
ECON 452* -- NOTE 10: Statistical Inference: The Fundamentals M.G. Abbott 
 

ECON 452* -- NOTE 10 
 

Testing Linear Coefficient Restrictions in Linear Regression 
Models: The Fundamentals 

 
This note outlines the fundamentals of statistical inference in linear regression 
models.  
 
• In scalar notation, the population regression equation, or PRE, for the linear 

regression model is written in general as: 
 

iikk2i21i10i uXXXY +β++β+β+β= L   ∀ i       (1.1)  

or 

         ∀ i       (1.2) ∑
=

=
+β+β=

kj

1j
iijj0i uXY

or 

∑
=

=
+β=

kj

0j
iijji uXY ,  i   1Xi0 ∀=      ∀ i       (1.3) 

 
where  
 
Yi  ≡  the i-th population value of the regressand, or dependent variable;   
 

Xij  ≡  the i-th population value of the j-th regressor, j = 1, …, k;   
 

βj  ≡  the partial slope coefficient of Xij, j = 1, …, k;   
 

ui  ≡  the i-th population value of the unobservable random error term.   
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• In vector-matrix notation, the population regression equation, or PRE, for a 
sample of N observations on a linear regression model can be written as: 

 
y X u= +β                     (2) 

 
where  
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 =  the N×1 regressand vector  

 

   =  the N×1 column vector of observed sample values of the regressand,  
 or dependent variable, Yi (i = 1, ..., N);   

 

  =  the N×1 error vector  u
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     =  the N×1 column vector of unobserved random error terms ui  
 (i = 1, ..., N) corresponding to each of the N sample observations.   
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 =  the N×K regressor matrix  

 

  =  the N×K matrix of observed sample values of the K = k + 1  
regressors Xi0, Xi1, Xi2, ..., Xik (i = 1, ..., N), where the first regressor  
is a constant equal to 1 for all observations (Xi0 = 1 ∀ i = 1, ..., N).  
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 =  the K×1 regression coefficient vector  

 

   =  the K×1 or (k+1)×1column vector of unknown partial regression  
  coefficients βj, j = 0, 1, ..., k.  

 
• Statistical inference consists of both  
 

1. testing hypotheses on the regression coefficient vector β and  
 

2. constructing confidence intervals for the individual elements of β.  
 

1.  Assumption A6: The Error Normality Assumption 
 
In order to perform statistical inference in the linear regression model, it is 
necessary to specify the form of the probability distribution of the error vector u in 
population regression equation (1). The normality assumption does this.   
 

 Scalar Formulation of the Error Normality Assumption A6 
 

The random error terms ui are independently and identically distributed as the 
normal distribution with  
 
1. zero conditional means 

 

( ) ( ) 0uExuE i
T
ii ==   ∀ i 

 
2. constant conditional variances 

 

( ) ( ) ( ) 2
ik2i1i

2
i

T
i

2
i

T
ii X,,X,X,1uExuExuVar σ=== K  > 0  ∀ i  

 
3. zero conditional covariances 

 

( ) ( ) 0x,xuuEx,xu,uCov T
s

T
isi

T
s

T
isi ==   ∀ i ≠ s 

 
ECON 452* -- Note 10: Filename 452note10.doc … Page 3 of 27 pages 
 



ECON 452* -- NOTE 10: Statistical Inference: The Fundamentals M.G. Abbott 
 

• A compact way of stating error normality assumption A6 is:   
 

conditional on , the ui are iid as N(0, σ2)           (A6.1) T
ix

 
where   
 

"iid" means "independently and identically distributed" 
 

N(0, σ2) denotes a normal distribution with zero mean and variance σ2.  
 

Even more briefly, we can say that  
 

T
ii xu  are iid as N(0, σ2).                 (A6.2) 

 
 Matrix Formulation of the Error Normality Assumption A6 

 
The N×1 error vector u has a multivariate normal distribution with  
 
1. a zero conditional mean vector 

 
( ) 0XuE =  where 0  is an N×1 vector of zeros 

 
2. a constant scalar diagonal covariance matrix V(u) 

 
( ) ( ) N

2T IXuuEXuV σ==  where IN is the N×N identity matrix 
 

• A compact way of stating the error normality assumption in matrix terms is:   
 

( )N
2I,0N~Xu σ                   (A6) 

 
where  here denotes the N-variate normal distribution.   ( ⋅⋅ ,N )
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 Implications of Assumption A6 for the Distribution of the Regressand 
Vector y  

 
• Linearity Property of Normal Distribution: Any linear function of a 

normally distributed random variable is itself normally distributed.  
 
• y is a linear function of u: The PRE uXy +β=  states that the regressand 

vector y is a linear function of the error vector u.  
 
• Implication: Since u is normally distributed by assumption A6 and y is a linear 

function of u by assumption A1, the linearity property of the normal distribution 
implies that  

 
( )N

2I,XN~Xy σβ .  
 
That is, the regressand vector y has an N-variate normal distribution with 
 
(1) conditional mean vector equal to ( ) β= XXyE   

and 

(2) conditional covariance matrix equal to ( ) N
2IXyV σ= .  

 

 
ECON 452* -- Note 10: Filename 452note10.doc … Page 5 of 27 pages 
 



ECON 452* -- NOTE 10: Statistical Inference: The Fundamentals M.G. Abbott 
 

 Implications of Assumption A6 for the Distribution of the OLS Coefficient 
Estimator β̂   

 
• β̂  is a linear function of y.  Conditional on the regressors X, the OLS 

coefficient estimator β̂  is a linear function of the regressand vector y:   
 

( ) yXXXˆ T1T −
=β  

 
• Implication: Since y is normally distributed by implication of assumption A6 

and β̂  is a linear function of y, the linearity property of the normal distribution 
implies that  

 
( 1T2 )XX(,N~Xˆ −σββ ).               (3) 

 
That is, the OLS coefficient estimator β  has an K-variate normal 
distribution with 

ˆ

 
(1) conditional mean vector equal to ( ) β=β XˆE   

and 
 

(2)  conditional covariance matrix equal to ( ) 1T2 )XX(XˆV −σ=β .  
 

 
ECON 452* -- Note 10: Filename 452note10.doc … Page 6 of 27 pages 
 



ECON 452* -- NOTE 10: Statistical Inference: The Fundamentals M.G. Abbott 
 

2.  Formulation of Linear Equality Restrictions on β 
 
The general hypothesis to be tested is that the coefficient vector β satisfies a set of 
q independent linear restrictions, where q < K. We formulate this general 
hypothesis in vector-matrix form, since this corresponds to the way in which 
econometric software such as Stata is written.  
 
The null hypothesis H0 is written in general as:   
 

H0: Rβ = r ⇔  Rβ − r = 0 
 
The alternative hypothesis H1 is written in general as:   
 

H1: Rβ ≠ r ⇔  Rβ − r ≠ 0   
 
In H0 and H1 above:   

 
R = a q×K matrix of specified constants;  
 

β = the K×1 coefficient vector; 
 

r = a q×1 vector of specified constants;   
 

0 = a q×1 null vector, i.e., a q×1 vector of zeros.  
 
• The q×K restrictions matrix R takes the form  
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

qk2q1q0q

k2222120

k1121110

rrrr

rrrr
rrrr

R

L

MOMMM

L

L

 

 
where  

 
rmj = the constant on coefficient βj in the m-th linear restriction, m = 1, …, q.   
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• The q×1 restrictions vector r takes the form  
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⎥
⎥
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where   
 

rm = the constant term in the m-th linear restriction, m = 1, …, q.  
 
• The matrix-vector product Rβ is a q×1 vector of linear functions of the 

regression coefficients β0, β1, β2, … , βk:   
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(q×K)      (K×1)        (q×1) 
 
• The null and alternative hypotheses can therefore be written as follows:   
 

H0: Rβ = r  ⇒  
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H1: Rβ ≠ r  ⇒  
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Some Specific Examples 
 
Consider the linear regression model given by the PRE  
 

i4i43i32i21i10i uXXXXY +β+β+β+β+β=   (i = 1, …, N)    (4) 
 
Test 1   
 
The null and alternative hypotheses are:   
 

H0: β2 = 0   one linear restriction on coefficient vector β 
 

H1: β2 ≠ 0 
 
• The restrictions matrix R in this case is the 1×5 row vector:   
 

R  =  [ ]  00100 .
 
• The restrictions vector r is in this case the scalar 0 since there is only one 

restriction specified by the null hypothesis H0:   
 

r  =  0. 
 
• The matrix-vector product Rβ in this case is:   
 

Rβ  =   =  0β0 + 0β1 + 1β2 + 0β3 + 0β4  =  β2 [

⎥
⎥
⎥
⎥
⎥
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⎦
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⎢
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⎡
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3

2
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0

00100 ]

 
• The null hypothesis H0: Rβ = r is therefore the single equation: 
 

H0: β2 = 0    
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Test 2   
 
The PRE is again 
 

i4i43i32i21i10i uXXXXY +β+β+β+β+β=   (i = 1, …, N)    (4) 
 
The null and alternative hypotheses are:   
 

H0: β1 = 0  and  β2 = 0   two linear restrictions on coefficient vector β 
 

H1: β1 ≠ 0  and/or  β2 ≠ 0 
 
• The restrictions matrix R in this case is the 2×5 row vector:   
 

R  =   ⎥
⎦

⎤
⎢
⎣

⎡
00100
00010

 
• The restrictions vector r is in this case the 2×1 column vector of zeros:   
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⎦

⎤
⎢
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⎡
0
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• The matrix-vector product Rβ in this case is:   
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• The null hypothesis H0: Rβ = r is therefore the matrix equation: 
 

H0:   which says "β1 = 0  and  β2 = 0" ⎥
⎦

⎤
⎢
⎣
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Test 3   
 
The PRE is again 
 

i4i43i32i21i10i uXXXXY +β+β+β+β+β=   (i = 1, …, N)    (4) 
 
The null and alternative hypotheses are:   
 

H0: β1 = β3  and  β2 = − β4  or  β1 − β3 = 0  and  β2 + β4 = 0    (q = 2) 
 

H1: β1 ≠ β3  and/or  β2 ≠ β4  or  β1 − β3 ≠ 0  and/or  β2 + β4 ≠ 0 
 
• The restrictions matrix R in this case is the 2×5 row vector:   
 

R  =   ⎥
⎦

⎤
⎢
⎣

⎡ −
10100
01010

 
• The restrictions vector r is in this case the 2×1 column vector of zeros:   
 

r  =   ⎥
⎦

⎤
⎢
⎣

⎡
0
0

 
• The matrix-vector product Rβ in this case is:   
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⎥
⎥
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• The null hypothesis H0: Rβ = r is therefore the matrix equation: 
 

H0:  which says "β1 − β3 = 0  and  β2 + β4 = 0" ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
β+β
β−β

0
0
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31
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Test 4   
 
The PRE is again 
 

i4i43i32i21i10i uXXXXY +β+β+β+β+β=   (i = 1, …, N)    (4) 
 
The null and alternative hypotheses are:   
 

H0: β1 + 2β2 = β3 + 2β4  or  β1 + 2β2 − β3 − 2β4 = 0   (q = 1) 
 

H1: β1 + 2β2 ≠ β3 + 2β4  or  β1 + 2β2 − β3 − 2β4 ≠ 0  
 
• The restrictions matrix R in this case is the 1×5 row vector:   
 

R  =  [ ] 21210 −−
 
• The restrictions vector r is in this case the 1×1 scalar 0:   
 

r  =  0 
 
• The matrix-vector product Rβ in this case is the 1×1 scalar:   
 

Rβ  =   [ ] [ 43210

4

3

2

1

0

2121021210 β−β−β+β+β=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

β
β
β
β
β

−− ]

 =  β1 + 2β2 − β3 − 2β4 
 
• The null hypothesis H0: Rβ = r is therefore the equation: 
 

H0: β1 + 2β2 − β3 − 2β4 = 0   
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3.  The Three Principles of Hypothesis Testing 
 
• Given the null hypothesis H0: 0rR =−β  and the alternative hypothesis H1: 

0rR ≠−β , there are two alternative sets of parameter estimates of the PRE 
 that one might use to compute a test statistic.     y X u= +β

 
1. The restricted parameter estimates computed under H0: 0rR =−β , which 

are denoted as follows:   
 

β~  = the restricted OLS estimator of β;  
 

β−= ~Xyu~  = the restricted OLS residual vector;  
 

∑
=

==β==
N

1i

2
i

T
R0 u~u~u~)~(RSSRSSRSS   

= the restricted residual sum of squares;   
 

qKN)qK(Ndf0 +−=−−=  = the degrees of freedom for RSS0;  
 

)qK(NRSSdfRSS~
000

2 −−==σ  = the restricted OLS estimator of 2σ ;  
 

)TSSRSS(1TSSESSR 00
2
R −==  = the restricted R-squared. 

 
2. The unrestricted parameter estimates computed under H1: 0rR ≠−β , 

which are denoted as follows:   
 

β̂  = the unrestricted OLS estimator of β;  
 

β−= ˆXyû  = the unrestricted residual vector;  
 

∑
=

==β==
N

1i

2
i

T
U1 ûûû)ˆ(RSSRSSRSS   

= the unrestricted residual sum of squares;   
 

KNdf1 −=  = the degrees of freedom for RSS1; 
 

KNRSSˆ 1
2 −=σ  = the unrestricted OLS estimator of 2σ .  

 

)TSSRSS(1TSSESSR 11
2
U −==  = the unrestricted R-squared. 
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• The computation of hypothesis tests of linear coefficient restrictions can be 
performed in general in three different ways:   

 
1. using only the unrestricted parameter estimates of the model; 
2. using only the restricted parameter estimates of the model; 
3. using both the restricted and unrestricted parameter estimates of the 

model.  
 
• These three options correspond to the three fundamental principles of 

hypothesis testing.  
 

1. The Wald principle of hypothesis testing computes hypothesis tests using 
only the unrestricted parameter estimates of the model computed under 
the alternative hypothesis H1.  

 
2. The Lagrange Multiplier (LM) principle of hypothesis testing computes 

hypothesis tests using only the restricted parameter estimates of the model 
computed under the null hypothesis H0.   

 
3. The Likelihood Ratio (LR) principle of hypothesis testing computes 

hypothesis tests using both the restricted parameter estimates of the model 
computed under the null hypothesis H0 and the unrestricted parameter 
estimates of the model computed under the alternative hypothesis H1.  

 
4.  Likelihood Ratio F-Tests of Linear Coefficient Restrictions 

 
 Null and Alternative Hypotheses 

 
• The null hypothesis is that the regression coefficient vector β satisfies a set of 

q independent linear coefficient restrictions:   
 

H0: Rβ = r ⇔  Rβ − r = 0 
 
• The alternative hypothesis is that the regression coefficient vector β does not 

satisfy the set of q independent linear coefficient restrictions specified by H0:   
 

H1: Rβ ≠ r ⇔  Rβ − r ≠ 0 
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 The Likelihood Ratio F-Statistic 
 

The LR F-statistic can be written in either of two equivalent forms.   
 
1. Form 1 of the LR F-statistic is expressed in terms of the restricted and 

unrestricted residual sums of squares, RSS0 and RSS1:  
 

 
)dfdf(

df
RSS

)RSSRSS(
dfRSS

)dfdf()RSSRSS(F
10

1

1

10

11

1010
LR −

−
=

−−
=     (F1) 

 

q
)KN(

RSS
)RSSRSS(

)KN(RSS
q)RSSRSS(F

1

10

1

10
LR

−−
=

−
−

=        (F1) 

 
where:    

 
RSS0  =  the residual sum of squares for the restricted OLS-SRE; 
df0  =  N − K0  =  the degrees of freedom for RSS0, the restricted RSS; 
K0  =  K − q  =  the number of free regression coefficients in the restricted  

model;  
 

RSS1  =  the residual sum of squares for the unrestricted OLS-SRE; 
df1  =  N − K  =  the degrees of freedom for RSS1, the unrestricted RSS; 
K  =  k + 1  =  the number of free regression coefficients in the unrestricted  

   model;  
 

q = df0 − df1 = K − K0 =  the number of independent linear coefficient  
restrictions specified by the null hypothesis H0.  

 

Note: The value of q is calculated as follows:  
 

q =  df0 − df1  =  N − K0 − (N − K)  =  N − K0 − N + K  =  K − K0.   
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2. Form 2 of the LR F-statistic is expressed in terms of the restricted and 
unrestricted R-squared values, 2

RR  and 2
UR :  

 

)dfdf(
df

)R1(
)RR(

df)R1(
)dfdf()RR(F

10

1
2
U

2
R

2
U

1
2
U

10
2
R

2
U

−−
−

=
−

−−
=        (F2) 

 

  
q

)KN(
)R1(
)RR(

)KN()R1(
q)RR(F 2

U

2
R

2
U

2
U

2
R

2
U −

−
−

=
−−

−
=          (F2) 

 
where:    

 
2
RR  =  the R-squared value for the restricted OLS-SRE; 

K0  =  K − q  =  the number of free regression coefficients in the restricted  
model;  

df0  = N − K0 = N − (K − q) = N − K + q  =  the degrees of freedom for RSS0,  
    the restricted RSS; 

 
2
UR  =  the R-squared value for the unrestricted OLS-SRE; 

K  =  k + 1  =  the number of free regression coefficients in the unrestricted  
   model; 

df1  =  N − K  =  the degrees of freedom for RSS1, the unrestricted RSS; 
 

q = df0 − df1 = K − K0 =  the number of independent linear coefficient  
restrictions specified by the null hypothesis H0.  

 
 Null distribution of the LR F-statistic  

 
Under error normality assumption A6, the LR F-statistic FLR is distributed 
under H0 (i.e., assuming the null hypothesis H0 is true) as F[q, N−K], the F 
distribution with q numerator degrees of freedom and N−K denominator 
degrees of freedom:   
 

]KN,q[F~FLR −  under H0: Rβ = r.  
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 Computation of the LR F-statistic  
 

Computation of the LR F-statistic requires estimation of both the restricted and 
unrestricted models.   
 

• The restricted OLS-SRE estimated under the null hypothesis   
 

H0: Rβ = r ⇔  Rβ − r = 0 
 

The regression coefficient vector β satisfies q independent linear 
coefficient restrictions 

 
is written in matrix form as    

 
u~y~u~~Xy +=+β=                  (5) 

 
or in scalar form as  

  
iiiikk2i21i10i u~+Y~=u~X~X~X~~Y +β++β+β+β= L   (i = 1, …, N)  

 
where:   
 

• β~  is the restricted OLS estimator of the coefficient vector β with typical 
element ~

β j  (j = 0, ..., k), the restricted OLS estimate of βj;     
 

• β= ~Xy  is the restricted OLS prediction vector with typical element  ~

iY~   (i = 1, ..., N), the restricted predicted value of the dependent variable Y for 
observation i, where  

 

ikk2i21i10i X~X~X~~Y~ β++β+β+β= L      (i = 1, ..., N) 
 
• β−  is the restricted OLS residual vector with typical element 

iu~  (i = 1, ..., N), the restricted OLS residual for observation i, where 
=−= ~Xyy~yu~

 

ikk2i21i10iiii X~X~X~~YY~Yu~ β−−β−β−β−=−= L   (i = 1, ..., N) 
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• the OLS decomposition equation for the restricted OLS-SRE is   
 
  TSS  =  ESS0  +  RSS0                (5.1) 
   

where 
 

2
N

1i

2
i

N

1i

2
i

2T YNY)YY(YNyyTSS −=−=−= ∑∑
==

    has df = N − 1 

2
N

1i

2
i

N

1i

2
i

2T
0 YNY~)YY~(YNy~y~ESS −=−=−= ∑∑

==
  has df = K0 − 1 − q 

∑
=

==
N

1i

2
i

T
0 u~u~u~RSS         has df0 = N − (K0 − q) = N − K0 + q 

 
• the restricted R-squared for the restricted OLS-SRE is   
 

   R
ESS
TSS

RSS
TSSR

2 0 1= = − 0 .             (5.2) 

 
• The unrestricted OLS-SRE estimated under the alternative hypothesis    
 

H1: Rβ ≠ r ⇔  Rβ − r ≠ 0 
 

The regression coefficient vector β does not satisfy the q independent 
linear coefficient restrictions specified by H0    

 
is written in matrix form as    

 
ûŷûˆXy +=+β=                   (6) 

 
or in scalar form as  

  
iiiikk2i21i10i û+Ŷ=ûXˆXˆXˆˆY +β++β+β+β= L   (i = 1, …, N) 

 
where:   
 

• β̂  is the unrestricted OLS estimator of the coefficient vector β with typical 
element jβ̂  (j = 0, ..., k), the unrestricted OLS estimate of βj;     
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• β= ˆXŷ  is the unrestricted OLS prediction vector with typical element  

iŶ   (i = 1, ..., N), the unrestricted predicted value of the dependent variable Y 
for observation i, where  

 

ikk2i21i10i XˆXˆXˆˆŶ β++β+β+β= L      (i = 1, ..., N) 
 
• β−  is the unrestricted OLS residual vector with typical 

element iû  (i = 1, ..., N), the unrestricted OLS residual for observation i, 
where 

=−= ˆXyŷyû

 

ikk2i21i10iiii XˆXˆXˆˆYŶYû β−−β−β−β−=−= L   (i = 1, ..., N) 
 
• the OLS decomposition equation for the unrestricted OLS-SRE is   
 
  TSS  =  ESS1  +  RSS1                (6.1) 
 

where 
 

2
N

1i

2
i

N

1i

2
i

2T YNY)YY(YNyyTSS −=−=−= ∑∑
==

   has df = N − 1 

2
N

1i

2
i

N

1i

2
i

2T
1 YNŶ)YŶ(YNŷŷESS −=−=−= ∑∑

==
  has df = K − 1 

∑
=

==
N

1i

2
i

T
1 ûûûRSS            has df1 = N − K 

 
• the unrestricted R-squared for the unrestricted OLS-SRE is   
 

   
TSS
RSS1

TSS
ESSR 112

U −== .             (6.2) 

 

 
ECON 452* -- Note 10: Filename 452note10.doc … Page 19 of 27 pages 
 



ECON 452* -- NOTE 10: Statistical Inference: The Fundamentals M.G. Abbott 
 

 
ECON 452* -- Note 10: Filename 452note10.doc … Page 20 of 27 pages 
 

• Compare the OLS decomposition equations for the restricted and 
unrestricted OLS-SREs.   

 
  TSS  =  ESS0  +  RSS0.   [for restricted SRE]      (5.1) 
 
  TSS  =  ESS1  +  RSS1.   [for unrestricted SRE]     (6.1) 
 
• Since the Total Sum of Squares (TSS) is the same for both decompositions, it 

follows that  
 
  ESS0  + RSS0  =  ESS1  + RSS1.              (7) 
 
• Subtracting first RSS1 and then ESS0 from both sides of equation (9) allows 

equation (9) to be written as:    
 
  RSS0  − RSS1  =  ESS1  − ESS0                   (8) 
 

where    
 

RSS0  −  RSS1  =  the increase in RSS attributable to imposing the 
restrictions specified by the null hypothesis H0; 

ESS1  −  ESS0  =  the increase in ESS attributable to relaxing the 
restrictions specified by the null hypothesis H0. 

 
• Result:  Imposing one or more linear coefficient restrictions on the 

regression coefficients βj (j = 0, ..., k) always increases (or leaves unchanged) 
the residual sum of squares, and hence always reduces (or leaves unchanged) 
the explained sum of squares.  Consequently,  

 
  RSS0  ≥  RSS1  ⇔    ESS1  ≥  ESS0     
 

so that   
 
  RSS0  − RSS1  ≥  0  ⇔  ESS1  −  ESS0  ≥  0.       
 

In other words, both sides of equation (8) are always non-negative.   
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5.  Wald F-Tests of Linear Coefficient Restrictions 
 

 The Wald F-Test is Based on the Wald Principle of Hypothesis Testing 
 

The Wald principle of hypothesis testing computes hypothesis tests using only 
the unrestricted parameter estimates of the model computed under the 
alternative hypothesis H1: Rβ ≠ r. These unrestricted parameter estimates can be 
denoted as .  )ˆ,ˆ(ˆ 2σβ=θ
 

 General Wald F-statistic.  The general Wald F-statistic is obtained by simply 
dividing the general Wald statistic W in (10) by q, the number of independent 
linear coefficient restrictions specified by the null hypothesis H0: Rβ = r:      

 
( ) ( ) ( )

q

rˆRRV̂RrˆR
W

q
1F

1T
ˆ

T

WALD

−β−β
==

−

β           (9) 

 
where:   

 
W  =  the general Wald statistic given below; 
 

β̂   =  a consistent unrestricted estimator of β, such as the OLS estimator;  
 

β̂V̂  =  a consistent estimator of .     β̂V
 
The general Wald test statistic W for testing the null hypothesis H0: Rβ = r 
against the alternative hypothesis H1: Rβ ≠ r takes the form 
 

( ) ( ) ( ) ]q[~rˆRRV̂RrˆRW 2
a1T

ˆ
T

χ−β−β=
−

β  under H0         (10) 
 
where   
 

β̂   =  a consistent unrestricted estimator of β, such as the OLS estimator;  
 

β̂V̂  =  a consistent estimator of ;   β̂V
 

]q[2χ  = the chi-square distribution with q degrees of freedom.  
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Notes:  Both the coefficient estimator β  and the coefficient covariance matrix 
estimator  used in the general Wald statistic W must be consistent, and are 
computed using only unrestricted estimates of the linear regression model 
under the alternative hypothesis H1: Rβ ≠ r.   

ˆ

β̂V̂

 
• Null distribution of Wald-F Statistic: With the error normality assumption 

A6, the null distribution of the general Wald-F statistic -- that is, the distribution 
of the Wald-F statistic if the null hypothesis H0 is true -- is ]KN , the 
central F distribution with q numerator degrees of freedom and N−K 
denominator degrees of freedom.   

,q[F −

 
The short way of saying this is: 
 

]KN,q[F~W
q
1FWALD −=  under H0: Rβ = r           (11) 

 
where   
 

]KN,q[F −   =  the F-distribution with q numerator degrees of freedom and  
N−K denominator degrees of freedom.  

 
Notes:   
 

1. The null distribution of the FWALD statistic is exactly F[q, N−K] only if the 
error normality assumption A6 is true.   

 

2. However, even if the normality assumption A6 is not true, the null 
distribution of the FWALD statistic is still approximately F[q, N−K] under 
fairly general conditions.    
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 Common Form of the Wald F-statistic.  In practice, the most common form 
of the Wald F-statistic is that obtained by using the OLS coefficient covariance 
matrix estimator in place of β̂V̂  in (9) and (10):  

 
( ) ( ) ( )

q
rˆRRV̂RrˆRW

q
1F

1T
OLS

T

OLSW
−β−β

==
−

         (12) 

 
where 
 

( ) ( ) 1T2
OLSOLS XXˆV̂ˆV̂ −

σ==β  =  the OLS estimator of ;  β̂V
 

KN

û

KN
ûû

KN
RSSˆ

N

1i

2
iT

12

−
=

−
=

−
=σ

∑
=  =  the unrestricted OLS estimator of σ2;  

 

( ) ( ) ( ) ]q[~rˆRRV̂RrˆRW 2
a1T

OLS
T

OLS χ−β−β=
−

  under H0.     
 
 
• Null distribution of the FW Statistic: With the error normality assumption A6, 

the null distribution of the FW statistic (12) – that is, the distribution of the 
Wald-F statistic if the null hypothesis H0 is true – is ]KN,q[F − , the central F 
distribution with q numerator degrees of freedom and N−K denominator 
degrees of freedom.   

 
The short way of saying this is: 
 

]KN,q[F~W
q
1F OLSW −=  under H0: Rβ = r         (13) 

 
where   
 

]KN,q[F −   =  the F-distribution with q numerator degrees of freedom and  
N−K denominator degrees of freedom.  
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• Notes on Computation of FW    
 

• The Wald F-statistic FW in (12) is computed using only the unrestricted OLS 
coefficient estimates β̂  and the OLS estimate OLSV̂  of the variance-covariance 
matrix of β̂ .     

 

• Both the unrestricted OLS coefficient estimator β̂  and the OLS covariance 
matrix estimator OLSV̂  are unbiased and consistent under the assumptions of 
the classical linear regression model.   

 
6.  Relationship Between Wald and LR F-Tests 

 
 The Wald and LR F-Statistics 

 
( ) ( ) ( ) ]KN,q[F~

q
rˆRRV̂RrˆRW

q
1F

1T
OLS

T

OLSW −
−β−β

==
−

 under H0  

 

]KN,q[F~
q

)KN(
RSS

)RSSRSS(
)KN(RSS
q)RSSRSS(F

1

10

1

10
LR −

−−
=

−
−

=  under H0  

 
 Key Result 

 
The key to understanding the relationship between the Wald F-statistic FW and 
the LR F-statistic FLR is the following important result (given without the 
tedious proof):   
 
The quadratic form  defined as  )ˆ(βΦ
 

( ) ( ) ( )rˆRR)XX(RrˆR)ˆ(
1T1TT

−β−β=βΦ
−−  

 
can be shown to equal the difference between the restricted and unrestricted 
residual sums of squares  
 

ûûu~u~RSSRSS TT
10 −=− . 
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That is,  
 

( ) ( ) ( ) 10
TT1T1TT

RSSRSSûûu~u~rˆRR)XX(RrˆR)ˆ( −=−=−β−β=βΦ
−− .   (14) 

 
 Rewrite the FW Statistic  

 
• Use the result (14) and the formula for 2

OLSσ̂  to rewrite the Wald F-statistic FW.   
 

1. Rewrite the Wald F-statistic FW as follows 
 
Substitute for  in the formula for FW the expression   OLSV̂
 

( ) 1T2
OLS XXˆV̂

−
σ=   

 
This gives  
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) .
ˆ

qrˆRR)XX(RrˆR

ˆq
rˆRR)XX(RrˆR

q
rˆRR)XX(RˆrˆR

q
rˆRR)XX(ˆRrˆR

q
rˆRRV̂RrˆRF

2
OLS

1T1TT

2
OLS

1T1TT

1T1T2
OLS

T

1T1T2
OLS

T

1T
OLS

T

W

σ
−β−β

=

σ
−β−β

=

−βσ−β
=

−βσ−β
=

−β−β
=

−−

−−

−−

−−

−

           (15) 

 
2. Now substitute for 2

OLSσ̂  in the last line of (15) the expression  
 

.
KN
ûû

KN
RSSˆ

T
12

OLS −
=

−
=σ  
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This allows us to rewrite the FW statistic as  
 

( ) ( ) ( )

( ) ( ) ( ) .
)KN(ûû

qrˆRR)XX(RrˆR

ˆ
qrˆRR)XX(RrˆRF

T

1T1TT

2
OLS

1T1TT

W

−
−β−β

=

σ
−β−β

=

−−

−−

 

 
3. Finally, use result (14) above to replace the quadratic form in the numerator of 

FW, namely ( ) ( ) ( )rˆRR)XX(RrˆR
1T1TT

−β−β
−− , with the equivalent difference 

between the restricted residual sum of squares u~u~T  and the unrestricted 
residual sum of squares ûûT . This permits the FW statistic to be written as:   

 
( ) ( ) ( )

)KN(ûû
qrˆRR)XX(RrˆRF T

1T1TT

W −
−β−β

=
−−

 

 

  ( )
)KN(ûû
qûûu~u~

T

TT

−
−

=                (16.1) 

 

  ( )
)KN(RSS

qRSSRSS

1

10

−
−

=               (16.2) 

 
where  = the restricted residual sum of squares and  = u~u~RSS T

0 = ûûRSS T
1 =

the unrestricted residual sum of squares.   
 

• Result: The Wald F-statistic FW can be written in terms of the restricted and 
unrestricted residual sums of squares as 
 

( ) ( ) ( ) ( )
)KN(RSS
qRSSRSS

q
rˆRRV̂RrˆRF

1

10
1T

OLS
T

W −
−

=
−β−β

=
−

.      (17) 
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 The FW and FLR Statistics are Equal 
 

( ) ( ) ( ) ( )
LR

1

10
1T

OLS
T

W F
)KN(RSS
qRSSRSS

q
rˆRRV̂RrˆRF =

−
−

=
−β−β

=
−

.  

 
 Tests Based on the FW and FLR Statistics are Equivalent  

 
The Wald F-statistic FW and the LR F-statistic FLR yield equivalent or identical 
tests of H0: Rβ = r against H1: Rβ ≠ r. 
 
This equivalence follows from two facts:   
 
1. The two test statistics FW and FLR are equal; that is, they yield identical 

calculated sample values of the F-statistic.   
 

LRW FF =   
 

2. The two test statistics FW and FLR have identical null distributions, 
namely the F[q, N−K] distribution.   

 
]KN,q[F~FW −   under  H0: Rβ = r 

and  

]KN,q[F~FLR −   under  H0: Rβ = r. 
 
• Result:   

 
 

 
]KN,q[F~FF LRW −=   under  H0: Rβ = r. 
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