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ECON 452* -- NOTE 13 
 

Maximum Likelihood Estimation of the Classical Normal Linear 
Regression Model 

 
This note introduces the basic principles of maximum likelihood estimation in the 
familiar context of the multiple linear regression model.  
 
Recall that the multiple linear regression model can be written in either scalar or 
matrix notation.  
 
• In scalar notation, the population regression equation, or PRE, for the linear 

regression model is written in general as: 
 

iikk2i21i10i uXXXY +β++β+β+β= L    (i = 1, …, N)   (1.1)  

or 

∑
=

=
+β+β=

kj

1j
iijj0i uXY    (i = 1, …, N)   (1.2) 

or 

∑
=

=
+β=

kj

0j
iijji uXY ,  i   1Xi0 ∀=   (i = 1, …, N)   (1.3) 

 
where  
 
Yi  ≡  the i-th sample (observed) value of the regressand, or dependent variable;   
 

Xij  ≡  the i-th sample (observed) value of the j-th regressor, or independent 
variable, j = 1, …, k;   

 

βj  ≡  the partial regression coefficient of Xij, j = 1, …, k;   
 

ui  ≡  the i-th value of the unobservable random error term.   
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• In vector-matrix notation, the population regression equation, or PRE, for the 
linear regression model is written in general as: 

 
uXy +β=  (2) 

 
where  
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 =  the N×1 error vector  
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1.  Assumption A6: The Error Normality Assumption 
 
In order to perform statistical inference in the linear regression model, it is necessary 
to specify the form of the probability distribution of the error vector u in population 
regression equation (1). The normality assumption does this.   
 

 Scalar Formulation of the Error Normality Assumption A6 
 

The random error terms ui are identically and independently distributed as the 
normal distribution with  
 
1. zero conditional means 

 
( ) ( ) 0uExuE i

T
ii ==   ∀ i 

 
2. constant conditional variances 

 
( ) ( ) ( ) 2

ik2i1i
2
i

T
i

2
i

T
ii X,,X,X,1uExuExuVar σ=== K  > 0  ∀ i  

 
3. zero conditional covariances 

 
( ) ( ) 0x,xuuEx,xu,uCov T

s
T
isi

T
s

T
isi ==   ∀ i ≠ s 

 
• A compact way of stating the error normality assumption is:   
 

condtional on , the uT
ix i are iid as N(0, σ2)     

 
where   
 

"iid" means "independently and identically distributed" 
 

N(0, σ2) denotes a normal distribution with zero mean and variance σ2.  
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 Matrix Formulation of the Error Normality Assumption A6 
 

The N×1 error vector u has a multivariate normal distribution with  
 
1. a zero conditional mean vector 

 

( ) 0XuE =  where 0  is an N×1 vector of zeros 
 
2. a constant scalar diagonal covariance matrix V(u) 

 

( ) ( ) N
2T IXuuEXuV σ==  where IN is the N×N identity matrix 

 
• A compact way of stating the error normality assumption in matrix terms is:   
 

( )N
2I,0N~Xu σ   

 
where  here denotes the N-variate normal distribution.   ( ⋅⋅ ,N )

 
 Implications of Assumption A6 for Distribution of the Regressand Vector y   

 
• Linearity Property of Normal Distribution: Any linear function of a normally 

distributed random variable is itself normally distributed.  
 
• y is a linear function of u: The PRE uXy +β=  states that the regressand vector 

y is a linear function of the error vector u.  
 
• Implication: Since u is normally distributed by assumption A6 and y is a linear 

function of u by assumption A1, the linearity property of the normal distribution 
implies that  

 

( )N
2I,XN~Xy σβ . 

 
That is, the regressand vector y has an N-variate normal distribution with 
 
(1) conditional mean vector equal to ( ) β= XXyE   

(2) conditional covariance matrix equal to ( ) N
2IXyV σ= .  
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 The Classical Normal Linear Regression Model -- the CNLR Model 
 

The classical normal linear regression model consists of the population regression 
equation  

 
uXy +β=  (2) 

 
plus Assumptions A1 to A6.  

 
2.  Outline of the Method of Maximum Likelihood 

 
ML estimation involves joint estimation of all the unknown parameters of a 
statistical model. ML estimation therefore requires that the model in question be 
completely specified. Complete specification of the model includes specifying the 
specific form of the probability distribution of the model's random variables.   
 
In the case of the CNLR model, ML estimation involves joint estimation of the 
regression coefficient vector β and the scalar error variance σ2.  
 

3.  ML Estimation of the CNLR Model: Derivation 
 
• Derivation of the ML estimators of K+1 parameters  of the CNLR 

model consists of two main steps:  
),( 2TT σβ=θ

 
Step 1: Formulation of the sample likelihood function for the CNLR model. 
 
Step 2: Maximization of the sample likelihood function with respect to the 

unknown parameters β  and 2σ .   
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STEP 1: Formulation of the Sample Likelihood Function 
 

 First, formulate the probability density function (pdf) for each of the 
individual random error terms ui under the error normality assumption A6.  

 
• The normal pdf. If the random variable yi is normally distributed with mean µ 

and variance  -- i.e., if , then the individual probability density 
function for y

2σ ),(N~y 2
i σµ

i is:  
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
σ
µ−

−πσ=
−

2

2
i212

i 2
)y(exp2)y(f  = 

⎥
⎦

⎤
⎢
⎣

⎡

σ
µ−

−

πσ

2

2
i

2
)y(

2
e

2

1  (3) 

 
• The error normality assumption A6 states the i-th random error term ui has a 

normal distribution with mean 0 and variance 2σ  -- i.e., .   ),0(N~u 2
i σ

 
• The pdf for each ui is therefore 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
σ
−

−πσ=
−

2

2
i212

i 2
)0u(exp2)u(f  = ( ) ⎥

⎦

⎤
⎢
⎣

⎡
σ

−πσ
−

2

2
i212

2
uexp2  (4) 

 
 Second, transform the pdf f(ui) for ui into an equivalent pdf for the observed 

regressand Yi.    
 
• This step is necessary because the random error terms ui are unobservable. We 

therefore need to reformulate the pdf for ui into the corresponding pdf for Yi. The 
pdf for Yi is expressed in terms of the observed sample data  and the 
unknown parameters  of the CNLR model.  

)x,Y( T
ii

),( 2TT σβ=θ
 
1. Use the change-of-variable theorem for probability density functions to 

transform the pdf for ui into the corresponding pdf for Yi:   
 

)u(f
Y
u)Y(f i

i

i
i ∂

∂
=  

 
where  
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i

i

Y
u

∂
∂  =  the absolute value of the partial derivative 

i

i

Y
u

∂
∂  

 =  the Jacobian of the transformation from ui to Yi.   
 

2. In the present case, , so that  β−= T
iii xYu

 

1
Y
u

i

i =
∂
∂   and hence    1

Y
u

i

i =
∂
∂   

 
We therefore have the simple result that  
 

)xY(f)u(f)u(f1)Y(f T
iiiii β−==⋅= . 

 
• Result: Setting  in the pdf for uβ−= T

iii xYu i  
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
σ

−πσ=
−

2

2
i212

i 2
uexp2)u(f  

 
yields the following pdf for Yi:   

 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
σ

β−
−πσ=

−

2

2T
ii212

i 2
)xY(exp2)Y(f . (5) 

 
 Third, construct the joint pdf for the sample of N independent observed 

values of Y.  
 
• The N sample values of the regressand Y are contained in the N×1 regressand 

vector . ( )TN321 YYYYy L=
 
• Assumption A5 of independent random sampling implies that the joint pdf of 

all N sample values of Yi is simply the product of the pdf's of the individual Yi 
values.  
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• Accordingly, the joint pdf of all N sample values of Yi can be written as 
 

( ) ∏
=

=⋅⋅⋅==
N

1i
iN21N21 )Y(f)Y(f)Y(f)Y(fYYYf)y(f LL .  (6) 

 
• Finally, substitute the right-hand side of the normal pdf (5) for Yi in (6) to obtain 

the joint pdf for all N sample values of Y:  
 

)y(f  =  ∏  
=

N

1i
i )Y(f

 

=  ( )∏
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σ
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−πσ
∑
=−

2

N

1i

2T
ii2N2

2

)xY(
exp2  

 

=  ( ) ⎥⎦
⎤

⎢⎣
⎡ β−

σ
−πσ ∑

=

− N

1i

2T
ii2

2N2 )xY(
2

1exp2   

 

=  ( ) [ ]22N2 2)(RSSexp2 σβ−πσ
−

   where  ∑
=

β−≡β
N

1i

2T
ii )xY()(RSS

 
• Result: The joint pdf for the N sample values ( )N21 YYY L  of Y, conditional 

on the sample values of the regressors { : i = 1, …, N}, is   T
ix

 

)y(f  =  ( ) ⎥⎦
⎤

⎢⎣
⎡ β−

σ
−πσ ∑

=

− N

1i

2T
ii2

2N2 )xY(
2

1exp2  

 

=  ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ β−β−

σ
−πσ

− XyXy
2

1exp2 T
2

2N2  

 

=  ( ) ⎥⎦
⎤

⎢⎣
⎡ β

σ
−πσ

− )(RSS
2

1exp2 2

2N2  (7) 

where .  ( ) ( )β−β−=β−≡β ∑
=

XyXy)xY()(RSS TN

1i

2T
ii
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 Fourth, the joint pdf f(y) is the sample likelihood function for the sample of N 
independent observations  =  )x,Y( T

ii ( )ik2i1ii XXX1Y L  i = 1, …, N.   
 
• The key difference between the joint pdf  and the sample likelihood function 

is their interpretation, not their form.  
)y(f

 
The joint pdf  is interpreted as a function of the observable random 
variables  for given values of the parameters 

)y(f
( N21 YYY L ) β ,  and the 

regressors ( ) .  
2σ

k21 XXX L
 
The sample likelihood function is interpreted as a function of the parameters β  
and  for given values of the observable variables 2σ ( )k21 XXXY L . 
 

• To emphasize the difference between the joint pdf of the sample observations and 
the sample likelihood function, we denote the joint pdf as  and the 
sample likelihood function as . (Both the joint pdf of the sample and 
the sample likelihood function are conditional on the regressors X, but we 
suppress this to keep our notation a bit simpler.)  

),;y(f 2σβ
)y;,(L 2σβ

 
The joint pdf of the sample  is a function of the observed Y-values y 
= ( , given the parameters 

),;y(f 2σβ
)N21 YYY L β  and 2σ . 

 

The sample likelihood function  is a function of the model 
parameters β and σ

)y;,(L 2σβ
2, given the sample values y = ( )N21 YYY L  of the 

regressand.  
 
• Apart from this difference in interpretation, the sample likelihood function 

 equals the joint pdf of the sample :   )y;,(L 2σβ ),;y(f 2σβ
 

   =     )y;,(L 2σβ ),;y(f 2σβ

=  ( ) ⎥⎦
⎤

⎢⎣
⎡ β−

σ
−πσ ∑

=

− N

1i

2T
ii2

2N2 )xY(
2

1exp2    (8.1) 

=  ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ β−β−

σ
−πσ

− XyXy
2

1exp2 T
2

2N2    (8.2) 
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STEP 2: Maximization of the Sample Likelihood Function 
 

 First, take the natural logarithm of the sample likelihood function to obtain the 
sample log-likelihood function.   

 
• Rationale: It is easier to maximize the log-likelihood function than it is to 

maximize the original likelihood function (8) because of the exponential term in 
the likelihood function.  

 
• Equivalence of maximizing the likelihood and log-likelihood functions.  
 

Because the natural logarithm is a positive monotonic transformation, the values 
of  and  that maximize the likelihood function  are the same as 
those that maximize the log-likelihood function  = , 
where  >  0.   

β 2σ )y;,(L 2σβ
)y;,(Lln 2σβ )]y;,(Lln[ 2σβ

)y;,(L 2σβ
 
The reason is that, for any individual parameter βj,   
 

j

2 )y;,(Lln
β∂
σβ∂  = 

j

2 )y;,(L
L
1

β∂
σβ∂  = 

L
)y;,(L j

2 β∂σβ∂
  where L > 0. (9) 

 
Thus,  
 

j

2 )y;,(L
β∂
σβ∂  > 0  ⇒  

j

2 )y;,(Lln
β∂
σβ∂  > 0; 

j

2 )y;,(L
β∂
σβ∂  = 0  ⇒  

j

2 )y;,(Lln
β∂
σβ∂  = 0; 

j

2 )y;,(L
β∂
σβ∂  < 0  ⇒  

j

2 )y;,(Lln
β∂
σβ∂  < 0. 
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• Derivation of Sample Log-likelihood Function  
 

 First, obtain the sample log-likelihood function.  
 
• Since  =  by equation (8),  )y;,(L 2σβ ),;y(f 2σβ
 

)y;,(Lln 2σβ  =  (10) ),;y(fln 2σβ
 

• Substitute for  the expression on the right-hand side of (8.1):  ),;y(f 2σβ
 

)y;,(Lln 2σβ  =  ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ β−

σ
−πσ ∑

=

− N

1i

2T
ii2

2N2 )xY(
2

1exp2ln   

 

  =  ( ){ }
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ β−

σ
−+πσ ∑

=

− N

1i

2T
ii2

2N2 )xY(
2

1expln2ln  (11) 

 
• The natural log of the first term on the right-hand side of (11) is obtained using 

the following rule of natural logarithms: ( ) )aln(baln b =  for a > 0. Thus, since 
 > 0,  22πσ

 

( ){ }2N22ln −
πσ  =  ( )22ln

2
N

πσ−  =  ( ) ( )2ln
2
N2ln

2
N

σ−π−  (12) 

 
• The natural log of the second term on the right-hand side of (11) is obtained 

using the following definitional rule of natural logarithms: ( ))]x(fexp[ln  =  
( ) )x(feln )x(f = . Thus,  

 

⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ β−

σ
− ∑

=

N

1i

2T
ii2 )xY(

2
1expln  =  ∑

=
β−

σ
−

N

1i

2T
ii2 )xY(

2
1     (13) 

 
• Substituting the results in (12) and (13) into the right-hand side of equation (11) 

for  yields the sample log-likelihood function  )y;,(Lln 2σβ
 

)y;,(Lln 2σβ  =  ( ) ( )2ln
2
N2ln

2
N

σ−π−  ∑
=

β−
σ

−
N

1i

2T
ii2 )xY(

2
1   
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• Result:  The sample log-likelihood function is 
 

)y;,(Lln 2σβ  = ( ) ( ) ∑
=

β−
σ

−σ−π−
N

1i

2T
ii2

2 )xY(
2

1ln
2
N2ln

2
N  (14.1) 

 

  =  ( ) ( ) ( ) ( β−β−
σ

−σ−π− XyXy
2

1ln
2
N2ln

2
N T

2
2 ) (14.2) 

 

  =  ( ) ( ) )(RSS
2

1ln
2
N2ln

2
N

2
2 β

σ
−σ−π−  (14.3) 

 
 Second, derive the ML estimator of the coefficient vector β.   

 
Step 1: Partially differentiate the log-likelihood function with respect to the 
coefficient vector β.  
 
• Since  
 

)y;,(Lln 2σβ  = ( ) ( ) )(RSS
2

1ln
2
N2ln

2
N

2
2 β

σ
−σ−π−   

 

β∂
σβ∂ )y;,(Lln 2

 = 
β∂
β∂

σ
−

)(RSS
2

1
2  (15) 

 
• Since  
 

)(RSS β  =  =  ( ) ( )β−β− XyXy T ββ+β− XXyX2yy TTTTT

 
the K×1 vector of partial derivatives of )(RSS β  with respect to β is:   
 

β∂
β∂ )(RSS  = 

β∂
ββ∂

+
β∂

β∂
−

XXyX2
TTTT

 (16) 
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• Using the rules of matrix differentiation, we can show that the two partial 
derivatives on the right-hand side of equation (16) are:   

 

yX)yX( T
TT

=
β∂

β∂   and  β=
β∂

ββ∂ XX2)XX( T
TT

    (17) 

 
• Substitution of the partial derivatives (17) into equation (16) for β∂β∂ )(RSS  

yields the following expression for the partial derivatives of  with 
respect to β: 

)(RSS β

 

β∂
β∂ )(RSS  = 

β∂
ββ∂

+
β∂

β∂
−

XXyX2
TTTT

 = .    (18) β+− XX2yX2 TT

 
• Substitute the right-hand side of (18) for β∂β∂ )(RSS  into equation (15) for 

β∂σβ∂ )y;,(Lln 2 :  
 

β∂
σβ∂ )y;,(Lln 2

 = 
β∂
β∂

σ
−

)(RSS
2

1
2   =  ( )β+−

σ
− XX2yX2

2
1 TT

2 .    (19) 

 
Step 2: Obtain the K = k+1 first-order conditions (FOCs) for the ML estimator 
of β by setting the partial derivatives β∂σβ∂ )y;,(Lln 2  in (19) equal to zero.   
 

0)y;,(Lln 2

=
β∂
σβ∂  ⇒  ( ) 0ˆXX2yX2

2
1

ML
TT

2 =β+−
σ

−  

 
⇒       0ˆXX2yX2 ML

TT =β+−     (20) 
 
Note:  The K first-order conditions (20) for the ML coefficient estimator  of β 
are identical to the FOC's for the OLS estimator .  

MLβ̂

OLSβ̂
 

Implication: The FOC's (20) for  thus imply that, for the CNLR model, the 
ML coefficient estimator  equals the OLS estimator :  i.e.,  = . 

MLβ̂

MLβ̂ OLSβ̂ MLβ̂ OLSβ̂
 

 
ECON 452* -- Note 13: Fileid 452note13.doc … Page 13 of 20 pages 
 



ECON 452* -- NOTE 13: ML Estimation of CNLR Model  M.G. Abbott 
 

Step 3: Solve the FOCs for the ML estimator  -- that is, obtain an explicit 
expression for the ML estimator  of β.   

MLβ̂

MLβ̂
 
• Re-arrange matrix equation (20) by dividing both sides by 2 and then adding 

the term  to both sides:  yXT

 
0ˆXX2yX2 ML

TT =β+−       
 

0ˆXXyX ML
TT =β+−  (dividing both sides by 2) 

 
yXˆXX T

ML
T =β  (adding  to both sides)    (21) yXT

 
• Solve for  by pre-multiplying both sides of matrix equation (21) by 

, the inverse of :   
MLβ̂

( ) 1TXX
−

XXT

 
( ) ( ) yXXXˆXXXX T1T

ML
T1T −−

=β  
 

  since ( ) yXXXˆI T1T
MLK

−
=β ( ) K

T1T IXXXX =
−

 
 

( ) yXXXˆ T1T
ML

−
=β  since .  MLMLK

ˆˆI β=β
 

• Result: The ML coefficient estimator  is identical to the OLS estimator .   MLβ̂ OLSβ̂
 

( ) OLS
T1T

ML
ˆyXXXˆ β==β

−
 (22) 
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 Third, derive the ML estimator of the scalar parameter σ2, the error variance.  
 
Step 1: Partially differentiate the log-likelihood function with respect to the 
scalar parameter .  2σ
 
• Since the log-likelihood function is  
 

)y;,(Lln 2σβ  = ( ) ( ) )(RSS
2

1ln
2
N2ln

2
N

2
2 β

σ
−σ−π−   

 
the partial derivative 22 )y;,(Lln σ∂σβ∂  is: 

 

2

2 )y;,(Lln
σ∂
σβ∂  = ⎟

⎠
⎞

⎜
⎝
⎛
σσ∂

∂β
−

σ∂
σ∂

− 222

2 1
2

)(RSSln
2
N  

 

= ( )
2

12

2

2

2
)(RSSln

2
N

σ∂
σ∂β

−
σ∂
σ∂

−
−

 (23) 

 
• The partial derivative 22ln σ∂σ∂  in the first term on the right-hand side of 

(23) is evaluated using the following rule for differentiating natural logs: 
a1aaln =∂∂  for a > 0. Thus 

 

22

2 1ln
σ

=
σ∂
σ∂  (24) 

 
• The partial derivative ( ) 212 σ∂σ∂

−
 in the second term on the right-hand side of 

(24) is evaluated using the following power rule of differentiation: 
1nn anaa −=∂∂ . Thus 

 
( ) ( ) 4

422
2

12 11
σ

−=σ−=σ−=
σ∂
σ∂ −−

−

 (25) 
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• Finally, substitute the partial derivatives (24) and (25) into equation (23) for 
22 )y;,(Lln σ∂σβ∂ : 

 

2

2 )y;,(Lln
σ∂
σβ∂  = ( )

2

12

2

2

2
)(RSSln

2
N

σ∂
σ∂β

−
σ∂
σ∂

−
−

 (23) 

 

= ⎟
⎠
⎞

⎜
⎝
⎛

σ
−

β
−

σ
− 42

1
2

)(RSS1
2
N  

= 42 2
)(RSS

2
N

σ
β

+
σ

−  (26) 

 
Step 2: Obtain the first-order condition (FOC) for the ML estimator of 2σ  by 
setting the partial derivative 22 )y;,(Lln σ∂σβ∂  in (26) equal to zero.   
 

0)y;,(Lln
2

2

=
σ∂
σβ∂  ⇒ 0

ˆ2
)ˆ(RSS

ˆ2
N

4
ML

ML
2
ML

=
σ
β

+
σ

−  (27) 

 
where  denotes the ML estimator of 2

MLσ̂ 2σ  and  denotes the residual 
sum of squares for the ML coefficient estimator:   

)ˆ(RSS MLβ

 
)ˆ(RSS MLβ  =  = . ( ) ( )ML

T

ML
ˆXyˆXy β−β− ML

TT
ML

TT
ML

T ˆXXˆyXˆ2yy ββ+β−
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Step 3: Solve the first-order condition (FOC) for the ML estimator  -- that 
is, obtain an explicit expression for the ML estimator  of .   

2
MLσ̂

2
MLσ̂ 2σ

 
• Subtract the second term in equation (27) from both sides:   

 

0
ˆ2

)ˆ(RSS
ˆ2
N

4
ML

ML
2
ML

=
σ
β

+
σ

−       

 

4
ML

ML
2
ML ˆ2

)ˆ(RSS
ˆ2
N

σ
β

−=
σ

−  (28) 

 
• Multiply both sides of equation (28) by −2:   

 

4
ML

ML
2
ML ˆ

)ˆ(RSS
ˆ
N

σ
β

=
σ

 (29) 

 
• Multiply both sides of equation (29) by  and then divide by N:   4

MLσ̂
 

N
)ˆ(RSS

ˆ
ˆ ML

2
ML

4
ML β

=
σ
σ   ⇒  

N
)ˆ(RSSˆ ML2

ML
β

=σ   

 
This is the expression for the ML estimator  of 2

MLσ̂ 2σ . 
 

• Result:  The ML estimator of  the error variance 2σ  is the residual sum of squares 
divided by sample size N:   

 

N
)ˆ(RSSˆ ML2

ML
β

=σ   =  
N

û

N
ûû

N

1i

2
iT ∑

==  (30) 

 
where  
 

ML
ˆXyû β−=   =  the K×1 ML residual vector  

ML
T
iii

ˆxYû β−=  =  the i-th ML residual (i = 1, …, N).   
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4.  Second Order Conditions for the OLS Coefficient Estimator 
 
Although the second-order conditions for a minimum of the residual sum of squares 
function  with respect to β  are a bit of a technical fine point, it is quite easy 
to state them.  

)ˆ(RSS β ˆ

 
• Recall that the vector of first-order partial derivatives of  with respect to  

are   
)ˆ(RSS β β̂

 

β∂
β∂

ˆ
)ˆ(RSS  = . (18) β+− ˆXX2yX2 TT

 
For given sample data (y, X), these partial derivatives are simply a linear function 
of the coefficient estimator β .  ˆ

 
• The second-order derivatives of  with respect to β  are given by the K×K 

matrix  
)ˆ(RSS β ˆ

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

β∂
β∂

β∂
∂

=
β∂β∂
β∂

ˆ
)ˆ(RSS

ˆˆˆ
)ˆ(RSS

TT

2

 = T

T

ˆ
)ˆXX(2

β∂
β∂ . (31) 

 
We need to evaluate the paritial derivative TT ˆ)ˆXX( β∂β∂  in (31), where the K×1 
vector is a set of K linear functions of the coefficient estimator β .   β̂XXT ˆ

 
♦ Rule : Vector differentiation of a set of linear functions   

 
If f(x) is a set of K linear functions of the K×1 vector x given by 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

∑

∑
∑

=
=

=
=

=
=

)x(f

)x(f
)x(f

xA

xA
xA

x

x
x

AAA

AAA
AAA

xA)x(f

K

2

1

Kj
1j jKj

Kj
1j jj2

Kj
1j jj1

K

2

1

KK2K1K

K22221

K11211

MMM

L

MOMM

L

L
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where A is a K×K matrix, then the K×K matrix vector of partial derivatives of f(x) 
= Ax with respect to the vector x is  

 

A
x

)xA(
T =

∂
∂  or  TA

x
)xA(
=

∂
∂ . (32) 

 
• Apply Rule 3 to the term . Let  and β̂XXT β= ˆx XXA T= .  
 

A
x

)xA(
T =

∂
∂  ⇒  XXˆ

)ˆXX( T
T

T

=
β∂

β∂ . 

 
• The K×K matrix of second-order derivatives of  with respect to  is 

therefore  
)ˆ(RSS β β̂

 

T

2

ˆˆ
)ˆ(RSS

β∂β∂
β∂  = XX2ˆ

)ˆXX(2 T
T

T

=
β∂

β∂ . (33) 

 
• The second-order condition for  to correspond to a minimum of the  

function is that  
OLSβ̂ )ˆ(RSS β

 
XXT   be a positive definite matrix. (34)  

 
• How do we know that  is a positive definite matrix?  It turns out that this is 

ensured by the full rank assumption A5:    
XXT

 
 rank(X) = K ⇒   is positive definite.  XXT
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5.  Statistical Properties of the ML Parameter Estimators 
 
• The ML estimators of β and σ2 share the three large sample properties of all 

ML estimators: consistency, asymptotic efficiency, and asymptotic normality.  
 

1. Consistency: the probability limit of = β; plim( ) = β.  MLβ̂ MLβ̂
 

2. Asymptotic efficiency: Asy Var( ) ≤ Asy Var( ), the asymptotic 

variance of any other consistent estimator j  of β
ML,jβ̂ j

~β
~β j. 

 

3. Asymptotic normality: ( )[ ]1T2
a

ML XX,N~ˆ −
σββ . 

 
• In addition, the ML coefficient estimator  shares the small sample properties 

of the OLS coefficient estimator , since  
MLβ̂

OLSβ̂
 

MLβ̂  =  =  . OLSβ̂ ( ) yXXX T1T −

 
4. Unbiasedness: the mean of = β; E( ) = β.  MLβ̂ MLβ̂

 

5. Efficiency: In the class of all linear unbiased estimators of β,  is the 
minimum variance estimator of β. If  denotes any other linear unbiased 
estimator of β,   

MLβ̂

β~

 
Var( )  =  Var( )  ≤  Var( ) j = 0, 1, 2, …, k. ML,jβ̂ OLS,jβ̂ j

~β
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