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ECON 452* -- NOTE 11

Heter oskedasticity-Robust | nferencein Linear Regression M odels
Estimated by OL S

This note does three things:

1. identifies the nature and consequences of heteroskedasticity for estimation and
inference based on OLS estimation;

2. reviews alternative remedies available for estimation and inference in
heteroskedastic errors models;

3. outlines how to perform heteroskedasticity-robust inference in linear
regression models estimated by OLS.

1. Nature of Heter oskedasticity
Assumption A3.1 of the classical linear regression model specifies that the error

terms {u; : 1 =1, ..., N} are homoskedastic, meaning that they have the same
variance for all observations.

Var(u)|x]) = E(uZx7) = E(u2| 1 X1, X0, Xy ) = 07 >0 Vi

where 6 is a finite positive (unknown) constant.

Heter oskedasticity isa violation of assumption A3.1 of the classical linear
regression model (or CLRM). Violation of assumption A3.1 means in general that

Var(ux) = E(u?x7) = E(u2| 1 Xy, Xipr s Xy )= 02 >0 Vi (1)
The “i” subscript on o? indicates that the value of the error variance is no longer

constant, but instead is now a variable that assumes different (finite positive)
values for different observations, i.e., for different sets of regressor values.
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TheError Variance-Covariance Matrix

(62 0 0

0 o O
V=VU=Ew’)={0o 0 &
(0 0 0

Under the assumption of spherical errors (homoskedastic and
nonautor egressive errors), the error variance-covariance matrix is a constant
scalar diagonal matrix with the constant error variance o along the principal

diagonal:

o
0 o
V(u):E(uuT): 0

0
0

0 O

0

0

_ 2
Ol=0c"1,

(2)

where 1, is an NxN identity matrix with 1s along the principal diagonal and
Os in all the off-diagonal cells.

Under the assumption of heter oskedastic and nonautoregressive errors, the
error variance-covariance matrix is an NxN diagonal matrix with ? as the i-th

diagonal element:

= diag(csl2 o’
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2. Consequences of Heter oskedasticity for OL S

e Under the assumptions of the CLRM, which include the homoskedasticity
(constant error variance) assumption, the OL S coefficient estimators B; are

BL UE — meaning they are the Best Linear Unbiased Estimators of the
regression coefficients 3; j =0, 1, ..., k).

In other words, the OLS coefficient estimators Bj exhibit the small-sample

properties of unbiasedness and efficiency: they have minimum variance in
the class of all linear unbiased estimators of the regression coefficients.

The OLS coefficient estimators ﬁj also exhibit the large-sample property of
consistency.

e What arethe consequences of heteroskedastic errors for the desirable
statistical properties of the OLS coefficient estimators?

Heteroskedastic errors have two sets of consequencesfor OL S estimation:

1. consequencesfor the OL S coefficient estimators fsj,j =0,1, ...,k

2. consequencesfor statistical inference based on OL S estimation.
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2.1 Conseguencesfor OL S Coefficient Estimation

In the presence of heteroskedastic errors, the OLS coefficient estimators retain
some of their desirable statistical properties.

1. The OL Scoefficient estimators ﬁj (=0,1,...,k) aredtill unbiased (a small
sample property):

« Inscalar terms: E(ﬁj): B; forallj=0,1, ..., k

« In matrix terms: E(B) =PB.

2. The OL S coefficient estimators ﬁj (=01, ..., k) arestill consistent (a large
sample property):

« Inscalar terms: pIim(Bj) =p; forallj=0,1, ..., k.
« In matrix terms: pIim(B) = B.

However, in the presence of heteroskedastic errors, the OLS coefficient estimators
lose one of their desirable statistical properties, namely the efficiency property.

3. The OL Scoefficient estimators ﬁj (=0,1,...,k) arenolonger efficient,
meaning they are no longer the minimum variance estimators in the class of all
linear unbiased estimators of the regression coefficients, either in small samples
or in large samples.

Var(,) > Var(§,) (=0, 1, ..., k), where f3, denotes the OLS estimator of f;

and [~3] denotes an alternative estimator of 3; that properly takes account of
heteroskedasticity.

The OL S coefficient estimators Bj ( =0,1,...,k) areinefficient in finite
samples of any given size.

The OL S coefficient estimators Bj (=0,1, ..., k) arealso asymptotically
inefficient in large samples.
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2.2 Conseguences for OL S I nference Procedures - Scalar Analysis

Conseguence 1: The OLSformulasfor Var(f}j),j =0,1, ..., k, the variances of

the OLS coefficient estimators f ;» areincorrect in the presence of heteroskedastic
errors.

Assuming Homoskedastic (and Nonautoregressive) Errors

e TheOLSformulafor Var(f}j), the variance of the OLS coefficient estimator

B;, can be written as:

2 2
(6} (6}

- j=0,1, ... k (4)
RSS, TSS,(1-R?)

Var(Bj) =

where c? is the error variance (incorrectly assumed to be constant), and the
quantities RSS;, TSS; and Rf in formula (4) are sample statistics from the

auxiliary OLS regression of X; on all the other regressors in the regression
model, including the constant term.

+ This auxiliary OL S sampleregression equation for regressor X; can be
written for the i-th sample observation as:

Xij=Dbjo + byXis + DXy + -+ b 14X 1 + D) X jrg o+ DXy + 5 (5)

where:

?ij = the OLS residual for observation i from auxiliary regression (5);

Mz

RSS; =

J Fijz = the residual sum-of-squares from auxiliary regression (5);

1

N — v .
TSS, = E(Xij - X j) = the total sum-of-squares of the regressand Xj; in
auxiliary regression (5);

RJ? =1- (RSSJ./TSSJ.) = the R-squared from auxiliary regression (5).
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Assuming Heteroskedastic (and Nonautoreqgressive) Errors

e Inthepresenceof heteroskedastic errors, the correct formula for Var(ﬁj),

the variance of the OLS coefficient estimator B ;b IS

Var(p,) = 2o = = 20,1, ..k (6)

where

ol = Var(ui\ x,T) = the unknown conditional error variance for the i-th
random error in regression model (1);

r; = thei-th OLS residual from auxiliary regression (5);

N
I\2 _ - ag= -
RSS; = Erij = the residual sum-of-squares from auxiliary regression (5).

Conseguence 2: The OL Sestimator of theerror variance, denoted as 6°, is
biased and inconsistent in the presence of heteroskedastic errors.

o The formula for the OLS error variance estimator &2 is:

N
~2
rss U
N-K N-K°

~ 2
(0

(7)

 The bias of 6> means that E(G%) # o°.

 The inconsistency of 6°means that plim(6®) # o°.
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Conseguence 3: Consequences 1 and 2 imply that the OL S estimator of Var(Bj),

the variance of the OLS coefficient estimator ﬁj, is biased and inconsistent in the
presence of heteroskedastic errors.

o Recall that the OLS estimator of Var(B ;) is obtained by substituting the OLS

error variance estimator 6> for o”in the OLS formula for Var(Bj) given by
equation (4):

~ (A G’ G’ :
Varlp. | = = =0,1, ..., k 8
5. RSS, _ TSS,A-R%) ®

+ The bias of Vér(Bj) means that E(Vér(Bj)) # Var(Bj).
+ The inconsistency of Vér(Bj) means that pIim(Vér(Bj)) # Var(Bj).

e Intuition: There are two distinct reasons why Vér(Bj) , the OLS estimator of

Var(B ;), Is biased and inconsistent in the presence of heteroskedastic errors.

Reason 1: The OL Svariance estimator Vér(ﬁj) uses the wrong formulafor

Var([ASj ). In the presence of heteroskedastic errors,

N
NEND -
Var(f) = 2 x-S =01, ...,k
)7 (Rss)” ~ Rss

]

Reason 2: The OL Svariance estimator Var (ﬁj) uses a biased and
inconsistent estimator of the error variance 2.

E(6%)#0o° = &7 is abiased estimator of ¢°

plim(6°) 26> = &7 isan inconsistent estimator of o°

RESUL T: OLS statistical inference procedures for hypothesistesting and
interval estimation are invalid in the presence of heter oskedastic errors.
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2.3 Conseguencesfor OL S Inference Procedures- Matrix Analysis

Conseguence 1: The OLSformulafor the variance-covariance matrix of the

OL S coefficient estimator isincorrect in the presence of heteroskedastic errors.

Assuming Homoskedastic (and Nonautoregressive) Errors

The OLS formula for the variance-covariance matrix of the OL S coefficient
estimator B is:

~

V(B) = csz(XTX)_1 = a KxK symmetric positive definite matrix. (9)

Remember that formula (9) for V(B) Is derived using the assumption that the
error covariance matrix takes the form

100 - 0
010 - 0

V(U)=E")=c?0 0 1 - 0[=6%l,
000 - 1]

where |, is an NxN identity matrix with 1s along the principal diagonal and
Os in all the off-diagonal cells.

Assuming Heteroskedastic (and Nonautoregressive) Errors

The correct formula of the variance-covariance matrix of the OL S coefficient
estimator B in heteroskedastic and nonautoregressive errors models is:

A -1 -1

V() = v = (X"X) " XTVX(XTX) (10)

where V is a general heteroskedastic error covariance matrix with diagonal
elements o7 i =1, ..., N and zeros in all off-diagonal cells.
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The general error covariance matrix for heteroskedastic and nonautoregressive

errors models is:

s2 0 0 0 |
0 o5 0 0
V:diag(csf G, G5 - 62N)= 0 0 o’ 0
0 0 O oy

Since V is an NxN diagonal matrix, its inverse V™ takes the form:

iz 0 O 0
G,
0 iz 0 0
. 1 1 1 02
V*=diag| > = — | = 1
g(cf c: o G,Z\I\J 0 0 — 0
G,
O 0 O iz
i On _

Consequence 2: The OL S estimator of theerror variance, denoted as 67, is
biased and inconsistent in the presence of heteroskedastic errors.

Recall that the formula for 62is:

N
~2
~Rrss  gg U
N-K N-K N-K°

(7)

~2

The bias of 6°means that E(6°) # o°.

The inconsistency of 6>means that plim(G?) # o°.
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Conseguence 3: Consequences 1 and 2 imply that the OL S estimator of V(B), the

variance-covariance matrix of the OLS coefficient estimator [3 , Isbiased and
inconsistent in the presence of heteroskedastic errors.

e The OLSestimator of V(B), the variance-covariance matrix of B , 1S obtained
by replacing the unknown scalar constant 6° in formula (9) with the estimator

62 =0"0/N-K = z /N K:

\A/OLS(ﬁ) = VOLS =G (X X) (11)

« Intuition: There are two distinct reasons why V., (B), the OLS estimator of
V(B) , IS biased and inconsistent in the presence of heteroskedastic errors.

Reason 1: The OL Svariance estimator \A/OLS(E) uses the wrong formula for
V( B ). In the presence of heteroskedastic errors,

Vors(B) = Vs = (XTX)"XTVX(XTX)™ % 02(XTX)™

Reason 2: The OL Svariance estimator \70LS([§) uses a biased and
inconsistent estimator of theerror variance ¢°.

E(G%) # o = &7 is abiased estimator of ¢°
plim(6°) 26> =  &° isan inconsistent estimator of o°

Implication: &(X"X )" is a biased and inconsistent estimator of o?(X"X]".

RESUL T: OLS statistical inference procedures for hypothesistesting and
interval estimation are invalid in the presence of heter oskedastic errors.
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3. Strategies for Dealing with Heter oskedasticity

There are two basic strategies for dealing with linear regression models in which
the errors are suspected of being heteroskedastic.

Strategy 1. GLS estimation that fully accounts for heteroskedasticity

o Use an alternative estimator that is efficient relative to OLS and that properly
accounts for the heteroskedasticity in both estimation and inference.

Generalized Least Squares estimators, or GLS estimators, constitute such a
class of alternative estimators.

e Advantages: GLS estimation has two advantages over OLS.

1. GLS estimation procedures are efficient relative to OLS, at least in
sufficiently large samples. In other words, GLS is asymptotically efficient
relative to OLS.

2. GLS estimation procedures account for heteroskedastic errors in estimating
the coefficient variances and covariances, and therefore yield valid
inferences.

o Disadvantage: The major drawback of GLS estimation is that it requiresprior
knowledge of the form of the heter oskedasticity on the part of the
investigator.

This requirement is often difficult or impossible to satisfy in practice because
the range of forms that heteroskedastic errors can take is very large.
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Strategy 2: OLS estimation with heteroskedasticity-robust inference procedures

e Use the OLS estimator even though it is inefficient, but modify the
conventional OLS coefficient variance estimators to make them consistent in
the presence of heteroskedasticity of unknown form.

o Advantages:

1. Using heteroskedasticity-consistent estimators of the variances and
covariances of the OLS coefficient estimates means that infer ences based
on the OL Sestimates will be valid, at least in sufficiently large samples.

2. The investigator does not need to know the specific form the
heter oskedasticity in order to make valid statistical inferences — i.e., in
order to perform valid hypothesis tests.

o Disadvantages: The major disadvantage of this strategy is that the OL S
coefficient estimator isinefficient in the presence of heteroskedastic errors.

However, the inefficiency of OLS relative to GLS can be at least partially
mitigated by using sufficiently large samples of data.
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4. OL Swith Heter oskedasticity-Robust I nference
In this section we show how to obtain consistent estimators of the variances of
OLS coefficient estimates in the presence of heteroskedasticity of unknown form.
The analysis is presented first in scalar terms, then in more general matrix terms.

4.1 OLSwith Heter oskedasticity-Robust | nference - Scalar Analysis

e In the presence of heteroskedastic and nonautoregressive errors, the correct
formula for the variance of the OLS coefficient estimator §3; is:

Var(p,) = -2 = o001,k (12)

where

ol = Var(ui\ x,T) = the unknown conditional error variance for the i-th
random error in regression model (1).

Fij = the i-th OLS residual from auxiliary regression (5);

Mz

?ijz = the residual sum-of-squares from auxiliary regression (5);

i=1

and auxiliary regression (5) is the OLS regression of the regressor X; on all the
other k—1 regressors in the regression model, including the constant term:

Xij=bjo+bpXig +0pXip 440 14X g + 051X g + o+ D X + ?ij (5)

Note: Formula (12) cannot be computed from sample data because the
conditional error variances {c?: i =1, ..., N} are unknown.
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o A Heteroskedasticity-Consistent Estimator of Var(Bj)

White (1980) showed that a consistent estimator of Var(B ;) in the presence of
heteroskedasticity of unknown form is

Vir ()= 2 =5 j=01, ..k (13)

J

where:

lAJi =Y, —Bo - leil - BZXiZ T kaik
the i-th OLS residual from OLS estimation of regression equation (1);

7

i the i-th OLS residual from auxiliary regression (5);

Mz

fijz = the residual sum-of-squares from auxiliary regression (5).

i=1

Comments

+ The key difference between Var(Bj) in (12) and VérHc(ﬁj) in (13) is that the
unknown error variances{c?2: i =1, ..., N} in (12) have been replaced in
(13) by the squared OL Sresiduals{{?: i =1, ..., N} from OLS estimation
of the regression equation Y, =Xx/B+u..

+ A technical problem with formula (13) for the heteroskedasticity-consistent
estimator of Var(;) is that it can yield estimates of Var(f3;) that, though

consistent, are sometimes downward biased, or "too small”, in small
samples.

The fix for this problem is to apply a degrees-of-freedom correction to
Var,. (B;) in (13).
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o Finite Sample Adjustment to VérHC(Bj)

It is common practice to apply a degr ees-of-freedom adjustment to Var,,. (Bj)

in (13) to correct for its small-sample bias. The most common adjustment
consists of multiplying the formulain (13) by theratio N/N-K .

The degr ees-of-freedom adjusted heter oskedasticity-consistent estimator of
Var(B,) is therefore:

N
N 3 F202

~ (a N o~ (a ShEi
J

> 1.

Note: VérHCl(Bj) > VérHC(Bj) because NN

But the difference between VérHCl(fsj) and VérHC(fsj) becomes negligible in
large samples because
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4.2 OLSwith Heter oskedasticity-Robust | nference - Matrix Analysis

e The correct formula of the variance-covariance matrix of the OL S coefficient
estimator B in heteroskedastic and nonautoregressive errors models is:

~

V() = vy = (XTX)TXTVX(XTX) (15)

where V =V(u) =E(uu") is the diagonal error covariance matrix

62 0 0 - 0
0 2 0 - 0

V=diaglc? o2 o - o4)=|0 0 o - 0| (16)
(0 0 0 - o

« Note: The matrix Vf5 = V(B) in (15) cannot be computed from sample data

because the conditional error variances {c>: i =1, ..., N} are unknown.

« Special Case: The form of the matrix Vf5 = V(B) for homoskedastic and

nonautoregressive errors models — the classical linear regression model —is a
special case of the above matrix.

For homoskedastic and nonautoregressive errors models, the error covariance
matrix V takes the form

V =V(Q) = E(uuT) = o’l,, = aconstant scalar diagonal matrix.
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Substituting V = &°l,, into formula (15) for VB yields:

<
I

(XTX) " XTVX(XTX]) ™ from formula (15)

X
(XTX)'XT (0?1 X(XTX)" setting V =61,
X

= 2( TX)ﬁleI X(XTX)f1 since o is a scalar constant
= G2 (XTX) " XTX(X"X) " since X1, X = X"X
- 2(xT ', since X X(X™X)" =1,

X)

since (XX )1, =(X™X] ™.

o A Heteroskedasticity-Consistent Estimator of V(f%)

. White's (1980) heter oskedasticity-consistent estimator of the matrix st:

V( ﬁ) for heteroskedastic and nonautoregressive errors models is obtained by
simply replacing the unknown error variances {c’:i=1, ..., N} in error
covariance matrix (16) with the corresponding squared OL Sresiduals {07: i =
1, ..., N} from OLS estimation of the regression equation Y, = x/B+u,.

That is, replace matrix V = diag(csf c. o5 - ci) with
02 0 0 0 |
0 02 0 0
dlag( a; a2 OZN) =0 0 3 0 (17)
(0 0 0 - 0%
Then substitute V in (17) for V in matrix formula (15):
V() = v, = (XX XTVx(XTX) (15)
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The result of this substitution is:

A~

Vie = (XX XTUX(XTX) (18)

Matrix equation (18) is the heteroskedasticity-consistent estimator of the
coefficient variance-covariance matrix Vﬁ = V() for heteroskedastic and

nonautoregressive errors models.

e TheAdjusted Heter oskedasticity-Consistent Estimator of V(f})

It is common practice to apply a degrees-of-freedom correction to the matrix in
formula (18) to mitigate the small-sample downward bias of the HC covariance

matrix estimator V.

The most widely used adjustment consists of multiplying the matrix estimator
V,c in (18) by the ratio N/N - K.

The degrees-of-freedom adjusted heter oskedasticity-consistent estimator of
Var(B) is therefore:

Ve, = ﬁ%c - ﬁ(xTx)’le\A/x(xTx)‘l. (19)

o Computation of the HC Covariance Matrix Estimators \7HC and \A/HCl

Tedious matrix manipulations would be required to calculate from scratch the
value of V. in (18) or V., in (19) for any OLS sample regression equation.

Fortunately, modern econometric software makes such laborious computations
unnecessary. Options on OLS estimation commands usually make it very
simple to compute heteroskedasticity-consistent estimates of the variances and
covariances of OLS coefficient estimates.
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« Computing the Adjusted HC Covariance Matrix Estimator V,,, in Stata

Stata incorporates a robust option on the regress command to compute the
adjusted HC covariance matrix estimator V,, in (19).

For example, to estimate by OLS the regression equation
Y, = Bo + leil + BZXiZ + B3Xi3 + B4Xi4 +U;

and compute the adjusted HC coefficient covariance estimator V,,., in (19),
simply enter the following regress command with the robust option:

regress y x1 x2 x3 x4, robust
matrix VHC1 = e(V)

« The regress command computes all coefficient standard errors, t-ratios and
confidence intervals using the covariance estimator V,, in (19).

. The matrix command saves V,, in the matrix VHC1, which in this case is a
5x5 symmetric positive definite matrix.
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5. Heter oskedasticity-Robust Hypothesis Testswith OL S
O General Setup for Testsof Linear Coefficient Restrictions

1. All t-tests and F-tests of linear coefficient restrictions on the regression
coefficient vector 3 in linear regression equations of the form Y, = x/B +u, can

be formulated in general terms as tests of the following null and alternative
hypotheses:

Null hypothesis Ho: RB=r (20)
Alternative hypothesis H;: RB =1

where:

R =a gxK matrix of specified constants;
B = the Kx1 regression coefficient vector;

r = a gx1 vector of specified constants.
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2. Wald F-dtatistic: In Note 10, we introduced the following general Wald F-
statistic for testing the q linear coefficient restrictions R =r:

1 (RB-r(RVRT)*(RB-r)

Fuvalp = aW = ~ F[g, N=K] under Hyg (21)

where:

-1

W = (RB—r)T(R\A/ﬁ RT) (Rﬁ—r) ~ y*[q] = the general Wald statistic;

A~

st = a consistent estimator of OLS coefficient covariance matrix VB X

F[g,N —K] = the F-distribution with q numerator and N-K denominator
degrees of freedom.

3. The OLSWald F-statistic is obtained by using the OLS coefficient covariance
matrix estimator in place of Vﬁ in (21):

AT 1A
Fw = %WOLS = (RB—r) (RVOGS RT) (RB—r) ~ F[g, N—K] under Hy  (22)

where

W, = (RB— r)T(RVOLS RT)_l(RB— r) - %’[q] = the OLS Wald statistic

B = (XTX)_lXTy = the unrestricted OLS estimator of j;

~

Vo = 62(XTX)_1 = the OLS estimator of V; , the covariance matrix of
the unrestricted OLS estimator Bof B,

N 02

i 1

U _ i3 = the unrestricted OLS estimator of o2
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4. Computation of Fy:

The Wald F-statistic (22) can be computed using only the unrestricted OL S
coefficient estimates B and a consistent estimate V = V(B) of the variance-

covariance matrix of B :

Both the coefficient estimator [3 and the variance-covariance matrix estimator
% = V/(B) must at least be consistent.

In heteroskedastic and nonautoregressive errors models that conform to all the
other assumptions of the classical linear regression model:

+ the OL S coefficient estimator ﬁ is both unbiased and consistent;

+ but the OL S estimator \70LS of the variance-covariance matrix for  given
in equation (11) is biased and inconsistent.

Heter oskedasticity-Robust Testsof Linear Coefficient Restrictions

General Idea: Use either of the heteroskedasticity-consistent, or
heteroskedasticity-robust, estimators of Vf5 in computing the Wald and Wald F-

statistics.

Heter oskedasticity-robust Wald tests can be performed using either of the
following Wald statistics:

W,e = RE-r) (RVue RT)(RE-r) = #2[q] under Hy (23)

Wie = (RB=1) (RVue,RT)*(RB=r) = %?[q] under Ho (24)

But heteroskedasticity-robust Wald tests are large sample tests only. In linear
regression models, we normally use heteroskedasticity-robust F tests rather than
heteroskedasticity-robust Wald tests.
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e Heteroskedasticity-robust F tests can be performed using either of the
following heter oskedasticity-robust Wald F-statistics:

- Lw,e = RE—r) (RVc R (RE -r) 2 Flq, N—K] under H,  (25)

O Summary. We have three alternative estimator s of the coefficient
covariance matrix V(B ):

1. The OLSestimator is biased and inconsistent in the presence of
heteroskedastic errors.

A~

Vois = 62(X™X)" (11)
where

N
o
62 = ud _ RSS ==L = the OLS estimator of c°.
N-K N-K N-K

0. =Y, B, —BX, —B, X, = =P X, = i-th OLS residual, i = 1, ..., N.
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2. The unadjusted HC estimator is biased but consistent in the presence of
heteroskedastic errors.

Vie = (XX XTUX(XTX] (18)
where:
02 0 0 0
0 @2 0 0
V=diag(d? @2 @ a2)=|0 0 02 0 (17)
0 0 O 02 |
0, =Y, —B, —BX;, —B,X;, —--- =B X, =i-th OLS residual, i =1, ..., N.

3. The adjusted HC estimator is less biased and consistent in the presence of
heteroskedastic errors.
v N = N () XTUx(XTX) (19)

Vo = — N, =
HC1 N — K HC N — K

Implication: For testing linear coefficient restrictions in linear regression
models with heteroskedastic and nonautoregressive errors, use Wald F-

statistics that employ either the unadjusted HC estimator \A/HC or the adjusted
HC estimator \A/HCl of the coefficient covariance matrix V().
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