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ECON 452* -- NOTE 13

Maximum Likelihood Estimation of the Classical Normal Linear

Regr ession M odel

This note introduces the basic principles of maximum likelihood estimation in the

familiar context of the multiple linear regression model.

Recall that the multiple linear regression model can be written in either scalar or

matrix notation.

e |Inscalar notation, the population regression equation, or PRE, for the linear

regression model is written in general as:

Y= B+ B Xy + B X+ + B X+ U (i=

or
=k .
Y, = Bo"‘Zl:Bjxij"'ui (i=
j=
or
ik
Vo= SBX +U,  Xp=1Vi (i =
i-0
where

o N) (1.1)
. N) (1.2)
. N) (1.3)

= the i-th sample (observed) value of the regressand, or dependent variable;

Yi
Xj; = the i-th sample (observed) value of the j-th regressor, or independent

variable, j =1, ..., k;

B; = the partial regression coefficient of Xj;, j=1, ..., k;

&
Il

the i-th value of the unobservable random error term.
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e Invector-matrix notation, the population regression equation, or PRE, for the
linear regression model is written in general as:

y=XB+u (2)
where
~ Y, _
Y2

y = Y, | = the Nx1 regressand vector

| :-Lr_ | Xll X12 Xlk_
'2|' X21 ><22 X2k
X=1x]|=|1 X; Xz, -+ Xy | = the NxK regressor matrix
_X-l[l_ _1 XNl XNZ XNk
B
By
B=|B, | = the Kx1 regression coefficient vector
B
0,
u2
u=| u, | = the Nx1 error vector
[ Un
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1. Assumption A6: The Error Normality Assumption
In order to perform statistical inference in the linear regression model, it is necessary
to specify the form of the probability distribution of the error vector u in population
regression equation (1). The normality assumption does this.

O Scalar Formulation of the Error Normality Assumption A6

The random error terms u; are identically and independently distributed as the
normal distribution with

1. zero conditional means
E(u|x7) = E(u,) =0 Vi
2. constant conditional variances
Var(ui\xiT) = E(uf‘xf) = E(uf‘ 1, Xil,Xiz,...,Xik) =0c°>0 Vi
3. zero conditional covariances
xiT,xsT): E(uiuS xiT,xsT):O Vizs

Cov(u- u

17s

o A compact way of stating the error normality assumption is:
condtional on x/ , the u; are iid as N(0, ¢°)

where

"1id" means "independently and identically distributed"

N(0, o%) denotes a normal distribution with zero mean and variance o°.
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O Matrix Formulation of the Error Normality Assumption A6
The Nx1 error vector u has a multivariate normal distribution with
1. azero conditional mean vector

E(u|X)=0 where 0 is an Nx1 vector of zeros

2. aconstant scalar diagonal covariance matrix V(u)
V(u|X) = E(uu"|X) = 6?1, where Iy is the NxN identity matrix
e A compact way of stating the error normality assumption in matrix terms is:
u[X ~ N(0,0%1,)
where N(-,-) here denotes the N-variate normal distribution.

O Implications of Assumption A6 for Distribution of the Regressand Vector y

e Linearity Property of Normal Distribution: Any linear function of a normally
distributed random variable is itself normally distributed.

e Yyisalinear function of u: The PRE y =X + u states that the regressand vector
y is a linear function of the error vector u.

o Implication: Since u is normally distributed by assumption A6 and y is a linear
function of u by assumption A1, the linearity property of the normal distribution
implies that

y| X ~ N(XB,oly).

That is, the regressand vector y has an N-variate normal distribution with

(1) conditional mean vector equal to E(y\ X) = XPB
(2) conditional covariance matrix equal to V(y\ X) = 62|N.
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O TheClassical Normal Linear Regression Model -- the CNLR M odel

The classical normal linear regression model consists of the population regression
equation

y=XB+u (2)

plus Assumptions Al to A6.

2. Outline of the Method of Maximum Likelihood
ML estimation involves joint estimation of all the unknown parametersof a
statistical model. ML estimation therefore requires that the model in question be
completely specified. Complete specification of the model includes specifying the
specific form of the probability distribution of the model's random variables.

In the case of the CNLR model, ML estimation involves joint estimation of the
regression coefficient vector B and the scalar error variance 6.

3. ML Estimation of the CNLR Model: Derivation

« Derivation of the ML estimators of K+1 parameters 8" = (B', 6%) of the CNLR
model consists of two main steps:

Step 1. Formulation of the sample likelihood function for the CNLR model.

Step 2: Maximization of the sample likelihood function with respect to the
unknown parameters B and o?.
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STEP 1. Formulation of the Sample Likelihood Function

O First, formulate the probability density function (pdf) for each of the
individual random error termsu; under the error normality assumption A®6.

e The normal pdf. If the random variable y; is normally distributed with mean p
and variance o° - i.e., if y, ~ N(u, 6%), then the individual probability density
function for y; is:

2 _i-w)’
f(y,) = (27102)_1/2 exp{— (yi—n) } - 21 e{ 267 } 3)

2
26 G2

e The error normality assumption A6 states the i-th random error term u; has a
normal distribution with mean 0 and variance o -- i.e., u, ~ N(O, c%).

e The pdf for each u; is therefore

f(u,) = (27102)_]/2 exp{— (u,z——?)z} _ (27[62)_]/2 exp{— u; } ()

2
c 20

O Second, transform the pdf f(u;) for u; into an equivalent pdf for the observed
regressand Y.

e This step is necessary because the random error terms u; are unobservable. We
therefore need to reformulate the pdf for u; into the corresponding pdf for Y;. The

pdf for Y; is expressed in terms of the observed sample data (Y;, ;') and the
unknown parameters 6" = (B, o*) of the CNLR model.

1. Use the change-of-variable theorem for probability density functionsto
transform the pdf for u; into the corresponding pdf for Y;:

ou.
f(y) =|—
(Y) )

f(u;)

where
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ou.

= the absolute value of the partial derivative oy
oY, oY,

= the Jacobian of the transformation from u; to ;.

2. Inthe present case, u, =Y, — X/B, so that

%:1 and hence % =1
oY, oY,

We therefore have the simple result that
f(Yi) = 1‘f(ui) = f(ui) = f(Yi - XuTB)

o Result: Setting u, =Y, — /B in the pdf for u;

f(u,) = (2no? )™’ exp{— 2“—22}
(@)

yields the following pdf for Y;:

f(Y,) = (2n0? )™ exp{— (Y;ﬂ} (5)
(0]

O Third, construct the joint pdf for the sample of N independent observed
valuesof Y.

e The N sample values of the regressand Y are contained in the Nx1 regressand
vector y=(Y, Y, Y, --- Y,)".

e Assumption A5 of independent random sampling implies that the joint pdf of
all N sample values of Y; is simply the product of the pdf'sof the individual Y;
values.
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e Accordingly, the joint pdf of all N sample values of Y; can be written as
N
fly) = (Y, Y, - Y) = £(Y)-F(Y,) - F(Yy) = gf(Yi)- (6)

o Finally, substitute the right-hand side of the normal pdf (5) for Y; in (6) to obtain
the joint pdf for all N sample values of Y:

f(y) = ﬁ;f(vi)

= [ (2n?)*? exp{ i X;TB i
i—1 20 |
| i (Yi - XuTB)z _
- (2n02 )_N/ * exp| — 1L 5o

(2n?) ™ exp| - Ziz Z(Y —xiﬁ)ﬂ

(2n0?) " exp| -RSS(B)/20°]  where RSS(B) = (Y, - X[B)’

o Result: Thejoint pdf for the N samplevalues (Y, Y, --- Y,,) of Y, conditional
on the sample values of the regressors {x]:i=1, ..., N}, is

f(y) = (2n0?)" exp| - chszg(Yi —X?B)z}
= (2n0?) ™" exp| - ziz (y—XB)T(y—XB)}
= (2n0? )™ exp_— zi g RSS(B)} ©)

where RSS(B) = 3.(Y, ~x/B)" = (y=XB)' (y~XB).
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O Fourth, the joint pdf f(y) isthe sample likelihood function for the sample of N

independent observations (Y, x]) = (Y, 1 X, X,, --- X, )i=1,...,N.

The key difference between the joint pdf f(y) and the sample likelihood function
Is their interpretation, not their form.

The joint pdf f(y) is interpreted as a function of the observable random

variables (Y, Y, --- Y,,) for given values of the parameters B, c* and the
regressors (X, X, --- X, ).

The sample likelihood function is interpreted as a function of the parameters 3
and o’ for given values of the observable variables (Y X, X, --- X, ).

To emphasize the difference between the joint pdf of the sample observations and
the sample likelihood function, we denote the joint pdf as f(y;B,s>) and the

sample likelihood function as L(pB,s?;y). (Both the joint pdf of the sample and

the sample likelihood function are conditional on the regressors X, but we
suppress this to keep our notation a bit simpler.)

The joint pdf of the sample f(y;B,c?) is afunction of the observed Y-valuesy
=(Y, Y, --- Y, ), given the parameters B and c°.

The samplelikelihood function L(P,s?;y) is a function of the model
par ameters B and o°, given the sample valuesy = (Y, Y, --- Y,,) of the
regressand.

Apart from this difference in interpretation, the samplelikelihood function
L(B,c°;y) equals thejoint pdf of the sample f(y;B,c°):

L(B,c%y) = f(y;B.c?)

= (ono’) " exp ~ o1 S0, -0y’ 1
= (2ro®) " exp| - (y—XB)T(y—XB)} 82)
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STEP 2: Maximization of the Sample Likelihood Function

QO First, takethe natural logarithm of the sample likelihood function to obtain the
sample log-likelihood function.

o Rationale: It is easier to maximize the log-likelihood function than it is to
maximize the original likelihood function (8) because of the exponential term in
the likelihood function.

e Equivalence of maximizing thelikelihood and log-likelihood functions.

Because the natural logarithm is a positive monotonic transformation, the values
of B and o® that maximize the likelihood function L(B,c;y) are the same as

those that maximize the log-likelihood function InL(B,c%;y) = In[L(B,c%;y)],
where L(B,o?;y) > 0.

The reason is that, for any individual parameter £,

oInL(B,c*ty) _ 1oL(B.o%y) _ OL(B.o™)/0B, ©)
0B, L aB, L |
Thus,
OL(B.o*Y) | . onL(B.s™y) .
0B, OB, |
OL(B.o™Y) _, . oInL(B,c%y) _ .
0B, 0B |
OL(B.c%Y) . olnL(B.s"1y)
2B, op, |
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e Derivation of Sample L og-likelihood Function

QO First, obtain the sample log-likelihood function.

Since L(B,o?:y) = f(y;B,o?) by equation (8),

InL(B,c?;y) = Inf(y;B,c%) (10)

Substitute for f(y;B,c”) the expression on the right-hand side of (8.1):

InL(B,o%y) = In{(chz)‘“” exp[—z—izé(vi —X?B)ZH

= In{(chz)_N/2}+ In{exp{— ! i“(Yi—xiTB)ZH (11)

2(52 i

The natural log of thefirst term on the right-hand side of (11) is obtained using
the following rule of natural logarithms: In(ab)z bin(a) for a> 0. Thus, since

2nc” >0,

In{ (2202 *} = —%In(ZnGZ) = —%In(Zn) —%In(az) (12)

The natural log of the second term on the right-hand side of (11) is obtained
using the following definitional rule of natural logarithms: In(exp[f(x)]) =

In(e"™ )=f(x). Thus,

nf exp) 52 300,10 [} = o0 0 -y 19

Substituting the results in (12) and (13) into the right-hand side of equation (11)
for InL(B,c?;y) yields the sample log-likelihood function

InL(,o%y) = —%In(Zn) —%ln(&) —2—352%(Yi _XTB)?
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e Result: Thesamplelog-likelihood function is

L3, -xIBY (14.)

20° ia

InL(B,o%y) = — gln(Zn) - gln(cz)

= - Jin(en) - Tin(ot) - Lo (y-XB) (y-Xp)  (142)
(0]

N N 2 1
=~ —In(2r) ~ Jin(o?) — 5 RSS() (14.3)

O Second, derivethe ML estimator of the coefficient vector .

Step 1: Partially differentiate the log-likelihood function with respect to the
coefficient vector p.

. Since

InL(B,c%y) = — gln(ZN) - %'n(ﬁz) - %RSS(B)

oInL(B,c%y) _ 1 ORSS(B)

- 2 (15)

op 26 op
. Since
RSS(B) = (y—XB)' (y—XB) = y'y - 2B™XTy +B'X"XB
the Kx1 vector of partial derivatives of RSS(3) with respect to 3 is:
TN T TN T

ORSS(B) _ 26[3 X'y N op X' XpB (16)

oB 0B oB

ECON 452* -- Note 13: Fileid 452notel13.doc ... Page 12 of 20 pages



ECON 452* -- NOTE 13: ML Estimation of CNLR Model M.G. Abbott

« Using the rules of matrix differentiation, we can show that the two partial
derivatives on the right-hand side of equation (16) are:

OB'XTY) _ o1 OB"X™XB) _ o
26 =Xy and op = 2X X (17)

. Substitution of the partial derivatives (17) into equation (16) for 6 RSS(B)/0B
yields the following expression for the partial derivatives of RSS(B) with
respect to B:

ORSS() _ _ ,B'™X"y _ OB'X'XB _

o 5 5 XTy +2X"XB. (18)

. Substitute the right-hand side of (18) for 0 RSS(B)/dp into equation (15) for
aInL(B,c%;y)/op:

olnL(B,c”y) _ 1 ORSS(B)
op 26> 0P

= —2%2(— 2XTy +2X"XB).  (19)

Step 2: Obtain the K = k+1 first-order conditions (FOCSs) for the ML estimator
of B by setting the partial derivatives oInL(B,s*;y)/dB in (19) equal to zero.

oInL(B,c%y) 1 ; coA
=0 -—\-2X 2X' X =
8[3 b4 = 262( y + BML)

=N —2XTy +2X"™XB,, =0 (20)

Note: The K first-order conditions (20) for the ML coefficient estimator B,, of B

are identical to the FOC's for the OLS estimator B,

Implication: The FOC's (20) for BML thus imply that, for the CNLR model, the
ML coefficient estimator BML equals the OLS estimator BOLS' .e., BML BOLS
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Step 3: Solve the FOCs for the ML estimator j3,, -- that is, obtain an explicit
expression for the ML estimator BML of .

. Re-arrange matrix equation (20) by dividing both sides by 2 and then adding
the term X'y to both sides:

—2XTy +2X™XB,, =0
~X"y + X™XB,, =0 (dividing both sides by 2)
X"XB,. = X'y (adding Xy to both sides) (21)

. Solve for BML by pre-multiplying both sides of matrix equation (21) by
(XTX)_l, the inverse of XX :
(XTX)'XTXBy, = (XTX)"'XTy

—1

IKﬁML = (XTX)

- . ] n R
BML = (XTX) XTy since IKBML = BML'

X'y since (XTX)_leX = Iy

o Result: The ML coefficient estimator B, is identical to the OLS estimator B .

BML = (XTX)_ley: BOLS (22)
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O Third, derivethe ML estimator of the scalar parameter o°, the error variance.

Step 1: Partially differentiate the log-likelihood function with respect to the
scalar parameter o°.

. Since the log-likelihood function is

INL(B,c%y) = - gm(zn) - %ln(&) - %RSS(B)

the partial derivative oInL(B,c%;y)/dc” is:

olnL(B,c*y) _ Naolns® RSS() o (Lj
oo’ 2 0o’ 2 0o’\o?

_ Nalng® RSSE)a(e?)’
2 0o’ 2 0o’

(23)

. The partial derivative éIn?/dc? in the first term on the right-hand side of

(23) is evaluated using the following rule for differentiating natural logs:
dlna/oa=1/a fora>0. Thus

dlno? 1
-2 (24)

0o’ o

- The partial derivative 8(02 )_1/8 o’ in the second term on the right-hand side of

(24) is evaluated using the following power rule of differentiation:
da"/oa = na"*. Thus

=—— (25)
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« Finally, substitute the partial derivatives (24) and (25) into equation (23) for
aInL(B,c%y)/0c>:

olnL(B,c%y) _ Nalns® RSS(p)a(s?)’

= 23
oo’ 2 0o’ 2 loh (23)
_ _N1 RSs@) (_L)
2 o° 2 o’
3 N RSS(B)
- 262 " 2c* (26)

Step 2: Obtain the first-order condition (FOC) for the ML estimator of c* by
setting the partial derivative 8InL(B,o?;y)/dc” in (26) equal to zero.

oinL(B.s’y) _y N . RSSBw) _ @7

2 T a2 ~4
0o 26y, 2G,,.

where &2, denotes the ML estimator of o2 and RSS(B,, ) denotes the residual
sum of squares for the ML coefficient estimator:

~ A~ T A~ ~ ~ ~
RSS(BML) = (y_XBML) (y_XBML) = yTy - ZBMLTXTy +B1l\—/ILXTXBML'
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Step 3: Solvethefirst-order condition (FOC) for the ML estimator &, -- that
is, obtain an explicit expression for the ML estimator 67, of c°.

« Subtract the second term in equation (27) from both sides:

N . RSSBw) _

262, 263,
N RSS(By) (28)
262, 265,
« Multiply both sides of equation (28) by —2:
N  RSS(B
— = > m) (29)
OmL OmL

. Multiply both sides of equation (29) by &}, and then divide by N:

S _ RSS(Bw) 2 _ RSS(By)

5 N ML N

OmL

This is the expression for the ML estimator 67, of >.

e Result: The ML estimator of the error variance c” is the residual sum of squares
divided by sample size N:

_RSS(By,) _ 00 _ & (30)

= y—XB,,. = the Kx1 ML residual vector
=Y, -x'B,, = thei-th ML residual (i=1, ..., N).
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4. Second Order Conditionsfor the OL S Coefficient Estimator

Although the second-order conditions for a minimum of the residual sum of squares
function RSS(B) with respect to 3 are a bit of a technical fine point, it is quite easy
to state them.

Recall that the vector of first-order partial derivatives of RSS(B) with respect to fs
are

ORSS(B) _ ,

> XTy + 2XTXB. 18
oF y B (18)

For given sample data (y, X), these partial derivatives are simply a linear function
of the coefficient estimator 3.

The second-order derivatives of RSS(B) with respect to B are given by the KxK
matrix

o° RSS(B) _ 0 [ ORSS(B) :ZG(XiXﬁ). (31)
opop”  opTl op op’

We need to evaluate the paritial derivative o(XTXB)/0B" in (31), where the Kx1
vector X" Xp is a set of K linear functions of the coefficient estimator 3 .

Rule: Vector differentiation of a set of linear functions

If f(x) is a set of K linear functions of the Kx1 vector x given by

Ay Ap o Al x ] ZJ KAlJXJ (X)) ]
f(x) = AX = A'21 A.22 A'ZK X'z _ ZJ KAzJXJ _ fzgx)
At Axz o A Xk _Zj:j(AKij_ i (%)
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where A is a KxK matrix, then the KxK matrix vector of partial derivatives of f(x)
= Ax with respect to the vector x is

8(Ai<) A or 0 (AX)
0 X 0 X

= AT, (32)

. Apply Rule 3 to the term X" XpB. Let x =P and A=X"X.

OA) _ p _ OOXXB) _ yry
P = XTX.

ox' op

e The KxK matrix of second-order derivatives of RSS(E)) with respect to ﬁ IS
therefore
0’ RSS(B) _ ,a(X"Xp)
opop’ op'

=2X"X. (33)
e The second-order condition for BOLS to correspond to a minimum of the RSS(B)

function is that
XX be a positive definite matrix. (34)

« How do we know that X" X is a positive definite matrix? It turns out that this is
ensured by the full rank assumption A5:

rank(X) =K =  X'X is positive definite.
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5. Statistical Propertiesof the ML Parameter Estimators

« The ML estimatorsof p and o share the three lar ge sample properties of all
ML estimators: consistency, asymptotic efficiency, and asymptotic normality.

1. Consistency: the probability limit of B,, = B; plim(B,,. ) = B.
2. Asymptotic efficiency: Asy Var(leML) < Asy Var(ﬁj), the asymptotic
variance of any other consistent estimator Bj of B;.

3. Asymptotic normality: f,,, . N[B, GZ(XTX)_I].

« Inaddition, the ML coefficient estimator BML shares the small sample properties
of the OLS coefficient estimator B, since

A~

N 1
BuL = Bows = (XTX) XTY-
4. Unbiasedness: the mean of B,, = B; E(By.) = B.

5. Efficiency: In the class of all linear unbiased estimators of 3, BML is the
minimum variance estimator of B. If 8 denotes any other linear unbiased
estimator of j3,

Var(ﬁj,ML) = Var(ﬁj,OLS) < Var(Ej) 1=0,1,2, ...,k
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