalently that  ( ) ( )aG1aG −−= . 
 

♦ Geometrically, the symmetry property means that the lower tail area probability that u ≤ −a is equal to the 
upper tail area probability that u > a.   
 

lower tail area Pr(u ≤ −a)  =  upper tail area Pr(u > a)    
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• Representation of the Binomial Probabilities  
 
♦ The binomial probability ( ) ( ) ( )0uxPr0YPr1YPr i

T
i

*
ii >+β=>==  can be represented in terms of the c.d.f. for 

the random variable u as follows:  
  

( )1YPr i =  = ( )0YPr *
i >  

= ( )0uxPr i
T
i >+β  

= ( )β−> T
ii xuPr  

= ( )β−≤− T
ii xuPr1  

= ( )β−− T
ixG1  

= ( )βT
ixG       by symmetry of ( )ug                (6.1) 

 
♦ The binomial probability ( ) ( ) ( )0uxPr0YPr0YPr i

T
i

*
ii ≤+β=≤==  can be represented in terms of the c.d.f. for 

the random variable u as follows:  
  

( )0Yi =  = Pr ( )0YPr *
i ≤  

= ( )0uxPr i
T
i ≤+β  

= ( )β−≤ T
ii xuPr  

= ( )β− ixG  T

= ( )
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β− T
ixG1      by symmetry of ( )ug               (6.2)

 
♦ The probability density function, or p.d.f., for the binary dependent variable Yi can thus be written as:   

 

( ) ( )[ ] ( )[ ] ii Y1T
i

YT
ii xG1xGYg

−
β−β=   for Yi = 0, 1.                (7) 
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3. The Sample Likelihood and Log-Likelihood Functions 
 
♦ The sample likelihood function for a sample of N independent observations   {Yi : i = 1, …, N} is:   

 

( )N21 Y,,Y,YL K  = ( )∏
=

N

1i
iYg  

=                 (8) ( )[ ] ( )[ ]∏
=

−
β−β

N

1i

Y1T
i

YT
i

ii xG1xG

= ( ) ( )( )∏∏
==

β−β
0Y

T
i

1Y

T
i

ii

xG1xG  

 
♦ The sample log-likelihood function for a sample of N independent observations {Yi : i = 1, …, N} is:   

 
( )N21 Y,,Y,YLln K  = ( )Lln  

 

=  ( )∑
=

N

1i
iYgln

 

= ( ) ( )[ ]{ }∑
=

β−−+β
N

1i

T
ii

T
ii xG1ln)Y1(xGlnY  

 

=            (9) ( ) ( )[ ]∑∑
==

β−−+β
N

1i

T
ii

N

1i

T
ii xG1ln)Y1(xGlnY

 

= ( ) ( )[ ]∑∑
==

β−+β
0Y

T
i

1Y

T
i

ii

xG1lnxGln  
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4.  Distributional Specifications of the Model 

 
• To complete specification of the model, a specific probability distribution must be chosen for the random error 

terms ui.  
 

The most commonly adopted distributions in econometric applications are the standard normal and the 
standard logistic.  
 
1. The standard normal distribution yields the probit model. 
 
2. The standard logistic distribution yields the logit model.  
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Probit Model 

 
• The standard normal distribution has mean μ = 0 and variance σ2 = 1, and is symmetric around its zero mean.  
 

If the random variable xi is normally distributed with mean μ and variance σ2, then the standard normal variable 
σμ−= )x(z ii  is normally distributed with mean 0 and variance 1. That is,  

 
if , then  where ),(N~x 2

i σμ )1,0(N~zi σμ−= )x(z ii . 
 
♦ The standard normal p.d.f. is  

 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−π=φ −

2
zexp2z

2
i21

i .               

 
♦ The standard normal c.d.f. is  

 

( ) ( ) ( ) ( )∫∫ ∞−

−

∞− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−π=φ=≤=Φ

ii Z 2
21Z

ii dz
2
zexp2dzzZzPrZ .     

 
♦ Choice of the standard normal for the distribution of the random error terms ui leads to the probit model.  
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Logit Model 
 
• The standard logistic distribution has mean μ = 0 and variance 3/22 π=σ , and is symmetric around its zero 

mean.  
 
♦ The standard logistic p.d.f. is  
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( ) ( )2i

ii

)xexp(
)xexp()xexp()x(f

−+
− .          2

i
i 1)xexp(1

==
+

♦ The standard logistic c.d.f. is  
 

 
)X(F i  =  [ ] 1

i )Xexp(1 −−+  

   =  ( ))Xexp(1
1

i−+
 

   =  ( ))Xexp(1
)Xexp(

i

i

+
.    

 
♦ Choice of the standard logistic for the distribution of the random error terms ui leads to the logit model.  
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5.  The Univariate Probit Model 

 
 Probit Representation of the Binomial Probabilities  

 
• In the probit model, the binomial probabilities ( )1YPr i =  and ( )0YPr i =  are represented analytically in 

terms of the standard normal c.d.f. ( )iZΦ :  
 

( ) ( ) ( ) ( )∫∫ ∞−

−

∞− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−π=φ=≤=Φ

ii Z 2
21Z

ii dz
2
zexp2dzzZzPrZ  
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• The binomial probability ( )1YPr i =  = ( ) ( )0uxPr0YPr i

T
i

*
i >+β=>  is represented in the probit model as 

follows:  
  

( )1YPr i =  = ( )0YPr *
i >  

= ( )0uxPr i
T
i >+β  

= ( )β−> T
ii xuPr  

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

−>
σ

T
ii xuPr     dividing by σ > 0 

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

−≤
σ

−
T
ii xuPr1    by definition 

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

−Φ−
T
ix1      since )1,0(N~ui

σ
 

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ
T
ix       by symmetry of )z(φ             (10) 
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• The binomial probability ( )0YPr i =  = ( ) ( )0uxPr0YPr i

T
i

*
i ≤+β=≤  is represented in the probit model as 

follows:  
  

( )0YPr i =  = ( )0YPr *
i ≤  

= ( )0uxPr i
T
i ≤+β  

= ( )β−≤ T
ii xuPr  

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

−≤
σ

T
ii xuPr     dividing by σ > 0 

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

−Φ
T
ix       since )1,0(N~ui

σ
 

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ−
T
ix1      by symmetry of )z(φ             (11) 

 
• Note that   

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ
T
ix  = ( ) ( )∫ ∞−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−π=Φ

iZ 2
21

i dz
2
zexp2Z    where 

σ
β

=
T
i

i
xZ . 
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• The contribution to the sample likelihood function of the i-th sample observation is:  
 

( )
ii Y1T

i

YT
i

i
x1xYg

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ−⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ=    Yi = 0, 1 

 

  =  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ
T
ix           for Yi = 1 

 

  =  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ−
T
ix1         for Yi = 0 
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 Probit Likelihood Function 

 
The probit likelihood function for a sample of N independent observations  
{Yi : i = 1, …, N} is:   
 

( )σβ,L  = ( )∏
=

N

1i
iYg  

= ∏
=

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ−⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ
N

1i

Y1T
i

YT
i

ii

x1x                  (12) 

= ∏∏
==

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ
0Y

T
i

1Y

T
i

ii

x1x  
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 Probit Log-likelihood Function 

 
• The probit log-likelihood function for a sample of N independent observations {Yi : i = 1, …, N} is:   

 
( )σβ,Lln  = ( )[ ]σβLln  

 

=  ( )∑
=

N

1i
iYgln

 

= ∑
= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ−−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ
N

1i

T
i

i

T
i

i
x1ln)Y1(xlnY  

 

= ∑∑
==

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ−−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ
N

1i

T
i

i

N

1i

T
i

i
x1ln)Y1(xlnY              (13) 

 

= ∑∑
==

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ
0Y

T
i

1Y

T
i

ii

x1lnxln  
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• A property of the probit log-likelihood function is that the coefficient vector β and the scalar parameter σ are 

not separately identifiable.  
 
Consequently, only the probit coefficient vector σβ=β*  can be estimated. 
 
However, it is conventional to impose the normalization σ = 1, in which case the probit coefficient vector 

β=β* .  
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 Computing Probit Coefficient Estimates 

 
• Maximum likelihood estimates of the probit coefficient vector  or β are obtained by maximizing the probit 

log-likelihood function (13) with respect to the K elements of  or β:   

*β
*β

 
Max{ } *β ( )*Lln β  = ( )[ ]σβLln  
 

= ∑∑
==

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ−−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σ
β

Φ
N

1i

T
i

i

N

1i

T
i

i
x1ln)Y1(xlnY   

 

= ( ) ( )[ ]∑∑
==

βΦ−−+βΦ
N

1i

*T
ii

N

1i

*T
ii x1ln)Y1(xlnY             (13.1) 

where σβ=β*     
 
or 
 

Max{ }   = β ( )1,Lln β ( )[ ]1,Lln β   =  ( ) ( )[ ]∑∑
==

βΦ−−+βΦ
N

1i

T
ii

N

1i

T
ii x1ln)Y1(xlnY         (13.2) 

 
• Maximization of the probit log-likelihood function (13.1)/(13.2) with respect to  or β requires the use of 

nonlinear optimization algorithms such as Newton's method.  

*β

 
• The result is an ML estimate =  of the probit coefficient vector  = β together with an ML estimate of the 

covariance matrix for *ˆ  = ,  = . 

*β̂
V̂

β̂
)ˆ*β

*β
β β̂ ( β=β ˆV̂)ˆ(V̂
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6.  The Univariate Logit Model 

 
 Logit Representation of the Binomial Probabilities  

 
• In the logit model, the binomial probabilities ( )1YPr i =  and ( )0YPr i =  are represented analytically in terms 

of the standard logistic c.d.f. )Z(F :  i
 

)Z(F i  =    =  )( )iZzPr ≤ ( )Zexp(1
)Zexp(

i

i

+
.    

 
• The binomial probability ( )1YPr i =  = ( ) ( )0uxPr0YPr i

T
i

*
i >+β=>  is represented in the logit model as 

follows:  
  

( )1YPr i =  = ( )0YPr *
i >  

= ( )0uxPr i
T
i >+β  

= ( )β−> T
ii xuPr  

 

= ( )β−≤− T
ii xuPr1    by definition 

 

= ( )β−− T
ixF1      since  )z(f~ui

 

= ( )βT
ixF        by symmetry of             (14) )z(f
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• The binomial probability ( )0YPr i =  = ( ) ( )0uxPr0YPr i

T
i

*
i ≤+β=≤  is represented in the logit model as 

follows:  
  

( )0YPr i =  = ( )0YPr *
i ≤  

= ( )0uxPr i
T
i ≤+β  

= ( )β−≤ T
ii xuPr  

 

= ( )β− T
ixF       by definition of F(Z) 

 

= ( )β− T
ixF1       by symmetry of             (15) )z(f
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• The contribution to the sample likelihood function of the i-th sample observation is:  
 

( ) ( )[ ] ( )[ ] ii Y1T
i

YT
ii xF1xFYg

−
β−β=    Yi = 0, 1 

 

=  ( )βT
ixF       for Yi = 1 

 

=  ( )β− T
ixF1      for Yi = 0   

 
 

 Logit Likelihood Function 
 

The logit likelihood function for a sample of N independent observations  
{Yi : i = 1, …, N} is:   
 

( )βL  = ( )∏
=

N

1i
iYg  

= ( )[ ] ( )[ ]∏
=

−
β−β

N

1i

Y1T
i

YT
i

ii xF1xF                    (16) 

= ( ) ( )[ ]∏∏
==

β−β
0Y

T
i

1Y
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 Logit Log-likelihood Function 

 
• The logit log-likelihood function for a sample of N independent observations {Yi : i = 1, …, N} is:   
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 Computing Logit Coefficient Estimates by Maximum Likelihood 
 
• Maximum likelihood estimates of the logit coefficient vector β are obtained by maximizing the logit log-

likelihood function (17) with respect to the K elements of β:   
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• A convenient property of the logit log-likelihood function (17) is that it is globally concave with respect to 

the coefficient vector β.  
 

( )βLln   =                   (17) ( ) ( )[ ]∑∑
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This property makes nonlinear maximization of the logit log-likelihood function (17) with respect to β fairly 
straightforward.   
 
The most commonly used nonlinear optimization algorithm for computing the ML estimates of the logit 
coefficients is Newton's method, which uses analytical first and second derivatives of )(Lln β with respect to β.   

 
• The result is an ML estimate  of the logit coefficient vector β together with an ML estimate of the covariance 

matrix for , . 
Lβ̂

Lβ̂
L

ˆL V̂)ˆ(V̂ β=β

 
 


