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ECON 452* -- NOTE 12 
 

Testing for Heteroskedasticity in Linear Regression Models 
 
This note identifies the two major forms of heteroskedasticity in linear regression 
models and explains commonly used procedures for testing for these two types of 
heteroskedasticity.  
 

1.  Forms of Heteroskedasticity 
 

 The linear regression model is given by the population regression equation:  
 

                (1.1) i
T
i

k

1j
iijj0i uxuXY +β=+β+β= ∑

=

uXy +β=                      (1.2) 
 

where ui is the i.d. (independently distributed) random error term that is suspected 
of being heteroskedastic.   

 
 There are two main forms of heteroskedasticity in linear regression models for 

cross-section data:  
 

(1) pure heteroskedasticity;  
(2) mixed heteroskedasticity.   

 
 Pure heteroskedasticity corresponds to error variances σ  of the form:   i

2

 
    where  > 0      for all i      (2) σ σi

mZ2 2= i Zi
m

 

where:  
 

♦ σ2 > 0 is a finite (positive) constant;  
♦ m is some known pre-specified number;   
♦ Zi is a known observable variable that may or may not be one of the regressors 

in the PRE under consideration.   
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• Examples of Pure Heteroskedasticity:     
 

i
22

i Zσ=σ ,          for all i   0Zi >
 

2
i

22
i Zσ=σ             for all i 

 

i

2
1

i
22

i Z
Z σ

=σ=σ − ,        for all i 0Zi >

 
 Mixed heteroskedasticity corresponds to error variances  of a very general 

form.     
σ i

2

 
• Scalar formulation 
 

( )ipp2i21i10
2
i ZZZh α++α+α+α=σ L ,  ( ) 0h 0 >α   for all i      (3) 

 
where:   
  
♦ h( ) denotes a continuous positively-valued function of some form, called 

the conditional variance function;  
⋅

♦ the Zij (j = 1, ..., p) are known variables;   

♦ the αj (j = 0,1, ..., p) are unknown constant coefficients.   
 
• Vector formulation 
 

( ) 0zh T
i

2
i >α=σ    for all i               (3) 

 
where:   
  
♦ h( ) denotes a continuous positively-valued function of some form, called the 

conditional variance function;   
⋅

♦  is a 1×(p+1) row vector of known variables; ( ip2i1i
T
i ZZZ1z L= )

)♦  is a (p+1)×1 column vector of constant  ( T
p210 αααα=α L

(unknown) coefficients.   
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• Examples of Mixed Heteroskedasticity:  
 
  , α1i10

2
i Zα+α=σ 0 > 0            for all i    

 

             for all i      ( 22
ij2ij10

2
i XX α+α+α=σ )

 

( ) ( )ikk2i21i10
T
i

2
i XXXexpxexp α++α+α+α=α=σ L    for all i    

 
2.  LM Tests for Mixed Heteroskedasticity 

 
 Null and Alternative Hypotheses   

 
Consider the linear regression model for which the population regression equation 
can be written  
 
(1) for the i-th sample observation as 
 

i
T
ii uxY +β=                      (1.1) 

 
(2) for all N sample observations as 
 

uXy +β=                       (1.2) 
 
• The Null Hypothesis of Homoskedastic Errors 
 

H0: ( ) ( ) 0xuExuVar 2T
i

2
i

T
ii >σ==     ∀ i             (4.1) 

 
where σ2 is a finite positive (unknown) constant.   

 
• The Alternative Hypothesis of Mixed Heteroskedastic Errors  
 

H1: ( ) ( ) ( ) 0zhxuExuVar T
i

2
i

T
i

2
i

T
ii >α=σ==    ∀ i         (5.1) 

 
where ( ) ( ) 0ZZZhzh ipp2i21i10

T
i >α++α+α+α=α L  for all i.   
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• Comparison of Null and Alternative Hypotheses 
 

H0: ( ) ( ) 0xuExuVar 2T
i

2
i

T
ii >σ==     ∀ i             (4.1) 

 
H1: ( ) ( ) ( ) 0zhxuExuVar T

i
2
i

T
i

2
i

T
ii >α=σ==    ∀ i         (5.1) 

 
Comparing the null and alternative hypotheses H0 and H1 above, it is apparent that 
a test of the null hypothesis H0 of homoskedastic errors against the alternative 
hypothesis H1 of mixed heteroskedastic errors amounts to testing the null 
hypothesis   
 

H0: αj  =  0 ∀ j = 1, …, p                (4.2) 
 

against the alternative hypothesis 
 

H1: αj  ≠  0    j = 1, …, p                 (5.2) 
 

To see this, note that if all p coefficients αj (j = 1, …, p) of the variables Zij (j = 1, 
…, p) equal zero, then the alternative hypothesis  
 

( ) ( ) 0ZZZhzh ipp2i21i10
T
i

2
i >α++α+α+α=α=σ L   

 
reduces to  
 

( ) 0h 0
2
i >α=σ  where ( )0h α  is a finite positive constant.   

 
In other words, if the p exclusion restrictions αj = 0 ∀ j = 1, …, p are true, then the 
error variance is simply a finite positive constant, which means that the error terms 
ui are homoskedastic.   
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 Rationale for Using an LM (Lagrange Multiplier) Test  
 
• Recall that the LM principle of hypothesis testing performs an hypothesis test 

using only restricted parameter estimates of the model in question computed 
under the null hypothesis.   

 
• An LM test for mixed heteroskedasticity would therefore compute the test statistic 

using only OLS estimates of the model.  
 

♦ This is a considerable practical convenience because estimating the model 
under the alternative hypothesis of mixed heteroskedasticity would require 
estimation procedures much more complicated than OLS.   

 
♦ Consequently, tests that require only the relatively simple and routine 

computations of OLS are substantially easier to perform than either Wald or 
Likelihood Ratio (LR) tests, both of which require estimation of the model 
under the alternative hypothesis of some specific form of mixed 
heteroskedasticity.  

 
• The most widely used LM test for mixed heteroskedasticity is the non-normality 

robust variant of the Breusch-Pagan test proposed by Koenker.  
 

♦ The original Breusch-Pagan LM test for mixed heteroskedasticity depends 
crucially on the assumption of error normality. That is, the asymptotic null 
distribution of the original BP LM test statistic is chi-square with p degrees of 
freedom only if the random errors ui are i.d.  ∀ i = 1, …, N, where 
"i.d." means "independently distributed."    

),0(N 2
iσ

 
♦ The advantage of the Breusch-Pagan-Koenker LM test is that the asymptotic 

null distribution of the BPK LM test statistic is  even if the error terms 
are not normally distributed. The BPK LM test requires only that the u

]p[2χ
i are i.d. 

 ∀ i = 1, …, N, meaning that the random errors are independently 
distributed with zero mean and finite variances . 

),0( 2
iσ

2
iσ
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3. An LM Test for Mixed Heteroskedasticity: The BPK Test 
 

 The BPK LM Test Statistic for Mixed Heteroskedasticity  
 

We first present a general formula for Koenker's non-normality robust variant of 
the BP test statistic.  
 
Since the test is based on the LM principle of hypothesis testing, it requires 
computation of restricted estimates of the model in question under the null 
hypothesis of homoskedastic errors.  
 
These restricted estimates are simply the OLS estimates of the linear regression 
equation , i = 1, …, N:     i

T
ii uxY +β=

 
( ) yXXX~ T1T −

=β  = the OLS estimator of coefficient vector β; 
 

β−= ~Xyu~   =  the N×1 vector of OLS residuals, the i-th element of which  
is β−= ~xYu~ T

iii  (i = 1, …, N);   
 

v~  =  the N×1 vector of squared OLS residuals, i-th element of which is  
    (i = 1, …, N); ( 2T

ii
2
ii

~xYu~v~ β−== )
 

Nu~Nu~u~~ N
1i

2
i

T2
ML ∑ ===σ  = the ML estimator of the constant error  

  variance σ2 under the null hypothesis.  
 
Finally, let Z be the N×(p+1) matrix of observed sample values of the Zij variables 
that enter the conditional variance function under the alternative hypothesis of 
mixed heteroskedastic errors:   
 

⎥
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 The BPK LM test statistic, denoted as LM-BPK, takes the form:   
 

( )
4
ML

T

4
ML

T1TT

~Nv~v~
~Nv~ZZZZv~NBPKLM

σ−
σ−

=−
−

            (6) 

 
Remarks:  The LM-BPK statistic (6) does not appear, at first glance, to be very 
easy to calculate. But there is in fact a simple way to do it.  

 
 Computation of the LM-BPK Test Statistic     

 
• The easiest way to compute the LM-BPK statistic (6) is to estimate by OLS an 

auxiliary regression equation called an LM test regression, and then calculate the 
sample value of LM-BPK from the results of this LM test regression.  

 
• The LM test regression for computing the LM-BPK test statistic consists of an 

OLS regression of the squared OLS residuals from the original regression model, 
, i = 1, …, N, on all the Z( 2T

ii
2
ii

~xYu~v~ β−== ) j variables that appear in the 
conditional variance function specified by the alternative hypothesis H1.  

 
In vector-matrix form, the LM test regression for the BPK test takes the form 
 

eZdv~ +=                     (7.1) 
 
where:   
 

v~  =  the N×1 vector of squared OLS residuals, with i-th element  
   , i = 1, …, N; ( 2T

ii
2
ii

~xYu~v~ β−== )
j

)

 

Z  =  the N×(p+1) matrix of observed sample values of the Z  variables with 
    i-th row , i = 1, …, N; ( )ip2i1i

T
i ZZZ1z L=

 

d  =  , a (p+1) ×1 column vector of coefficients;  ( T
p210 dddd L

 

e  =  an N×1 vector of errors ei, i = 1, …, N.   
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In scalar form, the LM test regression for the BPK test can be written for the  
i-th sample observation as:  
 

i

p

1j
ijp0iipp2i21i10

2
ii eZddeZdZdZddu~v~ ++=+++++== ∑

=
L       (7.2) 

 
• Computational formula for LM-BPK.  Given OLS estimates of the LM test 

regression (7.1)/(7.2), the LM-BPK test statistic can be computed as:   
 

2
û 2RNBPKLM =−                   (8) 

 
where:   
 

222 ûû
2
û TSSESSR =   
  = the R2 from OLS estimation of LM test regression (7); 

 

( ) 4
ML

T1TT
û

~Nv~ZZZZv~ESS 2 σ−=
−

   
   =  the explained sum-of-squares from OLS estimation of LM test  

regression (7); 
 

4
ML

T
û

~Nv~v~TSS 2 σ−=  
   =  the total sum-of-squares from OLS estimation of LM test  

regression (7).  
 

 Asymptotic Null Distribution of the LM-BPK Test Statistic     
 
• Recall the null and alternative hypotheses:  
 

H0: ( ) ( ) ( ) 0hxuExuVar 2
0

T
i

2
i

T
ii >σ=α==       ∀ i   

    implies αj  =  0 ∀ j = 1, …, p 
 

H1: ( ) ( ) ( ) 0zhxuExuVar T
i

2
i

T
i

2
i

T
ii >α=σ==   ∀ i    

implies αj  ≠  0    j = 1, …, p 
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• The null hypothesis H0 of homoskedastic errors imposes p coefficient exclusion 
restrictions αj  =  0  ∀ j = 1, …, p on the conditional variance function ( )αT

izh  = 
( )ipp2i21i10 ZZZh α++α+α+α L  specified by the alternative hypothesis H1.  

 
• The asymptotic null distribution of the LM-BPK statistic is χ2[p], the chi-

square distribution with p degrees of freedom:   
 

]p[~BPKLM 2
a
χ−    under H0.               (9) 

 

where " " means "is asymptotically distributed as."   
a
~

 
Remarks:  
 

♦ Since the null distribution of the LM-BPK statistic is only asymptotically χ2[p], 
the BPK LM test is a large sample test.  

 

♦ The null distribution of LM-BPK is thus only approximately χ2[p] in finite 
samples of any particular size N.   

 
 An Alternative BPK Test Statistic     

 
• In practice, an alternative test statistic -- the BPK F-statistic -- is often used in 

place of the LM-BPK test statistic in computing the BPK LM test for mixed 
heteroskedasticity.  

 
• The BPK F-statistic.  The BPK F-statistic -- denoted as F-BPK --  is also 

calculated using the R-squared  from OLS estimation of the BPK LM test 
regression (7):  

2
û 2R

 

p
)1pN(

)R1(
R

)1pN()R1(
pR

BPKF 2
û

2
û

2
û

2
û

2

2

2

2 −−
−

=
−−−

=−           (10) 

 
Remarks:  
 

♦ The F-BPK test statistic (10) is simply the conventional analysis-of-variance 
F-statistic from OLS estimation of the LM test regression (7).  
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♦ This ANOVA-F statistic, which tests the joint significance of all p OLS slope 
coefficient estimates in the LM test regression, is routinely calculated by the 
OLS estimation commands in most econometric software programs.  

 
• Null distribution of F-BPK.  Under the null hypothesis of homoskedastic errors, 

the F-BPK statistic is distributed approximately as ]1pN,p[F −− , the  
F-distribution with p numerator degrees of freedom and (N−p−1) denominator 
degrees of freedom:  

 

    under H]1pN,p[F~BPKF
app

−−− 0.              (11) 
 

where " " means "is approximately distributed as."   
app
~

 
 Summary of BPK LM Test Procedure for Mixed Heteroskedasticity     

 
1. Estimate by OLS the original linear regression model  
 

i
T
ii uxY +β=    or   uXy +β=  

 
under the null hypothesis of homoskedastic errors to obtain the OLS sample 
regression equation  
 

i
T
ii u~~xY +β=    or   u~~Xy +β=  

 
where 
 

( ) yXXX~ T1T −
=β  = the OLS estimator of coefficient vector β; 

 

β−= ~Xyu~   =  the N×1 OLS residual vector, the i-th element of which  
is β−= ~xYu~ T

iii , i = 1, …, N.     
 
2. Save the OLS residuals β−= ~xYu~ T

iii , i = 1, …, N, and compute the squared 

OLS residuals ( 2T
ii

2
ii )~xYu~v~ β−== , i = 1, …, N.   
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3. Estimate by OLS the BPK LM test regression  
 

eZdv~ +=                     (7.1) 
 

i

p

1j
ijp0iipp2i21i10

2
ii eZddeZdZdZddu~v~ ++=+++++== ∑

=
L       (7.2) 

 

and save the R-squared from this test regression, 222 ûû
2
û TSSESSR = .   

 
4. Calculate the sample value of either the LM-BPK test statistic (8) or the         F-

BPK test statistic (10), and apply the conventional decision rule.  
 

Test Statistics:  
 

2
û 2RNBPKLM =−                      (8) 

 

p
)1pN(

)R1(
R

)1pN()R1(
pR

BPKF 2
û

2
û

2
û

2
û

2

2

2

2 −−
−

=
−−−

=−         (10) 

 
Decision Rule: Let  denote the α-level critical value of the  
distribution, and  the α-level critical value of the 

]p[2
αχ ]p[2χ

]1pN,p[F −−α ]1pN,p[F −−  
distribution.   
 
Reject the null hypothesis H0 of homoskedastic errors at significance level α if  

 

• p-value of LM-BPK < α   or  sample value of LM-BPK >  ]p[2
αχ

• p-value of F-BPK < α   or  sample value of F-BPK > ]1pN,p[F −−α  
 
Retain the null hypothesis H0 of homoskedastic errors at significance level α if  

 

• p-value of LM-BPK ≥ α   or  sample value of LM-BPK ≤  ]p[2
αχ

• p-value of F-BPK ≥ α   or  sample value of F-BPK ≤ ]1pN,p[F −−α  
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4. A Test for Pure Heteroskedasticity: The Goldfeld-Quandt Test 
 
• Suppose you wish to test for the presence of pure heteroskedasticity of the form 

  (i = 1, ..., N) in the linear regression model σ σi
mZ2 2= i

 

i
T
i

k

1j
iijj0i uxuXY +β=+β+β= ∑

=
               (1.1) 

uXy +β=                       (1.2) 
 

where ui is the i.d. (independently distributed) random error term that is suspected 
of being heteroskedastic.   

 
 Null and Alternative Hypotheses   

 
• The Null Hypothesis of Homoskedastic Errors 
 

H0:   =  σσ i
2 2  > 0        ∀  i            (12) 

 
where σ2 is a finite positive (unknown) constant.   

 
• The Alternative Hypothesis of Pure Heteroskedastic Errors  
 

H1: , σσ σi
mZ2 2= i

2 > 0,    > 0  ∀  i             (13)   Zi
m

 
 The Goldfeld-Quandt (G-Q) Test Procedure   

 
The Goldfeld-Quandt (G-Q) test for this form of pure heteroskedasticity consists 
of the following five steps:  

 
• Step 1: Sort the sample observations in ascending order according to the values 

of , from lowest to highest.  Zi
m
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• Step 2: Omit from the sorted sample c central observations, where c is 
arbitrarily chosen to equal some value between N/6 and N/3. This defines two 
subsamples of the original sample: (1) a subsample of low-  observations, 
containing N

Zi
m

L observations; and (2) a subsample of high-  observations, 
containing N

Zi
m

H observations. Usually, the value of c is chosen so that each of the 
two subsamples contains (N − c)/2 observations, so that NL = NH = (N − c)/2.   

 
• Step 3: Estimate separately by OLS the regression equation (1) on each of    

the two subsamples, and retrieve from each subsample regression the 
corresponding sum of squared OLS residuals. Let 

 
RSSL = RSS from the OLS regression on the low-  subsample; Zi

m

RSSH = RSS from the OLS regression on the high-  subsample. Zi
m

 
Note:  Both RSSL and RSSH have the same degrees of freedom when the two 
subsamples have the same number of observations.  That is, in the special case 
when NL = NH = (N − c)/2, dfL = dfH = (N − c)/2 − K = (N − c − 2K)/2.   

 
• Step 4: Compute the sample value of the G-Q test statistic  
 

  
)KN(RSS
)KN(RSS

dfRSS
dfRSS

ˆ
ˆF

LL

HH

LL

HH
2
L

2
H

GQ −
−

==
σ
σ

= .             (14) 

 
♦ Special Case of G-Q Test Statistic 
 

In the special case when NH = NL = (N − c)/2, i.e., when the two subsamples have 
the same number of observations, both RSSH and RSSL have degrees of freedom 
equal to (N − c − 2K)/2; in this case, the G-Q test statistic in (14) takes the form   

 

  
L

H

LL

HH
2
L

2
H

GQ RSS
RSS

)KN(RSS
)KN(RSS

ˆ
ˆF =

−
−

=
σ
σ

= ,             (15) 

 
since (NH − K) = (NL − K) = (N − c − 2K)/2 and the (N − c − 2K)/2 term cancels 
out of the numerator and denominator of FGQ.   
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♦ Null Distribution of the G-Q Test Statistic FGQ    
 

Under the null hypothesis H0 and the assumption that the errors ui are normally 
distributed, the FGQ statistic in (14) and (15) is distributed as the F-distribution 
with numerator degrees of freedom = NH  − K and denominator degrees of freedom 
= (NL − K): i.e., under H0, the null distribution of FGQ is   

 
FGQ  ~   = [ ])KN(),KN(F LH −− [ ]2)K2cN(,2)K2cN(F −−−−   (16) 

 
where the second equality is appropriate in the special case when  
(NH − K) = (NL − K) = (N − c − 2K)/2.   
 

• Step 5: Apply the conventional decision rule for an F-test.   
 
♦ Decision Rule: Let [ )KN(),KN(F LH ]−−α  denote the α-level (or 100α percent) 

critical value of the [ ])KN(),KN(F LH −− -distribution.  
 
Reject the null hypothesis H0 of homoskedastic errors at significance level α if  

 

p-value of FGQ < α   or  sample value of FGQ > [ ])KN(),KN(F LH −−α  

 
Retain the null hypothesis H0 of homoskedastic errors at significance level α if  

 

p-value of FGQ ≥ α   or  sample value of FGQ ≤ [ ])KN(),KN(F LH −−α  

 
♦ Interpretation of the Decision Rule: Note that if the alternative hypothesis H1 is 

true, the calculated value of FGQ will tend to be large. The reason for this is that, 
according to the alternative hypothesis H1, the values of  are larger for the 
high-  subsample than for the low-  subsample. Hence the residual sum of 
squares RSS

σ i
2

Zi
m Zi

m

H for the high-  subsample will tend to be large relative to the 
residual sum of squares RSS

Zi
m

L for the low-  subsample if the alternative 
hypothesis is in fact true.   

Zi
m
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