ECON 452* -- The Skinny on NOTE 10

Testing Linear Coefficient Restrictions in Linear Regression Models: The Fundamentals

This note outlines the fundamentals of statistical inference in linear regression models.

• **In scalar notation**, the population regression equation, or PRE, for the linear regression model is written in general as:

$$Y_{i} = \beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \dots + \beta_{k} X_{ik} + u_{i} \forall i$$
 (1.1)

or

$$Y_{i} = \beta_{0} + \sum_{j=1}^{j=k} \beta_{j} X_{ij} + u_{i}$$
 $\forall i$ (1.2)

or

$$Y_{i} = \sum_{i=0}^{j=k} \beta_{j} X_{ij} + u_{i} , \qquad X_{i0} = 1 \ \forall i$$
 (1.3)

where

 $Y_i =$ the i-th population value of the regressand, or dependent variable;

 X_{ij} = the i-th population value of the j-th regressor, j = 1, ..., k;

 $\beta_i = \text{the partial slope coefficient of } X_{ii}, j = 1, ..., k;$

 $u_i = the i-th$ population value of the unobservable random error term.

• In vector-matrix notation, the population regression equation, or PRE, for a sample of N observations on a linear regression model can be written as:

$$y = X\beta + u \tag{2}$$

where
$$y = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ \vdots \\ Y_N \end{bmatrix} = \text{ the N} \times 1 \text{ regressand vector}$$

= the $N\times1$ column vector of observed sample values of the regressand, or dependent variable, Y_i (i=1,...,N);

$$\mathbf{u} = \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \mathbf{u}_3 \\ \vdots \\ \mathbf{u}_N \end{bmatrix} = \text{ the N} \times 1 \text{ error vector}$$

= the $N\times1$ column vector of unobserved random error terms u_i (i=1,...,N) corresponding to each of the N sample observations.

$$X = \begin{bmatrix} x_1^T \\ x_2^T \\ x_3^T \\ \vdots \\ x_N^T \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1k} \\ 1 & X_{21} & X_{22} & \cdots & X_{2k} \\ 1 & X_{31} & X_{32} & \cdots & X_{3k} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & X_{N1} & X_{N2} & \cdots & X_{Nk} \end{bmatrix} = \text{ the N} \times K \text{ regressor matrix}$$

= the N×K matrix of observed sample values of the K = k + 1 regressors X_{i0} , X_{i1} , X_{i2} , ..., X_{ik} (i = 1, ..., N), where the first regressor is a constant equal to 1 for all observations ($X_{i0} = 1 \forall i = 1, ..., N$).

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} = \text{ the K} \times 1 \text{ regression coefficient vector}$$

- = the K×1 or $(k+1)\times 1$ column vector of unknown partial regression coefficients β_i , j = 0, 1, ..., k.
- Statistical inference consists of both
 - 1. **testing hypotheses** on the regression coefficient vector β and
 - 2. **constructing confidence intervals** for the individual elements of β .

1. Assumption A6: The Error Normality Assumption

In order to perform statistical inference in the linear regression model, it is necessary to specify the form of the probability distribution of the error vector u in population regression equation (1). The normality assumption does this.

□ Scalar Formulation of the Error Normality Assumption A6

The random error terms u_i are *independently* and *identically* distributed as the *normal* distribution with

1. zero conditional means

$$E(u_i|x_i^T) = E(u_i) = 0 \quad \forall i$$

2. constant conditional variances

$$Var(u_i|x_i^T) = E(u_i^2|x_i^T) = E(u_i^2|1, X_{i1}, X_{i2}, ..., X_{ik}) = \sigma^2 > 0$$
 $\forall i$

3. zero conditional covariances

$$Cov(u_i, u_s | x_i^T, x_s^T) = E(u_i u_s | x_i^T, x_s^T) = 0 \qquad \forall i \neq s$$

• A compact way of stating error normality assumption A6 is:

conditional on
$$x_i^T$$
, the u_i are iid as $N(0, \sigma^2)$ (A6.1)

where

"iid" means "independently and identically distributed"

 $N(0, \sigma^2)$ denotes a normal distribution with zero mean and variance σ^2 .

Even more briefly, we can say that

$$\mathbf{u}_{i} \mid \mathbf{x}_{i}^{\mathrm{T}}$$
 are iid as N(0, σ^{2}). (A6.2)

☐ Matrix Formulation of the Error Normality Assumption A6

The N×1 error vector u has a multivariate normal distribution with

1. a zero conditional mean vector

$$E(u|X) = \underline{0}$$
 where $\underline{0}$ is an N×1 vector of zeros

2. a constant scalar diagonal covariance matrix V(u)

$$V(u|X) = E(uu^T|X) = \sigma^2 I_N$$
 where I_N is the N×N identity matrix

• A compact way of stating the error normality assumption in matrix terms is:

$$\mathbf{u} \mid \mathbf{X} \sim \mathbf{N} \big(\underline{\mathbf{0}}, \mathbf{\sigma}^2 \mathbf{I}_{\mathbf{N}} \big) \tag{A6}$$

where $N(\cdot, \cdot)$ here denotes the N-variate normal distribution.

☐ Implications of Assumption A6 for the Distribution of the Regressand Vector y

- **Linearity Property of Normal Distribution:** Any linear function of a normally distributed random variable is itself normally distributed.
- y is a linear function of u: The PRE $y = X\beta + u$ states that the regressand vector y is a linear function of the error vector u.
- *Implication:* Since u is normally distributed by assumption A6 and y is a linear function of u by assumption A1, the linearity property of the normal distribution implies that

$$y | X \sim N(X\beta, \sigma^2 I_N).$$

That is, the regressand vector y has an N-variate normal distribution with

- (1) **conditional mean vector** equal to $E(y|X) = X\beta$ and
- (2) conditional covariance matrix equal to $V(y|X) = \sigma^2 I_N$.

\Box Implications of Assumption A6 for the Distribution of the OLS Coefficient Estimator $\hat{\beta}$

• $\hat{\beta}$ is a linear function of y. Conditional on the regressors X, the OLS coefficient estimator $\hat{\beta}$ is a linear function of the regressand vector y:

$$\hat{\beta}_{OLS} = \hat{\beta} = (X^T X)^{-1} X^T y$$

• *Implication:* Since y is normally distributed by implication of assumption A6 and $\hat{\beta}$ is a linear function of y, the linearity property of the normal distribution implies that

$$\hat{\beta} | X \sim N(\beta, \sigma^2(X^T X)^{-1}). \tag{3}$$

That is, the OLS coefficient estimator $\hat{\beta}$ has a K-variate normal distribution with

- (1) conditional mean vector equal to $E(\hat{\beta} \, \Big| \, X) = \beta$ and
- (2) **conditional covariance matrix** equal to $V(\hat{\beta} | X) = \sigma^2 (X^T X)^{-1}$.

2. Formulation of Linear Equality Restrictions on β

The general hypothesis to be tested is that the coefficient vector β satisfies a set of q independent linear restrictions, where q < K. We formulate this general hypothesis in vector-matrix form, since this corresponds to the way in which econometric software such as *Stata* is written.

The **null hypothesis** H_0 is written in general as:

$$H_0$$
: $R\beta = r \Leftrightarrow R\beta - r = \underline{0}$

The alternative hypothesis H_1 is written in general as:

$$H_1$$
: $R\beta \neq r \Leftrightarrow R\beta - r \neq 0$

In H₀ and H₁ above:

 $R = a q \times K$ matrix of specified constants;

 β = the K×1 coefficient vector;

 $r = a q \times 1$ vector of specified constants;

 $0 = a \neq 1$ null vector, i.e., $a \neq 1$ vector of zeros.

• The q×K restrictions matrix R takes the form

$$R = \begin{bmatrix} r_{10} & r_{11} & r_{12} & \cdots & r_{1k} \\ r_{20} & r_{21} & r_{22} & \cdots & r_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_{q0} & r_{q1} & r_{q2} & \cdots & r_{qk} \end{bmatrix}$$

where

 r_{mj} = the constant on coefficient β_i in the m-th linear restriction, m = 1, ..., q.

• The $q \times 1$ restrictions vector r takes the form

$$\mathbf{r} = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \vdots \\ \mathbf{r}_q \end{bmatrix}$$

where

 r_m = the constant term in the m-th linear restriction, m = 1, ..., q.

• The matrix-vector product R β is a q×1 vector of linear functions of the regression coefficients $\beta_0, \beta_1, \beta_2, \dots, \beta_k$:

$$R\beta = \begin{bmatrix} r_{10} & r_{11} & r_{12} & \cdots & r_{1k} \\ r_{20} & r_{21} & r_{22} & \cdots & r_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_{q0} & r_{q1} & r_{q2} & \cdots & r_{qk} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} = \begin{bmatrix} r_{10}\beta_0 + r_{11}\beta_1 + r_{12}\beta_2 + \cdots + r_{1k}\beta_k \\ r_{20}\beta_0 + r_{21}\beta_1 + r_{22}\beta_2 + \cdots + r_{2k}\beta_k \\ \vdots \\ r_{q0}\beta_0 + r_{q1}\beta_1 + r_{q2}\beta_2 + \cdots + r_{qk}\beta_k \end{bmatrix}$$

$$(q \times K) \qquad (K \times 1) \qquad (q \times 1)$$

• The null and alternative hypotheses can therefore be written as follows:

$$H_{0}: R\beta = r \implies \begin{bmatrix} r_{10}\beta_{0} + r_{11}\beta_{1} + r_{12}\beta_{2} + \cdots + r_{1k}\beta_{k} \\ r_{20}\beta_{0} + r_{21}\beta_{1} + r_{22}\beta_{2} + \cdots + r_{2k}\beta_{k} \\ \vdots \\ r_{q0}\beta_{0} + r_{q1}\beta_{1} + r_{q2}\beta_{2} + \cdots + r_{qk}\beta_{k} \end{bmatrix} = \begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{q} \end{bmatrix}$$

$$H_{1} \colon R\beta \neq r \quad \Rightarrow \quad \begin{bmatrix} r_{10}\beta_{0} + r_{11}\beta_{1} + r_{12}\beta_{2} + \dots + r_{1k}\beta_{k} \\ r_{20}\beta_{0} + r_{21}\beta_{1} + r_{22}\beta_{2} + \dots + r_{2k}\beta_{k} \\ \vdots \\ r_{q0}\beta_{0} + r_{q1}\beta_{1} + r_{q2}\beta_{2} + \dots + r_{qk}\beta_{k} \end{bmatrix} \neq \begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{q} \end{bmatrix}$$

Some Specific Examples

Consider the linear regression model given by the PRE

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \beta_{4}X_{i4} + u_{i} \qquad (i = 1, ..., N)$$
(4)

Test 1

The null and alternative hypotheses are:

 H_0 : $β_2 = 0$ one linear restriction on coefficient vector β

 H_1 : $\beta_2 \neq 0$

• The restrictions matrix R in this case is the 1×5 row vector:

$$R = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}.$$

• The restrictions vector r is in this case the scalar 0 since there is only one restriction specified by the null hypothesis H₀:

$$r = 0$$
.

• The matrix-vector product $R\beta$ in this case is:

$$R\beta = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix} = 0\beta_0 + 0\beta_1 + 1\beta_2 + 0\beta_3 + 0\beta_4 = \beta_2$$

• The null hypothesis H_0 : $R\beta = r$ is therefore the single equation:

$$H_0$$
: $\beta_2 = 0$

Test 2

The PRE is again

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \beta_{4}X_{i4} + u_{i} \qquad (i = 1, ..., N)$$
(4)

The null and alternative hypotheses are:

 H_0 : $β_1 = 0$ and $β_2 = 0$ two linear restrictions on coefficient vector β

 H_1 : $\beta_1 \neq 0$ and/or $\beta_2 \neq 0$

• The restrictions matrix R in this case is the 2×5 row vector:

$$R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

• The restrictions vector r is in this case the 2×1 column vector of zeros:

$$\mathbf{r} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• The matrix-vector product $R\beta$ in this case is:

$$R\beta = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix} = \begin{bmatrix} 0\beta_0 + 1\beta_1 + 0\beta_2 + 0\beta_3 + 0\beta_4 \\ 0\beta_0 + 0\beta_1 + 1\beta_2 + 0\beta_3 + 0\beta_4 \end{bmatrix} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$

• The null hypothesis H_0 : $R\beta = r$ is therefore the matrix equation:

$$H_0$$
: $\begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ which says " $\beta_1 = 0$ and $\beta_2 = 0$ "

Test 3

The PRE is again

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \beta_{4}X_{i4} + u_{i} \qquad (i = 1, ..., N)$$
(4)

The null and alternative hypotheses are:

H₀:
$$\beta_1 = \beta_3$$
 and $\beta_2 = -\beta_4$ or $\beta_1 - \beta_3 = 0$ and $\beta_2 + \beta_4 = 0$ $(q = 2)$
H₁: $\beta_1 \neq \beta_3$ and/or $\beta_2 \neq \beta_4$ or $\beta_1 - \beta_3 \neq 0$ and/or $\beta_2 + \beta_4 \neq 0$

• The restrictions matrix R in this case is the 2×5 row vector:

$$R = \begin{bmatrix} 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}$$

• The restrictions vector r is in this case the 2×1 column vector of zeros:

$$\mathbf{r} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• The matrix-vector product Rβ in this case is:

$$R\beta = \begin{bmatrix} 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix} = \begin{bmatrix} 0\beta_0 + 1\beta_1 + 0\beta_2 - 1\beta_3 + 0\beta_4 \\ 0\beta_0 + 0\beta_1 + 1\beta_2 + 0\beta_3 + 1\beta_4 \end{bmatrix} = \begin{bmatrix} \beta_1 - \beta_3 \\ \beta_2 + \beta_4 \end{bmatrix}$$

• The null hypothesis H_0 : $R\beta = r$ is therefore the matrix equation:

H₀:
$$\begin{bmatrix} \beta_1 - \beta_3 \\ \beta_2 + \beta_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 which says " $\beta_1 - \beta_3 = 0$ and $\beta_2 + \beta_4 = 0$ "

Test 4

The PRE is again

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \beta_{4}X_{i4} + u_{i} \qquad (i = 1, ..., N)$$
(4)

The null and alternative hypotheses are:

H₀:
$$\beta_1 + 2\beta_2 = \beta_3 + 2\beta_4$$
 or $\beta_1 + 2\beta_2 - \beta_3 - 2\beta_4 = 0$ (q = 1)
H₁: $\beta_1 + 2\beta_2 \neq \beta_3 + 2\beta_4$ or $\beta_1 + 2\beta_2 - \beta_3 - 2\beta_4 \neq 0$

• The restrictions matrix R in this case is the 1×5 row vector:

$$R = \begin{bmatrix} 0 & 1 & 2 & -1 & -2 \end{bmatrix}$$

• The restrictions vector r is in this case the 1×1 scalar 0:

$$r = 0$$

• The matrix-vector product R β in this case is the 1×1 scalar:

$$R\beta = \begin{bmatrix} 0 & 1 & 2 & -1 & -2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \end{bmatrix} = \begin{bmatrix} 0\beta_0 + 1\beta_1 + 2\beta_2 - 1\beta_3 - 2\beta_4 \end{bmatrix}$$
$$= \beta_1 + 2\beta_2 - \beta_3 - 2\beta_4$$

• The null hypothesis H_0 : $R\beta = r$ is therefore the equation:

$$H_0$$
: $\beta_1 + 2\beta_2 - \beta_3 - 2\beta_4 = 0$

3. The Three Principles of Hypothesis Testing

- Given the null hypothesis H_0 : $R\beta r = \underline{0}$ and the alternative hypothesis H_1 : $R\beta r \neq \underline{0}$, there are **two** alternative sets of parameter estimates of the PRE $y = X\beta + u$ that one might use to compute a test statistic.
 - 1. The *restricted* parameter estimates computed under H_0 : $R\beta r = 0$, which are denoted as follows:

 $\widetilde{\beta}$ = the *restricted* OLS estimator of β ;

 $\widetilde{u} = y - X\widetilde{\beta}$ = the *restricted* OLS residual vector;

$$RSS_0 = RSS_R = RSS(\widetilde{\beta}) = \widetilde{u}^T \widetilde{u} = \sum_{i=1}^{N} \widetilde{u}_i^2$$

= the *restricted* residual sum of squares;

$$df_0 = N - (K - q) = N - K + q =$$
the degrees of freedom for RSS₀;

$$\widetilde{\sigma}^2 = RSS_0/df_0 = RSS_0/N - (K-q)$$
 = the *restricted* OLS estimator of σ^2 ;

$$R_R^2 = ESS_0/TSS = 1 - (RSS_0/TSS) =$$
the *restricted* R-squared.

2. The *unrestricted* parameter estimates computed under H_1 : $R\beta - r \neq 0$, which are denoted as follows:

 $\hat{\beta}$ = the *unrestricted* OLS estimator of β ;

 $\hat{\mathbf{u}} = \mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}$ = the *unrestricted* residual vector;

$$RSS_1 = RSS_U = RSS(\hat{\beta}) = \hat{\mathbf{u}}^T \hat{\mathbf{u}} = \sum_{i=1}^N \hat{\mathbf{u}}_i^2$$

= the *unrestricted* residual sum of squares;

 $df_1 = N - K$ = the degrees of freedom for RSS₁;

 $\hat{\sigma}^2 = RSS_1/N - K = \text{the } unrestricted OLS \text{ estimator of } \sigma^2$.

 $R_U^2 = ESS_1/TSS = 1 - (RSS_1/TSS) =$ the *unrestricted* R-squared.

- The computation of hypothesis tests of linear coefficient restrictions can be performed in general in three different ways:
 - 1. using *only* the *unrestricted* parameter estimates of the model;
 - 2. using *only* the *restricted* parameter estimates of the model;
 - **3.** using **both** the **restricted** and **unrestricted** parameter estimates of the model.
- These three options correspond to the three fundamental principles of hypothesis testing.
 - 1. The Wald principle of hypothesis testing computes hypothesis tests using *only* the *unrestricted* parameter estimates of the model computed under the alternative hypothesis H_1 .
 - 2. The Lagrange Multiplier (LM) principle of hypothesis testing computes hypothesis tests using *only* the *restricted* parameter estimates of the model computed under the null hypothesis H_0 .
 - **3.** The **Likelihood Ratio** (**LR**) **principle** of hypothesis testing computes hypothesis tests using *both* the *restricted* **parameter estimates** of the model computed under the null hypothesis H₀ *and* the *unrestricted* **parameter estimates** of the model computed under the alternative hypothesis H₁.

4. Likelihood Ratio F-Tests of Linear Coefficient Restrictions

□ Null and Alternative Hypotheses

• The **null hypothesis** is that the regression coefficient vector β satisfies a set of q independent linear coefficient restrictions:

$$H_0$$
: $R\beta = r \Leftrightarrow R\beta - r = \underline{0}$

• The **alternative hypothesis** is that the regression coefficient vector β does not satisfy the set of q independent linear coefficient restrictions specified by H₀:

$$H_1$$
: $R\beta \neq r \Leftrightarrow R\beta - r \neq \underline{0}$

- ☐ The Likelihood Ratio F-Statistic: can be written in either of two equivalent forms.
- 1. <u>Form 1 of the LR F-statistic</u> is expressed in terms of the restricted and unrestricted residual sums of squares, RSS₀ and RSS₁:

$$F_{LR} = \frac{(RSS_0 - RSS_1)/(df_0 - df_1)}{RSS_1/df_1} = \frac{(RSS_0 - RSS_1)}{RSS_1} \frac{df_1}{(df_0 - df_1)}$$
(F1)

$$F_{LR} = \frac{(RSS_0 - RSS_1)/q}{RSS_1/(N - K)} = \frac{(RSS_0 - RSS_1)}{RSS_1} \frac{(N - K)}{q}$$
(F1)

where:

 RSS_0 = the *residual sum of squares* for the <u>restricted</u> OLS-SRE;

 $df_0 = N - K_0 = the degrees of freedom for RSS_0, the <u>restricted</u> RSS;$

 $K_0 = K - q = \text{the } number of free regression coefficients in the restricted model;}$

 RSS_1 = the residual sum of squares for the <u>unrestricted</u> OLS-SRE;

 $df_1 = N - K = the degrees of freedom for RSS_1, the unrestricted RSS;$

K = k + 1 =the number of free regression coefficients in the <u>unrestricted</u> model;

 $q = df_0 - df_1 = K - K_0 =$ the **number of** *independent linear coefficient restrictions* specified by the null hypothesis H_0 .

Note: The value of q is calculated as follows:

$$q = df_0 - df_1 = N - K_0 - (N - K) = N - K_0 - N + K = K - K_0.$$

2. Form 2 of the LR F-statistic is expressed in terms of the restricted and unrestricted R-squared values, R_R^2 and R_U^2 :

$$F_{LR} = \frac{(R_U^2 - R_R^2)/(df_0 - df_1)}{(1 - R_U^2)/df_1} = \frac{(R_U^2 - R_R^2)}{(1 - R_U^2)} \frac{df_1}{(df_0 - df_1)}$$
(F2)

$$F_{LR} = \frac{(R_U^2 - R_R^2)/q}{(1 - R_U^2)/(N - K)} = \frac{(R_U^2 - R_R^2)}{(1 - R_U^2)} \frac{(N - K)}{q}$$
 (F2)

where:

 R_R^2 = the **R-squared value** for the <u>restricted</u> OLS-SRE;

 $K_0 = K - q$ = the number of free regression coefficients in the <u>restricted</u> model;

 $df_0 = N - K_0 = N - (K - q) = N - K + q = the degrees of freedom for RSS_0, the <u>restricted</u> RSS;$

 R_{II}^2 = the **R-squared value** for the <u>unrestricted</u> **OLS-SRE**;

K = k + 1 =the number of free regression coefficients in the <u>unrestricted</u> model;

 $df_1 = N - K = the degrees of freedom for RSS_1, the unrestricted RSS;$

 $q = df_0 - df_1 = K - K_0 =$ the **number of** *independent linear coefficient restrictions* specified by the null hypothesis H_0 .

□ Null distribution of the LR F-statistic

Under error normality assumption A6, the LR F-statistic F_{LR} is distributed under H_0 (i.e., assuming the null hypothesis H_0 is true) as F[q, N-K], the F distribution with q numerator degrees of freedom and N-K denominator degrees of freedom:

$$F_{LR} \sim F[q, N-K]$$
 under H_0 : $R\beta = r$.

5. Wald F-Tests of Linear Coefficient Restrictions

☐ The Wald F-Test is Based on the Wald Principle of Hypothesis Testing

The Wald principle of hypothesis testing computes hypothesis tests using *only* the *unrestricted* parameter estimates of the model computed under the alternative hypothesis H_1 : $R\beta \neq r$. These unrestricted parameter estimates can be denoted as $\hat{\theta} = (\hat{\beta}, \hat{\sigma}^2)$.

General Wald F-statistic. The general Wald F-statistic is obtained by simply dividing the general Wald statistic W in (10) by q, the number of independent linear coefficient restrictions specified by the null hypothesis H_0 : Rβ = r:

$$F_{\text{WALD}} = \frac{1}{q} W = \frac{\left(R\hat{\beta} - r\right)^{T} \left(R\hat{V}_{\hat{\beta}} R^{T}\right)^{-1} \left(R\hat{\beta} - r\right)}{q}$$
(9)

where:

W = the **general Wald statistic** given below;

 $\hat{\beta}$ = a consistent unrestricted estimator of β , such as the OLS estimator;

 $\hat{V}_{\hat{\beta}} = a \text{ consistent estimator of } V_{\hat{\beta}}.$

The *general Wald test statistic* W for testing the null hypothesis H_0 : $R\beta = r$ against the alternative hypothesis H_1 : $R\beta \neq r$ takes the form

$$W = \left(R\hat{\beta} - r\right)^{T} \left(R\hat{V}_{\hat{\beta}} R^{T}\right)^{-1} \left(R\hat{\beta} - r\right) \stackrel{a}{\sim} \chi^{2}[q] \text{ under } H_{0}$$
(10)

where

 $\hat{\beta}$ = a *consistent unrestricted* estimator of β , such as the OLS estimator;

 $\hat{V}_{\hat{\beta}} = a \text{ consistent estimator of } V_{\hat{\beta}};$

 $\chi^2[q]$ = the chi-square distribution with q degrees of freedom.

Note: Both the coefficient estimator $\hat{\beta}$ and the coefficient covariance matrix estimator $\hat{V}_{\hat{\beta}}$ used in the general Wald statistic W must be *consistent*, and are computed using only *unrestricted* estimates of the linear regression model under the alternative hypothesis H_1 : $R\beta \neq r$.

• **Null distribution of Wald-F Statistic:** With the error normality assumption A6, the null distribution of the general Wald-F statistic -- that is, the distribution of the Wald-F statistic if the null hypothesis H₀ is true -- is F[q, N - K], the central F distribution with q numerator degrees of freedom and N-K denominator degrees of freedom.

The short way of saying this is:

$$F_{\text{WALD}} = \frac{1}{q} W \sim F[q, N - K] \quad \text{under } H_0: R\beta = r$$
 (11)

where

F[q, N-K] = the F-distribution with q numerator degrees of freedom and N-K denominator degrees of freedom.

Notes:

- 1. The null distribution of the F_{WALD} statistic is exactly F[q, N-K] only if the error normality assumption A6 is true.
- 2. However, even if the normality assumption A6 is not true, the null distribution of the F_{WALD} statistic is still approximately F[q, N-K] under fairly general conditions.

□ <u>Common Form of the Wald F-statistic</u>. In practice, the most common form of the Wald F-statistic is that obtained by using the OLS coefficient covariance matrix estimator in place of $\hat{V}_{\hat{\beta}}$ in (9) and (10):

$$F_{W} = \frac{1}{q} W_{OLS} = \frac{\left(R\hat{\beta} - r\right)^{T} \left(R\hat{V}_{OLS} R^{T}\right)^{-1} \left(R\hat{\beta} - r\right)}{q}$$
(12)

where

$$\hat{\beta} = \hat{\beta}_{OLS} = (X^T X)^{-1} X^T y = \text{ the unrestricted OLS estimator of } \beta;$$

$$\hat{V}_{OLS}(\hat{\beta}) = \hat{V}_{OLS} = \hat{\sigma}^2 (X^T X)^{-1} = \text{ the OLS estimator of } V_{\hat{\beta}};$$

$$\hat{\sigma}^2 = \frac{RSS_1}{N - K} = \frac{\hat{\mathbf{u}}^T \hat{\mathbf{u}}}{N - K} = \frac{\sum_{i=1}^N \hat{\mathbf{u}}_i^2}{N - K} = \text{ the unrestricted OLS estimator of } \sigma^2;$$

• **Null distribution of the F**_W **Statistic:** With the error normality assumption A6, the null distribution of the F_W statistic (12) – that is, the distribution of the Wald-F statistic if the null hypothesis H₀ is true – is F[q, N – K], the F distribution with q numerator degrees of freedom and N–K denominator degrees of freedom.

The short way of saying this is:

$$F_{W} = \frac{1}{q} W_{OLS} \sim F[q, N - K] \quad \text{under } H_0: R\beta = r$$
(13)

where F[q, N-K] = the F-distribution with q numerator degrees of freedom and N-K denominator degrees of freedom.

- Notes on Computation of F_W
- The Wald F-statistic F_W in (12) is computed using only the *unrestricted* **OLS** coefficient estimates $\hat{\beta}$ and the OLS estimate \hat{V}_{OLS} of the variance-covariance matrix of $\hat{\beta}$.
- Both the *unrestricted* OLS coefficient estimator $\hat{\beta}$ and the OLS covariance matrix estimator \hat{V}_{OLS} are *unbiased* and *consistent* under the assumptions of the classical linear regression model.

6. Relationship Between Wald and LR F-Tests

□ The Wald and LR F-Statistics

$$F_{W} = \frac{1}{q} W_{OLS} = \frac{\left(R\hat{\beta} - r\right)^{T} \left(R\hat{V}_{OLS} R^{T}\right)^{-1} \left(R\hat{\beta} - r\right)}{q} \sim F[q, N - K] \text{ under } H_{0}$$

$$F_{LR} = \frac{(RSS_0 - RSS_1)/q}{RSS_1/(N-K)} = \frac{(RSS_0 - RSS_1)}{RSS_1} \frac{(N-K)}{q} \sim F[q, N-K] \text{ under } H_0$$

□ Key Result

The key to understanding the relationship between the Wald F-statistic F_W and the LR F-statistic F_{LR} is the following important result (given without the tedious proof):

The quadratic form $\Phi(\hat{\beta})$ defined as

$$\Phi(\hat{\beta}) = \left(R\hat{\beta} - r\right)^{T} \left(R\left(X^{T}X\right)^{-1}R^{T}\right)^{-1} \left(R\hat{\beta} - r\right)$$

can be shown to equal the difference between the restricted and unrestricted residual sums of squares

$$RSS_0 - RSS_1 = \widetilde{\mathbf{u}}^{\mathrm{T}} \widetilde{\mathbf{u}} - \hat{\mathbf{u}}^{\mathrm{T}} \hat{\mathbf{u}} .$$

That is,

$$\Phi(\hat{\beta}) = \left(R\hat{\beta} - r\right)^{T} \left(R\left(X^{T}X\right)^{-1}R^{T}\right)^{-1} \left(R\hat{\beta} - r\right) = \widetilde{u}^{T}\widetilde{u} - \hat{u}^{T}\hat{u} = RSS_{0} - RSS_{1}$$

$$(14)$$

□ Rewrite the F_w Statistic

- Use the result (14) and the formula for $\hat{\sigma}_{OLS}^2$ to rewrite the Wald F-statistic F_W .
- **1.** Rewrite the Wald F-statistic F_W as follows

Substitute for \hat{V}_{OLS} in the formula for F_W the expression

$$\hat{\mathbf{V}}_{\mathrm{OLS}} = \hat{\mathbf{\sigma}}^2 (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1}$$

This gives

$$\begin{split} F_{W} &= \frac{\left(R\hat{\beta} - r\right)^{T}\left(R\hat{V}_{OLS}R^{T}\right)^{-1}\left(R\hat{\beta} - r\right)}{q} \\ &= \frac{\left(R\hat{\beta} - r\right)^{T}\left(R\hat{\sigma}_{OLS}^{2}(X^{T}X)^{-1}R^{T}\right)^{-1}\left(R\hat{\beta} - r\right)}{q} \\ &= \frac{\left(R\hat{\beta} - r\right)^{T}\left(\hat{\sigma}_{OLS}^{2}R(X^{T}X)^{-1}R^{T}\right)^{-1}\left(R\hat{\beta} - r\right)}{q} \end{split}$$

$$= \frac{\left(R\hat{\beta} - r\right)^{T} \left(R(X^{T}X)^{-1}R^{T}\right)^{-1} \left(R\hat{\beta} - r\right)}{q\hat{\sigma}_{OLS}^{2}}$$

$$= \frac{\left(R\hat{\beta} - r\right)^{T} \left(R(X^{T}X)^{-1}R^{T}\right)^{-1} \left(R\hat{\beta} - r\right)/q}{\hat{\sigma}_{OLS}^{2}}$$
(15)

2. Now substitute for $\hat{\sigma}_{OLS}^2$ in (15) the expression

$$\hat{\sigma}_{OLS}^2 = \frac{RSS_1}{N - K} = \frac{\hat{u}^T \hat{u}}{N - K}.$$

This allows us to rewrite the F_W statistic as

$$\begin{split} F_{W} \; &= \frac{\left(R\hat{\beta} - r\right)^{T} \left(R(X^{T}X)^{-1}R^{T}\right)^{-1} \left(R\hat{\beta} - r\right) \!\! / q}{\hat{\sigma}_{OLS}^{2}} \\ &= \frac{\left(R\hat{\beta} - r\right)^{T} \left(R(X^{T}X)^{-1}R^{T}\right)^{-1} \left(R\hat{\beta} - r\right) \!\! / q}{\hat{u}^{T}\hat{u} / (N - K)}. \end{split}$$

3. Finally, use result (14) above to replace the quadratic form in the numerator of F_W , namely $\left(R\hat{\beta}-r\right)^T\left(R\left(X^TX\right)^{-1}R^T\right)^{-1}\left(R\hat{\beta}-r\right)$, with the equivalent difference between the restricted residual sum of squares $\tilde{u}^T\tilde{u}$ and the unrestricted residual sum of squares $\hat{u}^T\hat{u}$. This permits the F_W statistic to be written as:

$$F_{W} = \frac{\left(R\hat{\beta} - r\right)^{T} \left(R(X^{T}X)^{-1}R^{T}\right)^{-1} \left(R\hat{\beta} - r\right)/q}{\hat{u}^{T}\hat{u}/(N - K)}$$

$$= \frac{\left(\tilde{u}^{T}\tilde{u} - \hat{u}^{T}\hat{u}\right)/q}{\hat{u}^{T}\hat{u}/(N - K)}$$
(16.1)

$$= \frac{(RSS_0 - RSS_1)/q}{RSS_1/(N-K)}$$
 (16.2)

where $RSS_0 = \tilde{u}^T \tilde{u}$ = the restricted residual sum of squares and $RSS_1 = \hat{u}^T \hat{u}$ = the unrestricted residual sum of squares.

• Result: The Wald F-statistic F_W can be written in terms of the restricted and unrestricted residual sums of squares as

$$F_{W} = \frac{(R\hat{\beta} - r)^{T} (R\hat{V}_{OLS} R^{T})^{-1} (R\hat{\beta} - r)}{q} = \frac{(RSS_{0} - RSS_{1})/q}{RSS_{1}/(N - K)}.$$
(17)

\Box The F_W and F_{LR} Statistics are Equal

$$F_{W} = \frac{\left(R\hat{\beta} - r\right)^{T} \left(R\hat{V}_{OLS} R^{T}\right)^{-1} \left(R\hat{\beta} - r\right)}{q} = \frac{\left(RSS_{0} - RSS_{1}\right) / q}{RSS_{1} / (N - K)} = F_{LR}.$$

\square Tests Based on the F_W and F_{LR} Statistics are Equivalent

The Wald F-statistic F_W and the LR F-statistic F_{LR} yield equivalent or identical tests of H_0 : $R\beta = r$ against H_1 : $R\beta \neq r$.

This equivalence follows from two facts:

1. The two test statistics F_W and F_{LR} are *equal*; that is, they yield identical calculated sample values of the F-statistic.

$$F_W = F_{LR}$$

2. The two test statistics F_W and F_{LR} have identical null distributions, namely the F[q, N-K] distribution.

$$F_W \sim F[q, N-K]$$
 under $H_0: R\beta = r$

and

$$F_{LR} \sim F[q, N-K]$$
 under $H_0: R\beta = r$.

• Result:

$$F_W = F_{LR} \sim F[q, N-K]$$
 under $H_0: R\beta = r$.