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ECON 452* -- NOTE 11 
 

Heteroskedasticity-Robust Inference in Linear Regression Models 
Estimated by OLS 

 
This note does three things: 
 
1. identifies the nature and consequences of heteroskedasticity for estimation and 

inference based on OLS estimation;  
2. reviews alternative remedies available for estimation and inference in 

heteroskedastic errors models;   
3. outlines how to perform heteroskedasticity-robust inference in linear 

regression models estimated by OLS.  
 

1.  Nature of Heteroskedasticity 
 
Assumption A3.1 of the classical linear regression model specifies that the error 
terms {ui : i = 1, …, N} are homoskedastic, meaning that they have the same 
variance for all observations.  
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where σ2 is a finite positive (unknown) constant.   

 
Heteroskedasticity is a violation of assumption A3.1 of the classical linear 
regression model (or CLRM). Violation of assumption A3.1 means in general that  
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The “i” subscript on  indicates that the value of the error variance is no longer 
constant, but instead is now a variable that assumes different (finite positive) 
values for different observations, i.e., for different sets of regressor values.   
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The Error Variance-Covariance Matrix 
 
• 

• 

)

Under the assumption of spherical errors (homoskedastic and 
nonautoregressive errors), the error variance-covariance matrix is a constant 
scalar diagonal matrix with the constant error variance σ2 along the principal 
diagonal:   
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where  is an N×N identity matrix with 1s along the principal diagonal and 
0s in all the off-diagonal cells.     

IN

 
Under the assumption of heteroskedastic and nonautoregressive errors, the 
error variance-covariance matrix is an N×N diagonal matrix with  as the i-th 
diagonal element:  
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… (3)  
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2. Consequences of Heteroskedasticity for OLS 
 
• Under the assumptions of the CLRM, which include the homoskedasticity 

(constant error variance) assumption, the OLS coefficient estimators  are 
BLUE – meaning they are the 

jβ̂
Best Linear Unbiased Estimators of the 

regression coefficients βj (j = 0, 1, …, k).  
 

In other words, the OLS coefficient estimators  exhibit the small-sample 
properties of unbiasedness and efficiency: they have minimum variance in 
the class of all linear unbiased estimators of the regression coefficients.  

jβ̂

 
The OLS coefficient estimators  also exhibit the large-sample property of 
consistency.  

jβ̂

 
• What are the consequences of heteroskedastic errors for the desirable 

statistical properties of the OLS coefficient estimators?   
 

Heteroskedastic errors have two sets of consequences for OLS estimation:  
 

1. consequences for the OLS coefficient estimators , j = 0, 1, …, k;  jβ̂

2. consequences for statistical inference based on OLS estimation.  
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2.1 Consequences for OLS Coefficient Estimation  
 
In the presence of heteroskedastic errors, the OLS coefficient estimators retain 
some of their desirable statistical properties.  
 
1. The OLS coefficient estimators  (j = 0, 1, …, k) are still unbiased (a small 

sample property):  
jβ̂

 

• In scalar terms:   E( ) = βjβ̂ j  for all j = 0, 1, …, k.  
 

• In matrix terms:  E(β ) = β. ˆ
 
2. The OLS coefficient estimators  (j = 0, 1, …, k) are still consistent (a large 

sample property):  
jβ̂

 

• In scalar terms:   plim( ) = βjβ̂ j  for all j = 0, 1, …, k.  
 

• In matrix terms:  plim(β ) = β. ˆ
 
However, in the presence of heteroskedastic errors, the OLS coefficient estimators 
lose one of their desirable statistical properties, namely the efficiency property.  
 
3. The OLS coefficient estimators  (j = 0, 1, …, k) are no longer efficient, 

meaning they are no longer the minimum variance estimators in the class of all 
linear unbiased estimators of the regression coefficients, either in small samples 
or in large samples.    

jβ̂

 

( ) ( )jj
~VarˆVar β≥β  (j = 0, 1, …, k), where  denotes the OLS estimator of βjβ̂ j 

and  denotes an alternative estimator of βj
~β j that properly takes account of 

heteroskedasticity.   
 

The OLS coefficient estimators  (j = 0, 1, …, k) are inefficient in finite 
samples of any given size.   

jβ̂

The OLS coefficient estimators  (j = 0, 1, …, k) are also asymptotically 
inefficient in large samples.    

jβ̂
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2.2 Consequences for OLS Inference Procedures - Scalar Analysis   
 
Consequence 1: The OLS formulas for Var( ), j = 0, 1, …, k, the variances of 

the OLS coefficient estimators , are incorrect in the presence of heteroskedastic 
errors.   

jβ̂

jβ̂

 
Assuming Homoskedastic (and Nonautoregressive) Errors 
 
• The OLS formula for Var( ), the variance of the OLS coefficient estimator 

, can be written as:   
jβ̂

jβ̂
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where  is the error variance (incorrectly assumed to be constant), and the 
quantities RSS

2σ
j, TSSj and  in formula (4) are sample statistics from the 

auxiliary OLS regression of X

2
jR

j on all the other regressors in the regression 
model, including the constant term.  

 
♦ This auxiliary OLS sample regression equation for regressor Xj can be 

written for the i-th sample observation as:  
 

ijikjk1j,i1j,j1j,i1j,j2i2j1i1j0jij r̂Xb̂Xb̂Xb̂Xb̂Xb̂b̂X ++++++++= ++−− LL  (5) 
 

where:  
 

ijr̂  = the OLS residual for observation i from auxiliary regression (5); 

∑
=

=
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2
ijj r̂RSS  = the residual sum-of-squares from auxiliary regression (5); 
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2
jijj XXTSS ) = the total sum-of-squares of the regressand Xij in 

         auxiliary regression (5);  
 

( jj
2
j TSSRSS1R −= ) = the R-squared from auxiliary regression (5). 
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Assuming Heteroskedastic (and Nonautoregressive) Errors
 

• In the presence of heteroskedastic errors, the correct formula for Var( ), 

the variance of the OLS coefficient estimator , is:   
jβ̂

jβ̂
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where  
 

( )T
ii

2
i xuVar=σ  = the unknown conditional error variance for the i-th  

  random error in regression model (1);  
 

ijr̂  = the i-th OLS residual from auxiliary regression (5); 

∑
=

=
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1i

2
ijj r̂RSS  = the residual sum-of-squares from auxiliary regression (5).  

 
Consequence 2: The OLS estimator of the error variance, denoted as , is 
biased and inconsistent in the presence of heteroskedastic errors.    

2σ̂

 

• The formula for the OLS error variance estimator 2σ̂ is:  
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• The bias of means that E(2σ̂ 2σ̂ ) ≠ 2σ . 

 

• The inconsistency of means that plim(2σ̂ 2σ̂ ) ≠ 2σ .   
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Consequence 3: Consequences 1 and 2 imply that the OLS estimator of Var( ), 

the variance of the OLS coefficient estimator , is biased and inconsistent in the 
presence of heteroskedastic errors.   

jβ̂

jβ̂

 
• Recall that the OLS estimator of Var( ) is obtained by substituting the OLS 

error variance estimator for 
jβ̂

2σ̂ 2σ in the OLS formula for Var( ) given by 
equation (4):  

jβ̂
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♦ The bias of means that )ˆ(râV jβ ( ) )ˆ(Var)ˆ(râVE jj β≠β . 

♦ The inconsistency of means that )ˆ(râV jβ ( ) )ˆ(Var)ˆ(râVlimp jj β≠β . 
 

• Intuition: There are two distinct reasons why , the OLS estimator of 

Var( ), is biased and inconsistent in the presence of heteroskedastic errors.  

)ˆ(râV jβ
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Reason 1: The OLS variance estimator  uses the wrong formula for 

Var( ). In the presence of heteroskedastic errors,  
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Reason 2: The OLS variance estimator  uses a biased and 
inconsistent estimator of the error variance 

)ˆ(râV jβ
2σ .  

 
22 )ˆ(E σ≠σ    ⇒  2σ̂  is a biased estimator of 2σ  

22 )ˆ(limp σ≠σ   ⇒  2σ̂  is an inconsistent estimator of  2σ
 
RESULT: OLS statistical inference procedures for hypothesis testing and 
interval estimation are invalid in the presence of heteroskedastic errors.   
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2.3 Consequences for OLS Inference Procedures - Matrix Analysis
 
Consequence 1: The OLS formula for the variance-covariance matrix of the 
OLS coefficient estimator is incorrect in the presence of heteroskedastic errors.   
 
Assuming Homoskedastic (and Nonautoregressive) Errors 
 
• The OLS formula for the variance-covariance matrix of the OLS coefficient 

estimator β  is:   ˆ
 

( ) ( ) 1T2 XXˆV −
σ=β  = a K×K symmetric positive definite matrix.    (9) 

 
Remember that formula (9) for V(β ) is derived using the assumption that the 
error covariance matrix takes the form 

ˆ
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where  is an N×N identity matrix with 1s along the principal diagonal and 
0s in all the off-diagonal cells.     

IN

 
Assuming Heteroskedastic (and Nonautoregressive) Errors
 
• The correct formula of the variance-covariance matrix of the OLS coefficient 

estimator β  in heteroskedastic and nonautoregressive errors models is:   ˆ
 

( ) ( ) ( ) 1TT1T
ˆ XXXVXXXVˆV
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where V is a general heteroskedastic error covariance matrix with diagonal 
elements  i = 1, …, N and zeros in all off-diagonal cells.  2

iσ
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The general error covariance matrix for heteroskedastic and nonautoregressive 
errors models is:  
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Since V is an N×N diagonal matrix, its inverse  takes the form: 1V−
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Consequence 2: The OLS estimator of the error variance, denoted as , is 
biased and inconsistent in the presence of heteroskedastic errors.    

2σ̂

 

• Recall that the formula for is:  2σ̂
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♦ The bias of means that E(2σ̂ 2σ̂ ) ≠ 2σ . 
 

♦ The inconsistency of means that plim(2σ̂ 2σ̂ ) ≠ 2σ .   
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Consequence 3: Consequences 1 and 2 imply that the OLS estimator of V(β ), the 
variance-covariance matrix of the OLS coefficient estimator β , is biased and 
inconsistent in the presence of heteroskedastic errors.   

ˆ
ˆ

 
• The OLS estimator of V(β ), the variance-covariance matrix of β , is obtained 

by replacing the unknown scalar constant σ
ˆ ˆ

2  in formula (9) with the estimator 
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• Intuition: There are two distinct reasons why , the OLS estimator of 
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Reason 1: The OLS variance estimator  uses the wrong formula for 
V(β ).  In the presence of heteroskedastic errors,  
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Reason 2: The OLS variance estimator  uses a biased and 
inconsistent estimator of the error variance 
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22 )ˆ(E σ≠σ    ⇒  2σ̂  is a biased estimator of 2σ  

22 )ˆ(limp σ≠σ   ⇒  2σ̂  is an inconsistent estimator of  2σ
 

Implication:   is a biased and inconsistent estimator of . ( ) 1T2 XXˆ −
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RESULT: OLS statistical inference procedures for hypothesis testing and 
interval estimation are invalid in the presence of heteroskedastic errors.   
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3. Strategies for Dealing with Heteroskedasticity 
 
There are two basic strategies for dealing with linear regression models in which 
the errors are suspected of being heteroskedastic.  
 
Strategy 1: GLS estimation that fully accounts for heteroskedasticity   
 
• Use an alternative estimator that is efficient relative to OLS and that properly 

accounts for the heteroskedasticity in both estimation and inference.  
 

Generalized Least Squares estimators, or GLS estimators, constitute such a 
class of alternative estimators.  
 

• Advantages:  GLS estimation has two advantages over OLS.   
 

1. GLS estimation procedures are efficient relative to OLS, at least in 
sufficiently large samples. In other words, GLS is asymptotically efficient 
relative to OLS.  

 
2. GLS estimation procedures account for heteroskedastic errors in estimating 

the coefficient variances and covariances, and therefore yield valid 
inferences.  

 
• Disadvantage:  The major drawback of GLS estimation is that it requires prior 

knowledge of the form of the heteroskedasticity on the part of the 
investigator.  

 
This requirement is often difficult or impossible to satisfy in practice because 
the range of forms that heteroskedastic errors can take is very large.   
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Strategy 2: OLS estimation with heteroskedasticity-robust inference procedures 
 
• Use the OLS estimator even though it is inefficient, but modify the 

conventional OLS coefficient variance estimators to make them consistent in 
the presence of heteroskedasticity of unknown form.  

 
• Advantages:    
 

1. Using heteroskedasticity-consistent estimators of the variances and 
covariances of the OLS coefficient estimates means that inferences based 
on the OLS estimates will be valid, at least in sufficiently large samples.  

 
2. The investigator does not need to know the specific form the 

heteroskedasticity in order to make valid statistical inferences – i.e., in 
order to perform valid hypothesis tests.     

 
• Disadvantages: The major disadvantage of this strategy is that the OLS 

coefficient estimator is inefficient in the presence of heteroskedastic errors.  
 

However, the inefficiency of OLS relative to GLS can be at least partially 
mitigated by using sufficiently large samples of data.   
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4. OLS with Heteroskedasticity-Robust Inference 
 
In this section we show how to obtain consistent estimators of the variances of 
OLS coefficient estimates in the presence of heteroskedasticity of unknown form. 
The analysis is presented first in scalar terms, then in more general matrix terms.  
 
4.1 OLS with Heteroskedasticity-Robust Inference - Scalar Analysis
 
• In the presence of heteroskedastic and nonautoregressive errors, the correct 

formula for the variance of the OLS coefficient estimator  is:   jβ̂
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where  

 
( )T

ii
2
i xuVar=σ  = the unknown conditional error variance for the i-th  

  random error in regression model (1). 

ijr̂  = the i-th OLS residual from auxiliary regression (5); 

∑
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=
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1i

2
ijj r̂RSS  = the residual sum-of-squares from auxiliary regression (5); 

 
and auxiliary regression (5) is the OLS regression of the regressor Xj on all the 
other k−1 regressors in the regression model, including the constant term:   
 

ijikjk1j,i1j,j1j,i1j,j2i2j1i1j0jij r̂Xb̂Xb̂Xb̂Xb̂Xb̂b̂X ++++++++= ++−− LL  (5) 
 
Note: Formula (12) cannot be computed from sample data because the 
conditional error variances { : i = 1, …, N} are unknown.   2

iσ
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• A Heteroskedasticity-Consistent Estimator of Var( ) jβ̂
 

White (1980) showed that a consistent estimator of Var( ) in the presence of 
heteroskedasticity of unknown form is 

jβ̂
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where:   

 
ikk2i21i10ii XˆXˆXˆˆYû β−−β−β−β−= L   

 =  the i-th OLS residual from OLS estimation of regression equation (1); 

ijr̂  = the i-th OLS residual from auxiliary regression (5); 

∑
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=
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2
ijj r̂RSS  = the residual sum-of-squares from auxiliary regression (5). 

 
Comments  
 
♦ The key difference between Var( ) in (12) and  in (13) is that the 

unknown error variances { : i = 1, …, N} in (12) have been replaced in 
(13) by the squared OLS residuals { : i = 1, …, N} from OLS estimation 
of the regression equation .  

jβ̂ )ˆ(râV jHC β
2
iσ
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♦ A technical problem with formula (13) for the heteroskedasticity-consistent 

estimator of Var( ) is that it can yield estimates of Var( ) that, though 
consistent, are sometimes downward biased, or "too small", in small 
samples.  

jβ̂ jβ̂

 
The fix for this problem is to apply a degrees-of-freedom correction to 

 in (13).   )ˆ(râV jHC β
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• Finite Sample Adjustment to  )ˆ(râV jHC β
 

It is common practice to apply a degrees-of-freedom adjustment to  
in (13) to correct for its small-sample bias.  The most common adjustment 
consists of multiplying the formula in (13) by the ratio 

)ˆ(râV jHC β

KNN − .  
 
The degrees-of-freedom adjusted heteroskedasticity-consistent estimator of 
Var( ) is therefore: jβ̂
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But the difference between  and  becomes negligible in 
large samples because  
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4.2 OLS with Heteroskedasticity-Robust Inference - Matrix Analysis
 
• The correct formula of the variance-covariance matrix of the OLS coefficient 

estimator β  in heteroskedastic and nonautoregressive errors models is:   ˆ
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• Note:  The matrix  = V(β ) in (15) cannot be computed from sample data 

because the conditional error variances { : i = 1, …, N} are unknown.   
β̂V ˆ

2
iσ

 
• Special Case: The form of the matrix  = V(β ) for homoskedastic and 

nonautoregressive errors models – the classical linear regression model – is a 
special case of the above matrix.  

β̂V ˆ

 
For homoskedastic and nonautoregressive errors models, the error covariance 
matrix V takes the form 
 

( ) N
2T IuuE)u(VV σ===  =  a constant scalar diagonal matrix.   
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Substituting  into formula (15) for  yields:  N
2IV σ= β̂V

 
    =  ( )     from formula (15) β̂V ( ) 1TT1T XXXVXXX −−

   =  ( ) ( ) ( ) 1T
N

2T1T XXXIXXX −−
σ    setting  N

2 IV σ=

   =  ( ) ( ) 1T
N

T1T2 XXXIXXX −−
σ    since 2σ  is a scalar constant 

  =  ( ) ( ) 1TT1T2 XXXXXX −−
σ     since  XXXIX T

N
T =

  =         since ( ) N
1T2 IXX −

σ ( ) N
1TT IXXXX =

−  

  =         since ( ) 1T2 XX −
σ ( ) ( 1T

N
1T XXIXX −−

= ) . 
 

• A Heteroskedasticity-Consistent Estimator of V(β ) ˆ
 

• White's (1980) heteroskedasticity-consistent estimator of the matrix = 

V(β ) for heteroskedastic and nonautoregressive errors models is obtained by 
simply replacing the unknown error variances { : i = 1, …, N} in error 
covariance matrix (16) with the corresponding squared OLS residuals { : i = 
1, …, N} from OLS estimation of the regression equation .    

β̂V
ˆ

2
iσ

2
iû

iii uxY +β= Τ

 
That is, replace matrix ( )2

N
2
3

2
2

2
1diagV σσσσ= L  with  

 

( ) .

û000

0û00
00û0
000û

ûûûûdiagV̂

2
N

2
3

2
2

2
1

2
N

2
3

2
2

2
1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

L

MOMMM

L

L

L

L     (17) 

 

Then substitute  in (17) for V in matrix formula (15):   V̂
 

( ) ( ) ( ) 1TT1T
ˆ XXXVXXXVˆV

−−

β ==β              (15) 
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The result of this substitution is:  
 

( ) ( ) 1TT1T
HC XXXV̂XXXV̂

−−
= .               (18) 

 
Matrix equation (18) is the heteroskedasticity-consistent estimator of the 
coefficient variance-covariance matrix = V(β ) for heteroskedastic and 

nonautoregressive errors models.  
β̂V ˆ

 
• The Adjusted Heteroskedasticity-Consistent Estimator of V(β ) ˆ

 
It is common practice to apply a degrees-of-freedom correction to the matrix in 
formula (18) to mitigate the small-sample downward bias of the HC covariance 
matrix estimator .  HCV̂
 
The most widely used adjustment consists of multiplying the matrix estimator 

 in (18) by the ratio HCV̂ KNN − .  
 
The degrees-of-freedom adjusted heteroskedasticity-consistent estimator of 
Var( ) is therefore: β̂
 

( ) ( ) 1TT1T
HC1HC XXXV̂XXX

KN
NV̂

KN
NV̂

−−

−
=

−
= .        (19) 

 
• Computation of the HC Covariance Matrix Estimators  and   HCV̂ 1HCV̂
 

Tedious matrix manipulations would be required to calculate from scratch the 
value of  in (18) or  in (19) for any OLS sample regression equation.   HCV̂ 1HCV̂
 
Fortunately, modern econometric software makes such laborious computations 
unnecessary. Options on OLS estimation commands usually make it very 
simple to compute heteroskedasticity-consistent estimates of the variances and 
covariances of OLS coefficient estimates.   
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• Computing the Adjusted HC Covariance Matrix Estimator  in Stata 1HCV̂
 
Stata incorporates a robust option on the regress command to compute the 
adjusted HC covariance matrix estimator  in (19).  1HCV̂
 
For example, to estimate by OLS the regression equation  
 

i4i43i32i21i10i uXXXXY +β+β+β+β+β=   
 

and compute the adjusted HC coefficient covariance estimator  in (19), 
simply enter the following regress command with the robust option:   

1HCV̂

 
regress y x1 x2 x3 x4, robust 
matrix VHC1 = e(V) 

 
• The regress command computes all coefficient standard errors, t-ratios and 

confidence intervals using the covariance estimator  in (19).  1HCV̂
 

• The matrix command saves  in the matrix VHC1, which in this case is a 
5×5 symmetric positive definite matrix.  

1HCV̂
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5. Heteroskedasticity-Robust Hypothesis Tests with OLS 
 

 General Setup for Tests of Linear Coefficient Restrictions  
 
1. All t-tests and F-tests of linear coefficient restrictions on the regression 

coefficient vector β in linear regression equations of the form  can 
be formulated in general terms as tests of the following null and alternative 
hypotheses:  

iii uxY +β= Τ

 
 Null hypothesis H0:   Rβ = r             (20) 
 

 Alternative hypothesis H1: Rβ ≠ r 
 
where:   
 
 R = a q×K matrix of specified constants;  
 

 β = the K×1 regression coefficient vector; 
 

 r = a q×1 vector of specified constants.  
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2. Wald F-statistic: In Note 10, we introduced the following general Wald F-
statistic for testing the q linear coefficient restrictions Rβ = r:  

 
( ) ( ) ( )

]KN,q[F~
q

rˆRRV̂RrˆR
W

q
1F

1T
ˆ

T

WALD −
−β−β

==

−

β  under H0     (21) 

 
where:   

 
( ) ( ) ( ) ]q[~rˆRRV̂RrˆRW 21T

ˆ

T
χ−β−β=

−

β
 = the general Wald statistic; 

 

β̂V̂  = a consistent estimator of OLS coefficient covariance matrix ; β̂V
 

]KN,q[F −   =  the F-distribution with q numerator and N−K denominator 
     degrees of freedom.  

 
3. The OLS Wald F-statistic is obtained by using the OLS coefficient covariance 

matrix estimator in place of  in (21):  β̂V̂

 
( ) ( ) ( ) ]KN,q[F~

q
rˆRRV̂RrˆRW

q
1F

1T
OLS

T

OLSW −
−β−β

==
−

 under H0    (22) 

 
where  
 

( ) ( ) ( ) ]q[~rˆRRV̂RrˆRW 2
a1T

OLS

T

OLS χ−β−β=
−

 = the OLS Wald statistic 

 
( ) yXXXˆ T1T −

=β   =  the unrestricted OLS estimator of β;  
 

( ) 1T2
OLS XXˆV̂

−
σ=  =  the OLS estimator of , the covariance matrix of β̂V

  the unrestricted OLS estimator β of β,  ˆ
 

KN

û

KN
ûû

KN
RSSˆ

N

1i

2
iT

12

−
=

−
=

−
=σ

∑
=  =  the unrestricted OLS estimator of σ2.  
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4. Computation of FW:  
 

• The Wald F-statistic (22) can be computed using only the unrestricted OLS 
coefficient estimates β  and a consistent estimate  =  of the variance-

covariance matrix of β .   

ˆ
β̂V̂ )ˆ(V̂ β

ˆ
 
• Both the coefficient estimator β  and the variance-covariance matrix estimator 

 =  must at least be consistent.   

ˆ

β̂V̂ )ˆ(V̂ β

 
• In heteroskedastic and nonautoregressive errors models that conform to all the 

other assumptions of the classical linear regression model:  
 

♦ the OLS coefficient estimator β  is both unbiased and consistent;  ˆ

♦ but the OLS estimator  of the variance-covariance matrix for β  given 
in equation (11) is biased and inconsistent.  

OLSV̂ ˆ

 
 Heteroskedasticity-Robust Tests of Linear Coefficient Restrictions  

 
• General Idea: Use either of the heteroskedasticity-consistent, or 

heteroskedasticity-robust, estimators of  in computing the Wald and Wald F-

statistics.  
β̂V

 
• Heteroskedasticity-robust Wald tests can be performed using either of the 

following Wald statistics:  
 

( ) ( ) ( ) ]q[~rˆRRV̂RrˆRW 2
a1T

HC
T

HC χ−β−β=
−

 under H0      (23) 
 

( ) ( ) ( ) ]q[~rˆRRV̂RrˆRW 2
a1T

1HC
T

1HC χ−β−β=
−

 under H0     (24) 
 

But heteroskedasticity-robust Wald tests are large sample tests only. In linear 
regression models, we normally use heteroskedasticity-robust F tests rather than 
heteroskedasticity-robust Wald tests.  
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• Heteroskedasticity-robust F tests can be performed using either of the 
following heteroskedasticity-robust Wald F-statistics:  

 
( ) ( ) ( ) ]KN,q[F~

q
rˆRRV̂RrˆRW

q
1F

a1T
HC

T

HCHC −
−β−β

==
−

 under H0     (25) 

 
( ) ( ) ( ) ]KN,q[F~

q
rˆRRV̂RrˆRW

q
1F

a1T
1HC

T

1HC1HC −
−β−β

==
−

 under H0   (26) 

 
 

 Summary.  We have three alternative estimators of the coefficient 
covariance matrix V(β ): ˆ

 
1. The OLS estimator is biased and inconsistent in the presence of 

heteroskedastic errors.   
 

 

( ) 1T2
OLS XXˆV̂

−
σ=                   (11) 

 
where   
 

KN

û

KN
RSS

KN
ûûˆ

N

1i

2
iT

2

−
=

−
=

−
=σ

∑
=  =  the OLS estimator of 2σ . 

 
ikk2i21i10ii XˆXˆXˆˆYû β−−β−β−β−= L  = i-th OLS residual, i = 1, …, N. 
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2. The unadjusted HC estimator is biased but consistent in the presence of 
heteroskedastic errors. 

 
( ) ( ) 1TT1T

HC XXXV̂XXXV̂
−−

=                (18) 
 

where: 
  

( ) .

û000

0û00
00û0
000û

ûûûûdiagV̂

2
N

2
3

2
2

2
1

2
N

2
3

2
2

2
1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

L

MOMMM

L

L

L

L       (17) 

 
ikk2i21i10ii XˆXˆXˆˆYû β−−β−β−β−= L  = i-th OLS residual, i = 1, …, N. 

 
3. The adjusted HC estimator is less biased and consistent in the presence of 

heteroskedastic errors. 
 

( ) ( ) 1TT1T
HC1HC XXXV̂XXX

KN
NV̂

KN
NV̂

−−

−
=

−
=        (19) 

 
 
• Implication: For testing linear coefficient restrictions in linear regression 

models with heteroskedastic and nonautoregressive errors, use Wald F-
statistics that employ either the unadjusted HC estimator  or the adjusted 
HC estimator  of the coefficient covariance matrix V( ). 

HCV̂

1HCV̂ β̂
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