ECON 452* -- NOTE 10

Testing Linear Coefficient Restrictions in Linear Regression Models: The Fundamentals

This note outlines the fundamentals of statistical inference in linear regression models.

- In scalar notation, the population regression equation, or PRE, for the linear regression model is written in general as:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\cdots+\beta_{\mathrm{k}} \mathrm{X}_{\mathrm{ik}}+\mathrm{u}_{\mathrm{i}} \quad \forall \mathrm{i} \tag{1.1}
\end{equation*}
$$

or

$$
\begin{equation*}
Y_{i}=\beta_{0}+\sum_{j=1}^{i=k} \beta_{\mathrm{j}} X_{i j}+u_{i} \tag{1.2}
\end{equation*}
$$

$$
\forall \mathrm{i}
$$

or

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\sum_{\mathrm{j}=0}^{\mathrm{j}=\mathrm{k}} \beta_{\mathrm{j}} \mathrm{X}_{\mathrm{ij}}+\mathrm{u}_{\mathrm{i}}, \quad \mathrm{X}_{\mathrm{i} 0}=1 \forall \mathrm{i} \quad \forall \mathrm{i} \tag{1.3}
\end{equation*}
$$

where
$\mathrm{Y}_{\mathrm{i}} \equiv$ the i-th population value of the regressand, or dependent variable;
$\mathrm{X}_{\mathrm{ij}} \equiv$ the i -th population value of the j -th regressor, $\mathrm{j}=1, \ldots, \mathrm{k}$;
$\beta_{\mathrm{j}} \equiv$ the partial slope coefficient of $\mathrm{X}_{\mathrm{i}}, \mathrm{j}=1, \ldots, \mathrm{k}$;
$u_{i} \equiv$ the i-th population value of the unobservable random error term.

- In vector-matrix notation, the population regression equation, or PRE, for a sample of N observations on a linear regression model can be written as:

$$
\begin{equation*}
\mathrm{y}=\mathrm{X} \beta+\mathrm{u} \tag{2}
\end{equation*}
$$

where

$$
\mathrm{y}=\left[\begin{array}{c}
\mathrm{Y}_{1} \\
\mathrm{Y}_{2} \\
\mathrm{Y}_{3} \\
\vdots \\
\mathrm{Y}_{\mathrm{N}}
\end{array}\right]=\text { the } \mathrm{N} \times 1 \text { regressand vector }
$$

$=$ the $\mathrm{N} \times 1$ column vector of observed sample values of the regressand, or dependent variable, $\mathrm{Y}_{\mathrm{i}}(\mathrm{i}=1, \ldots, \mathrm{~N})$;
$\mathrm{u}=\left[\begin{array}{c}\mathrm{u}_{1} \\ \mathrm{u}_{2} \\ \mathrm{u}_{3} \\ \vdots \\ \mathrm{u}_{\mathrm{N}}\end{array}\right]=$ the $\mathrm{N} \times 1$ error vector
$=$ the $N \times 1$ column vector of unobserved random error terms u_{i} ($\mathrm{i}=1, \ldots, \mathrm{~N}$) corresponding to each of the N sample observations.

$$
\mathrm{X}=\left[\begin{array}{c}
\mathrm{x}_{1}^{\mathrm{T}} \\
\mathrm{x}_{2}^{\mathrm{T}} \\
\mathrm{x}_{3}^{\mathrm{T}} \\
\vdots \\
\mathrm{X}_{\mathrm{N}}^{\mathrm{T}}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & \mathrm{X}_{11} & \mathrm{X}_{12} & \cdots & \mathrm{X}_{1 \mathrm{k}} \\
1 & \mathrm{X}_{21} & \mathrm{X}_{22} & \cdots & \mathrm{X}_{2 \mathrm{k}} \\
1 & \mathrm{X}_{31} & \mathrm{X}_{32} & \cdots & \mathrm{X}_{3 \mathrm{k}} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
1 & \mathrm{X}_{\mathrm{N} 1} & \mathrm{X}_{\mathrm{N} 2} & \cdots & \mathrm{X}_{\mathrm{Nk}}
\end{array}\right]=\text { the } \mathrm{N} \times \mathrm{K} \text { regressor matrix }
$$

$=$ the $\mathrm{N} \times \mathrm{K}$ matrix of observed sample values of the $\mathrm{K}=\mathrm{k}+1$ regressors $X_{i 0}, X_{i 1}, X_{i 2}, \ldots, X_{i k}(i=1, \ldots, N)$, where the first regressor is a constant equal to 1 for all observations ($\mathrm{X}_{\mathrm{i} 0}=1 \forall \mathrm{i}=1, \ldots, \mathrm{~N}$).

$$
\beta=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{\mathrm{k}}
\end{array}\right]=\text { the } K \times 1 \text { regression coefficient vector }
$$

$=$ the $\mathrm{K} \times 1$ or $(\mathrm{k}+1) \times 1$ column vector of unknown partial regression coefficients $\beta_{\mathrm{j}}, \mathrm{j}=0,1, \ldots, \mathrm{k}$.

- Statistical inference consists of both

1. testing hypotheses on the regression coefficient vector β and
2. constructing confidence intervals for the individual elements of β.

1. Assumption A6: The Error Normality Assumption

In order to perform statistical inference in the linear regression model, it is necessary to specify the form of the probability distribution of the error vector u in population regression equation (1). The normality assumption does this.

- Scalar Formulation of the Error Normality Assumption A6

The random error terms u_{i} are independently and identically distributed as the normal distribution with

1. zero conditional means

$$
\mathrm{E}\left(\mathrm{u}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)=\mathrm{E}\left(\mathrm{u}_{\mathrm{i}}\right)=0 \quad \forall \mathrm{i}
$$

2. constant conditional variances

$$
\operatorname{Var}\left(\mathrm{u}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)=\mathrm{E}\left(\mathrm{u}_{\mathrm{i} \mid}^{2} \mid \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)=\mathrm{E}\left(\mathrm{u}_{\mathrm{i}}^{2} \mid 1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \ldots, \mathrm{X}_{\mathrm{ik}}\right)=\sigma^{2}>0 \quad \forall \mathrm{i}
$$

3. zero conditional covariances

$$
\operatorname{Cov}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{s}} \mid \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}, \mathrm{x}_{\mathrm{s}}^{\mathrm{T}}\right)=\mathrm{E}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{s}} \mid \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}, \mathrm{x}_{\mathrm{s}}^{\mathrm{T}}\right)=0 \quad \forall \mathrm{i} \neq \mathrm{s}
$$

- A compact way of stating error normality assumption A6 is:
conditional on $\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}$, the u_{i} are iid as $\mathrm{N}\left(0, \sigma^{2}\right)$
where
"iid" means "independently and identically distributed"
$\mathrm{N}\left(0, \sigma^{2}\right)$ denotes a normal distribution with zero mean and variance σ^{2}.
Even more briefly, we can say that
$u_{i} \mid x_{i}^{T}$ are iid as $N\left(0, \sigma^{2}\right)$.

Matrix Formulation of the Error Normality Assumption A6

The $\mathbf{N} \times 1$ error vector \mathbf{u} has a multivariate normal distribution with

1. a zero conditional mean vector

$\mathrm{E}(\mathrm{u} \mid \mathrm{X})=\underline{0} \quad$ where $\underline{0}$ is an $\mathrm{N} \times 1$ vector of zeros

2. a constant scalar diagonal covariance matrix V(u)

$$
\mathrm{V}(\mathrm{u} \mid \mathrm{X})=\mathrm{E}\left(\mathrm{uu}^{\mathrm{T}} \mid \mathrm{X}\right)=\sigma^{2} \mathrm{I}_{\mathrm{N}} \quad \text { where } \mathrm{I}_{\mathrm{N}} \text { is the } \mathrm{N} \times \mathrm{N} \text { identity matrix }
$$

- A compact way of stating the error normality assumption in matrix terms is:

$$
\begin{equation*}
\mathrm{u} \mid \mathrm{X} \sim \mathrm{~N}\left(\underline{0}, \sigma^{2} \mathrm{I}_{\mathrm{N}}\right) \tag{A6}
\end{equation*}
$$

where $\mathrm{N}(\cdot, \cdot)$ here denotes the N -variate normal distribution.

- Implications of Assumption A6 for the Distribution of the Regressand Vector y

- Linearity Property of Normal Distribution: Any linear function of a normally distributed random variable is itself normally distributed.
- \mathbf{y} is a linear function of \mathbf{u} : The PRE $\mathrm{y}=\mathrm{X} \beta+\mathrm{u}$ states that the regressand vector y is a linear function of the error vector u .
- Implication: Since u is normally distributed by assumption A6 and y is a linear function of u by assumption A1, the linearity property of the normal distribution implies that

$$
\mathrm{y} \mid \mathrm{X} \sim \mathrm{~N}\left(\mathrm{X} \beta, \sigma^{2} \mathrm{I}_{\mathrm{N}}\right) .
$$

That is, the regressand vector \mathbf{y} has an \mathbf{N}-variate normal distribution with
(1) conditional mean vector equal to $E(y \mid X)=X \beta$
and
(2) conditional covariance matrix equal to $\mathrm{V}(\mathrm{y} \mid \mathrm{X})=\sigma^{2} \mathrm{I}_{\mathrm{N}}$.

- Implications of Assumption A6 for the Distribution of the OLS Coefficient Estimator $\hat{\beta}$
- $\hat{\beta}$ is a linear function of \mathbf{y}. Conditional on the regressors X, the OLS coefficient estimator $\hat{\beta}$ is a linear function of the regressand vector y :

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y
$$

- Implication: Since y is normally distributed by implication of assumption A6 and $\hat{\beta}$ is a linear function of y, the linearity property of the normal distribution implies that

$$
\begin{equation*}
\hat{\beta} \mid X \sim N\left(\beta, \sigma^{2}\left(X^{T} X\right)^{-1}\right) . \tag{3}
\end{equation*}
$$

That is, the OLS coefficient estimator $\hat{\beta}$ has an K-variate normal distribution with
(1) conditional mean vector equal to $E(\hat{\beta} \mid X)=\beta$
and
(2) conditional covariance matrix equal to $V(\hat{\beta} \mid X)=\sigma^{2}\left(X^{T} X\right)^{-1}$.

2. Formulation of Linear Equality Restrictions on β

The general hypothesis to be tested is that the coefficient vector β satisfies a set of q independent linear restrictions, where $\mathrm{q}<\mathrm{K}$. We formulate this general hypothesis in vector-matrix form, since this corresponds to the way in which econometric software such as Stata is written.

The null hypothesis $\mathbf{H}_{\mathbf{0}}$ is written in general as:

$$
\mathrm{H}_{0}: \quad \mathrm{R} \beta=\mathrm{r} \quad \Leftrightarrow \quad \mathrm{R} \beta-\mathrm{r}=\underline{0}
$$

The alternative hypothesis $\mathbf{H}_{\mathbf{1}}$ is written in general as:

$$
\mathrm{H}_{1}: \quad \mathrm{R} \beta \neq \mathrm{r} \quad \Leftrightarrow \quad \mathrm{R} \beta-\mathrm{r} \neq \underline{0}
$$

In H_{0} and H_{1} above:
$\mathrm{R}=\mathrm{aq} \times \mathrm{K}$ matrix of specified constants;
$\beta=$ the $K \times 1$ coefficient vector;
$r=a \mathrm{q} \times 1$ vector of specified constants;
$\underline{0}=\mathrm{a} \mathrm{q} \times 1$ null vector, i.e., a $\mathrm{q} \times 1$ vector of zeros.

- The $\mathrm{q} \times \mathrm{K}$ restrictions matrix R takes the form

$$
\mathrm{R}=\left[\begin{array}{ccccc}
\mathrm{r}_{10} & \mathrm{r}_{11} & \mathrm{r}_{12} & \cdots & \mathrm{r}_{1 \mathrm{k}} \\
\mathrm{r}_{20} & \mathrm{r}_{21} & \mathrm{r}_{22} & \cdots & \mathrm{r}_{2 \mathrm{k}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathrm{r}_{\mathrm{q} 0} & \mathrm{r}_{\mathrm{q} 1} & \mathrm{r}_{\mathrm{q} 2} & \cdots & \mathrm{r}_{\mathrm{qk}}
\end{array}\right]
$$

where

$$
\mathrm{r}_{\mathrm{mj}}=\text { the constant on coefficient } \beta_{\mathrm{j}} \text { in the } \mathrm{m} \text {-th linear restriction, } \mathrm{m}=1, \ldots, \mathrm{q} \text {. }
$$

- The $\mathrm{q} \times 1$ restrictions vector r takes the form

$$
\mathrm{r}=\left[\begin{array}{c}
\mathrm{r}_{1} \\
\mathrm{r}_{2} \\
\vdots \\
\mathrm{r}_{\mathrm{q}}
\end{array}\right]
$$

where

$$
\mathrm{r}_{\mathrm{m}}=\text { the constant term in the } \mathrm{m} \text {-th linear restriction, } \mathrm{m}=1, \ldots, \mathrm{q} .
$$

- The matrix-vector product $\mathrm{R} \beta$ is a $\mathrm{q} \times 1$ vector of linear functions of the regression coefficients $\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{\mathrm{k}}$:

$$
\begin{array}{r}
\mathrm{R} \beta=\left[\begin{array}{ccccc}
\mathrm{r}_{10} & \mathrm{r}_{11} & \mathrm{r}_{12} & \cdots & \mathrm{r}_{1 \mathrm{k}} \\
\mathrm{r}_{20} & \mathrm{r}_{21} & \mathrm{r}_{22} & \cdots & \mathrm{r}_{2 \mathrm{k}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathrm{r}_{\mathrm{q} 0} & \mathrm{r}_{\mathrm{q} 1} & \mathrm{r}_{\mathrm{q} 2} & \cdots & \mathrm{r}_{\mathrm{qk}}
\end{array}\right]\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{\mathrm{k}}
\end{array}\right]
\end{array} \underset{(\mathrm{q} \times \mathrm{K})}{\left[\begin{array}{c}
\mathrm{r}_{10} \beta_{0}+\mathrm{r}_{11} \beta_{1}+\mathrm{r}_{12} \beta_{2}+\cdots+\mathrm{r}_{1 \mathrm{k}} \beta_{\mathrm{k}} \\
\mathrm{r}_{20} \beta_{0}+\mathrm{r}_{21} \beta_{1}+\mathrm{r}_{22} \beta_{2}+\cdots+\mathrm{r}_{2 \mathrm{k}} \beta_{\mathrm{k}} \\
\vdots \\
\mathrm{r}_{\mathrm{q} 0} \beta_{0}+\mathrm{r}_{\mathrm{q} 1} \beta_{1}+\mathrm{r}_{\mathrm{q} 2} \beta_{2}+\cdots+\mathrm{r}_{\mathrm{qk}} \beta_{\mathrm{k}}
\end{array}\right]} \begin{gathered}
(\mathrm{q} \times 1)
\end{gathered}
$$

- The null and alternative hypotheses can therefore be written as follows:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{R} \beta=\mathrm{r} \Rightarrow\left[\begin{array}{c}
\mathrm{r}_{10} \beta_{0}+\mathrm{r}_{11} \beta_{1}+\mathrm{r}_{12} \beta_{2}+\cdots+\mathrm{r}_{1 \mathrm{k}} \beta_{\mathrm{k}} \\
\mathrm{r}_{20} \beta_{0}+\mathrm{r}_{21} \beta_{1}+\mathrm{r}_{22} \beta_{2}+\cdots+\mathrm{r}_{2 \mathrm{k}} \beta_{\mathrm{k}} \\
\vdots \\
\mathrm{r}_{\mathrm{q} 0} \beta_{0}+\mathrm{r}_{\mathrm{q} 1} \beta_{1}+\mathrm{r}_{\mathrm{q} 2} \beta_{2}+\cdots+\mathrm{r}_{\mathrm{qk}} \beta_{\mathrm{k}}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{r}_{1} \\
\mathrm{r}_{2} \\
\vdots \\
\mathrm{r}_{\mathrm{q}}
\end{array}\right] \\
& \mathrm{H}_{1}: \mathrm{R} \beta \neq \mathrm{r} \Rightarrow\left[\begin{array}{c}
\mathrm{r}_{10} \beta_{0}+\mathrm{r}_{11} \beta_{1}+\mathrm{r}_{12} \beta_{2}+\cdots+\mathrm{r}_{1 \mathrm{k}} \beta_{\mathrm{k}} \\
\mathrm{r}_{20} \beta_{0}+\mathrm{r}_{21} \beta_{1}+\mathrm{r}_{22} \beta_{2}+\cdots+\mathrm{r}_{2 \mathrm{k}} \beta_{\mathrm{k}} \\
\vdots \\
\mathrm{r}_{\mathrm{q} 0} \beta_{0}+\mathrm{r}_{\mathrm{q} 1} \beta_{1}+\mathrm{r}_{\mathrm{q} 2} \beta_{2}+\cdots+\mathrm{r}_{\mathrm{qk}} \beta_{\mathrm{k}}
\end{array}\right] \neq\left[\begin{array}{c}
\mathrm{r}_{1} \\
\mathrm{r}_{2} \\
\vdots \\
\mathrm{r}_{\mathrm{q}}
\end{array}\right]
\end{aligned}
$$

Some Specific Examples

Consider the linear regression model given by the PRE

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 3}+\beta_{4} \mathrm{X}_{\mathrm{i} 4}+\mathrm{u}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{4}
\end{equation*}
$$

Test 1

The null and alternative hypotheses are:
$\mathrm{H}_{0}: \beta_{2}=0 \quad$ one linear restriction on coefficient vector β
$\mathrm{H}_{1}: \quad \beta_{2} \neq 0$

- The restrictions matrix R in this case is the 1×5 row vector:

$$
\mathrm{R}=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0
\end{array}\right] .
$$

- The restrictions vector r is in this case the scalar 0 since there is only one restriction specified by the null hypothesis H_{0} :

$$
r=0 .
$$

- The matrix-vector product $\mathrm{R} \beta$ in this case is:

$$
\mathrm{R} \beta=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right]=0 \beta_{0}+0 \beta_{1}+1 \beta_{2}+0 \beta_{3}+0 \beta_{4}=\beta_{2}
$$

- The null hypothesis H_{0} : $\mathrm{R} \beta=\mathrm{r}$ is therefore the single equation:
$H_{0}: \quad \beta_{2}=0$

Test 2

The PRE is again

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}+\beta_{4} X_{i 4}+u_{i} \quad(i=1, \ldots, N) \tag{4}
\end{equation*}
$$

The null and alternative hypotheses are:
$\mathrm{H}_{0}: \beta_{1}=0$ and $\beta_{2}=0 \quad$ two linear restrictions on coefficient vector β
$\mathrm{H}_{1}: \quad \beta_{1} \neq 0$ and/or $\beta_{2} \neq 0$

- The restrictions matrix R in this case is the 2×5 row vector:

$$
R=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

- The restrictions vector r is in this case the 2×1 column vector of zeros:

$$
r=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- The matrix-vector product $\mathrm{R} \beta$ in this case is:

$$
\mathrm{R} \beta=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \beta_{0}+1 \beta_{1}+0 \beta_{2}+0 \beta_{3}+0 \beta_{4} \\
0 \beta_{0}+0 \beta_{1}+1 \beta_{2}+0 \beta_{3}+0 \beta_{4}
\end{array}\right]=\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]
$$

- The null hypothesis $\mathrm{H}_{0}: \mathrm{R} \beta=\mathrm{r}$ is therefore the matrix equation:
$H_{0}:\left[\begin{array}{l}\beta_{1} \\ \beta_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad$ which says $\quad \beta_{1}=0$ and $\beta_{2}=0 "$

Test 3

The PRE is again

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{X}_{\mathrm{i} 3}+\beta_{4} \mathrm{X}_{\mathrm{i} 4}+\mathrm{u}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N}) \tag{4}
\end{equation*}
$$

The null and alternative hypotheses are:
$\mathrm{H}_{0}: \beta_{1}=\beta_{3}$ and $\beta_{2}=-\beta_{4}$ or $\beta_{1}-\beta_{3}=0$ and $\beta_{2}+\beta_{4}=0 \quad(\mathrm{q}=2)$
$\mathrm{H}_{1}: \beta_{1} \neq \beta_{3}$ and/or $\beta_{2} \neq \beta_{4}$ or $\beta_{1}-\beta_{3} \neq 0$ and/or $\beta_{2}+\beta_{4} \neq 0$

- The restrictions matrix R in this case is the 2×5 row vector:

$$
R=\left[\begin{array}{ccccc}
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

- The restrictions vector r is in this case the 2×1 column vector of zeros:

$$
\mathrm{r}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- The matrix-vector product $\mathrm{R} \beta$ in this case is:

$$
\mathrm{R} \beta=\left[\begin{array}{ccccc}
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \beta_{0}+1 \beta_{1}+0 \beta_{2}-1 \beta_{3}+0 \beta_{4} \\
0 \beta_{0}+0 \beta_{1}+1 \beta_{2}+0 \beta_{3}+1 \beta_{4}
\end{array}\right]=\left[\begin{array}{l}
\beta_{1}-\beta_{3} \\
\beta_{2}+\beta_{4}
\end{array}\right]
$$

- The null hypothesis $\mathrm{H}_{0}: \mathrm{R} \beta=\mathrm{r}$ is therefore the matrix equation:
$\mathrm{H}_{0}:\left[\begin{array}{l}\beta_{1}-\beta_{3} \\ \beta_{2}+\beta_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ which says $" \beta_{1}-\beta_{3}=0$ and $\beta_{2}+\beta_{4}=0$ "

Test 4

The PRE is again

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}+\beta_{4} X_{i 4}+u_{i} \quad(i=1, \ldots, N) \tag{4}
\end{equation*}
$$

The null and alternative hypotheses are:

$$
\begin{array}{lllll}
\mathrm{H}_{0}: & \beta_{1}+2 \beta_{2}=\beta_{3}+2 \beta_{4} & \text { or } & \beta_{1}+2 \beta_{2}-\beta_{3}-2 \beta_{4}=0 & (q=1) \\
\mathrm{H}_{1}: & \beta_{1}+2 \beta_{2} \neq \beta_{3}+2 \beta_{4} & \text { or } & \beta_{1}+2 \beta_{2}-\beta_{3}-2 \beta_{4} \neq 0 &
\end{array}
$$

- The restrictions matrix R in this case is the 1×5 row vector:

$$
\mathrm{R}=\left[\begin{array}{lllll}
0 & 1 & 2 & -1 & -2
\end{array}\right]
$$

- The restrictions vector r is in this case the 1×1 scalar 0 :

$$
\mathrm{r}=0
$$

- The matrix-vector product $\mathrm{R} \beta$ in this case is the 1×1 scalar:

$$
\begin{aligned}
R \beta=\left[\begin{array}{lllll}
0 & 1 & 2 & -1 & -2
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right] & =\left[0 \beta_{0}+1 \beta_{1}+2 \beta_{2}-1 \beta_{3}-2 \beta_{4}\right] \\
& =\beta_{1}+2 \beta_{2}-\beta_{3}-2 \beta_{4}
\end{aligned}
$$

- The null hypothesis $\mathrm{H}_{0}: \mathrm{R} \beta=\mathrm{r}$ is therefore the equation:

$$
H_{0}: \quad \beta_{1}+2 \beta_{2}-\beta_{3}-2 \beta_{4}=0
$$

3. The Three Principles of Hypothesis Testing

- Given the null hypothesis $\mathrm{H}_{0}: \mathrm{R} \beta-\mathrm{r}=\underline{0}$ and the alternative hypothesis H_{1} : $R \beta-r \neq \underline{0}$, there are two alternative sets of parameter estimates of the PRE $\mathrm{y}=\mathrm{X} \beta+\mathrm{u}$ that one might use to compute a test statistic.

1. The restricted parameter estimates computed under $H_{0}: R \beta-r=\underline{0}$, which are denoted as follows:
$\tilde{\beta}=$ the restricted OLS estimator of β;
$\tilde{\mathrm{u}}=\mathrm{y}-\mathrm{X} \tilde{\beta}=$ the restricted OLS residual vector;
$\operatorname{RSS}_{0}=\operatorname{RSS}_{\mathrm{R}}=\operatorname{RSS}(\tilde{\beta})=\widetilde{\mathrm{u}}^{\mathrm{T}} \tilde{\mathrm{u}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \widetilde{\mathrm{u}}_{\mathrm{i}}^{2}$
$=$ the restricted residual sum of squares;
$\mathrm{df}_{0}=\mathrm{N}-(\mathrm{K}-\mathrm{q})=\mathrm{N}-\mathrm{K}+\mathrm{q}=$ the degrees of freedom for RSS_{0};
$\tilde{\sigma}^{2}=\mathrm{RSS}_{0} / \mathrm{df}_{0}=\mathrm{RSS}_{0} / \mathrm{N}-(\mathrm{K}-\mathrm{q})=$ the restricted OLS estimator of σ^{2};
$\mathrm{R}_{\mathrm{R}}^{2}=\mathrm{ESS}_{0} / \mathrm{TSS}=1-\left(\mathrm{RSS}_{0} / \mathrm{TSS}\right)=$ the restricted R -squared.
2. The unrestricted parameter estimates computed under $\mathrm{H}_{1}: \mathrm{R} \beta-\mathrm{r} \neq \underline{0}$, which are denoted as follows:
$\hat{\beta}=$ the unrestricted OLS estimator of β;
$\hat{\mathrm{u}}=\mathrm{y}-\mathrm{X} \hat{\beta}=$ the unrestricted residual vector;
$\operatorname{RSS}_{1}=\operatorname{RSS}_{\mathrm{U}}=\operatorname{RSS}(\hat{\beta})=\hat{\mathrm{u}}^{\mathrm{T}} \hat{\mathrm{u}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}$
= the unrestricted residual sum of squares;
$\mathrm{df}_{1}=\mathrm{N}-\mathrm{K}=$ the degrees of freedom for RSS_{1};
$\hat{\sigma}^{2}=$ RSS $_{1} / \mathrm{N}-\mathrm{K}=$ the unrestricted OLS estimator of σ^{2}.
$\mathrm{R}_{\mathrm{U}}^{2}=\mathrm{ESS}_{1} / \mathrm{TSS}=1-\left(\mathrm{RSS}_{1} / \mathrm{TSS}\right)=$ the unrestricted R -squared.

- The computation of hypothesis tests of linear coefficient restrictions can be performed in general in three different ways:

1. using only the unrestricted parameter estimates of the model;
2. using only the restricted parameter estimates of the model;
3. using both the restricted and unrestricted parameter estimates of the model.

- These three options correspond to the three fundamental principles of hypothesis testing.

1. The Wald principle of hypothesis testing computes hypothesis tests using only the unrestricted parameter estimates of the model computed under the alternative hypothesis H_{1}.
2. The Lagrange Multiplier (LM) principle of hypothesis testing computes hypothesis tests using only the restricted parameter estimates of the model computed under the null hypothesis H_{0}.
3. The Likelihood Ratio (LR) principle of hypothesis testing computes hypothesis tests using both the restricted parameter estimates of the model computed under the null hypothesis H_{0} and the unrestricted parameter estimates of the model computed under the alternative hypothesis H_{1}.

4. Likelihood Ratio F-Tests of Linear Coefficient Restrictions

- Null and Alternative Hypotheses

- The null hypothesis is that the regression coefficient vector β satisfies a set of q independent linear coefficient restrictions:

$$
\mathrm{H}_{0}: \quad \mathrm{R} \beta=\mathrm{r} \quad \Leftrightarrow \quad \mathrm{R} \beta-\mathrm{r}=\underline{0}
$$

- The alternative hypothesis is that the regression coefficient vector β does not satisfy the set of q independent linear coefficient restrictions specified by H_{0} :

$$
\mathrm{H}_{1}: \quad \mathrm{R} \beta \neq \mathrm{r} \quad \Leftrightarrow \quad \mathrm{R} \beta-\mathrm{r} \neq \underline{0}
$$

- The Likelihood Ratio F-Statistic

The LR F-statistic can be written in either of two equivalent forms.

1. Form 1 of the LR F-statistic is expressed in terms of the restricted and unrestricted residual sums of squares, RSS_{0} and RSS_{1} :

$$
\begin{align*}
& \mathrm{F}_{\mathrm{LR}}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) /\left(\mathrm{df}_{0}-\mathrm{df}_{1}\right)}{\mathrm{RSS}_{1} / \mathrm{df}_{1}}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right)}{\mathrm{RSS}_{1}} \frac{\mathrm{df}_{1}}{\left(\mathrm{df}_{0}-\mathrm{df}_{1}\right)} \tag{F1}\\
& \mathrm{F}_{\mathrm{LR}}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) / \mathrm{q}}{\mathrm{RSS}_{1} /(\mathrm{N}-\mathrm{K})}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right)}{\mathrm{RSS}_{1}} \frac{(\mathrm{~N}-\mathrm{K})}{\mathrm{q}} \tag{F1}
\end{align*}
$$

where:
$\mathrm{RSS}_{0}=$ the residual sum of squares for the restricted OLS-SRE;
$\mathrm{df}_{0}=\mathrm{N}-\mathrm{K}_{0}=$ the degrees of freedom for RSS $_{\mathbf{0}}$, the restricted RSS;
$\mathrm{K}_{0}=\mathrm{K}-\mathrm{q}=$ the number of free regression coefficients in the restricted model;

RSS $_{1}=$ the residual sum of squares for the unrestricted OLS-SRE; $\mathrm{df}_{1}=\mathrm{N}-\mathrm{K}=$ the degrees of freedom for RSS $_{1}$, the unrestricted RSS; $\mathrm{K}=\mathrm{k}+1=$ the number of free regression coefficients in the unrestricted model;
$\mathrm{q}=\mathrm{df}_{0}-\mathrm{df}_{1}=\mathrm{K}-\mathrm{K}_{0}=$ the number of independent linear coefficient restrictions specified by the null hypothesis H_{0}.

Note: The value of q is calculated as follows:

$$
\mathrm{q}=\mathrm{df}_{0}-\mathrm{df}_{1}=\mathrm{N}-\mathrm{K}_{0}-(\mathrm{N}-\mathrm{K})=\mathrm{N}-\mathrm{K}_{0}-\mathrm{N}+\mathrm{K}=\mathrm{K}-\mathrm{K}_{0} .
$$

2. Form 2 of the LR F-statistic is expressed in terms of the restricted and unrestricted R-squared values, R_{R}^{2} and R_{U}^{2} :

$$
\begin{align*}
& F=\frac{\left(R_{U}^{2}-R_{R}^{2}\right) /\left(d f_{0}-d f_{1}\right)}{\left(1-R_{U}^{2}\right) / d f_{1}}=\frac{\left(R_{U}^{2}-R_{R}^{2}\right)}{\left(1-R_{U}^{2}\right)} \frac{d f_{1}}{\left(d f_{0}-d f_{1}\right)} \tag{F2}\\
& F=\frac{\left(R_{U}^{2}-R_{R}^{2}\right) / q}{\left(1-R_{U}^{2}\right) /(N-K)}=\frac{\left(R_{U}^{2}-R_{R}^{2}\right)}{\left(1-R_{U}^{2}\right)} \frac{(N-K)}{q} \tag{F2}
\end{align*}
$$

where:
$\mathrm{R}_{\mathrm{R}}^{2}=$ the \boldsymbol{R}-squared value for the restricted OLS-SRE;
$\mathrm{K}_{0}=\mathrm{K}-\mathrm{q}=$ the number of free regression coefficients in the restricted model;
$\mathrm{df}_{0}=\mathrm{N}-\mathrm{K}_{0}=\mathrm{N}-(\mathrm{K}-\mathrm{q})=\mathrm{N}-\mathrm{K}+\mathrm{q}=$ the degrees of freedom for $\mathbf{R S S}_{0}$, the restricted RSS;
$\mathrm{R}_{\mathrm{U}}^{2}=$ the \boldsymbol{R}-squared value for the unrestricted OLS-SRE;
$\mathrm{K}=\mathrm{k}+1=$ the number of free regression coefficients in the unrestricted model;
$\mathrm{df}_{1}=\mathrm{N}-\mathrm{K}=$ the degrees of freedom for RSS $_{1}$, the unrestricted RSS;
$\mathrm{q}=\mathrm{df}_{0}-\mathrm{df}_{1}=\mathrm{K}-\mathrm{K}_{0}=$ the number of independent linear coefficient restrictions specified by the null hypothesis H_{0}.

Null distribution of the LR F-statistic

Under error normality assumption A6, the LR F-statistic F_{LR} is distributed under H_{0} (i.e., assuming the null hypothesis H_{0} is true) as $\mathrm{F}[\mathrm{q}, \mathrm{N}-\mathrm{K}]$, the F distribution with q numerator degrees of freedom and $\mathrm{N}-\mathrm{K}$ denominator degrees of freedom:

$$
\mathrm{F}_{\mathrm{LR}} \sim \mathrm{~F}[\mathrm{q}, \mathrm{~N}-\mathrm{K}] \text { under } \mathrm{H}_{0}: \mathrm{R} \beta=\mathrm{r} .
$$

- Computation of the LR F-statistic

Computation of the LR F-statistic requires estimation of both the restricted and unrestricted models.

- The restricted OLS-SRE estimated under the null hypothesis

$$
\mathrm{H}_{0}: \quad \mathrm{R} \beta=\mathrm{r} \quad \Leftrightarrow \quad \mathrm{R} \beta-\mathrm{r}=\underline{0}
$$

The regression coefficient vector β satisfies q independent linear coefficient restrictions
is written in matrix form as

$$
\begin{equation*}
\mathrm{y}=\mathrm{X} \tilde{\beta}+\tilde{\mathrm{u}}=\tilde{\mathrm{y}}+\tilde{\mathrm{u}} \tag{5}
\end{equation*}
$$

or in scalar form as

$$
\mathrm{Y}_{\mathrm{i}}=\tilde{\beta}_{0}+\tilde{\beta}_{1} \mathrm{X}_{\mathrm{i} 1}+\tilde{\beta}_{2} \mathrm{X}_{\mathrm{i} 2}+\cdots+\tilde{\beta}_{\mathrm{k}} \mathrm{X}_{\mathrm{ik}}+\tilde{\mathrm{u}}_{\mathrm{i}}=\tilde{\mathrm{Y}}_{\mathrm{i}}+\tilde{\mathrm{u}}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N})
$$

where:

- $\widetilde{\beta}$ is the restricted OLS estimator of the coefficient vector β with typical element $\tilde{\beta}_{\mathrm{j}}(\mathrm{j}=0, \ldots, \mathrm{k})$, the restricted OLS estimate of β_{j};
- $\tilde{y}=X \tilde{\beta}$ is the restricted OLS prediction vector with typical element $\tilde{\mathrm{Y}}_{\mathrm{i}}(\mathrm{i}=1, \ldots, \mathrm{~N})$, the restricted predicted value of the dependent variable Y for observation i, where

$$
\tilde{\mathrm{Y}}_{\mathrm{i}}=\tilde{\beta}_{0}+\tilde{\beta}_{1} \mathrm{X}_{\mathrm{i} 1}+\tilde{\beta}_{2} \mathrm{X}_{\mathrm{i} 2}+\cdots+\tilde{\beta}_{\mathrm{k}} \mathrm{X}_{\mathrm{ik}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N})
$$

- $\tilde{\mathrm{u}}=\mathrm{y}-\tilde{\mathrm{y}}=\mathrm{y}-\mathrm{X} \tilde{\beta}$ is the restricted OLS residual vector with typical element $\tilde{u}_{i}(i=1, \ldots, N)$, the restricted OLS residual for observation i, where

$$
\tilde{u}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}-\tilde{Y}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}-\tilde{\beta}_{0}-\tilde{\beta}_{1} \mathrm{X}_{\mathrm{i} 1}-\widetilde{\beta}_{2} \mathrm{X}_{\mathrm{i} 2}-\cdots-\tilde{\beta}_{\mathrm{k}} \mathrm{X}_{\mathrm{ik}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N})
$$

- the OLS decomposition equation for the restricted OLS-SRE is

$$
\begin{equation*}
\mathrm{TSS}=\mathrm{ESS}_{0}+\mathrm{RSS}_{0} \tag{5.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { TSS }=\mathrm{y}^{\mathrm{T}} \mathrm{y}-\mathrm{N} \overline{\mathrm{Y}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}^{2}-\mathrm{N} \overline{\mathrm{Y}}^{2} \quad \text { has } \mathrm{df}=\mathrm{N}-1 \\
& \operatorname{ESS}_{0}=\tilde{\mathrm{y}}^{\mathrm{T}} \tilde{\mathrm{y}}-\mathrm{N} \overline{\mathrm{Y}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\tilde{\mathrm{Y}}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \tilde{\mathrm{Y}}_{\mathrm{i}}^{2}-\mathrm{N} \overline{\mathrm{Y}}^{2} \quad \text { has df }=\mathrm{K}_{0}-1-\mathrm{q} \\
& \operatorname{RSS}_{0}=\tilde{\mathrm{u}}^{\mathrm{T}} \tilde{\mathrm{u}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \tilde{\mathrm{u}}_{\mathrm{i}}^{2} \quad \text { has } \mathrm{df}_{0}=\mathrm{N}-\left(\mathrm{K}_{0}-\mathrm{q}\right)=\mathrm{N}-\mathrm{K}_{0}+\mathrm{q}
\end{aligned}
$$

- the restricted R-squared for the restricted OLS-SRE is

$$
\begin{equation*}
\mathrm{R}_{\mathrm{R}}^{2}=\frac{\mathrm{ESS}_{0}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}_{0}}{\mathrm{TSS}} . \tag{5.2}
\end{equation*}
$$

- The unrestricted OLS-SRE estimated under the alternative hypothesis

$$
\mathrm{H}_{1}: \quad \mathrm{R} \beta \neq \mathrm{r} \quad \Leftrightarrow \quad \mathrm{R} \beta-\mathrm{r} \neq \underline{0}
$$

The regression coefficient vector β does not satisfy the q independent linear coefficient restrictions specified by H_{0}
is written in matrix form as

$$
\begin{equation*}
y=X \hat{\beta}+\hat{u}=\hat{y}+\hat{u} \tag{6}
\end{equation*}
$$

or in scalar form as

$$
\mathrm{Y}_{\mathrm{i}}=\hat{\beta}_{0}+\hat{\beta}_{1} \mathrm{X}_{\mathrm{i} 1}+\hat{\beta}_{2} \mathrm{X}_{\mathrm{i} 2}+\cdots+\hat{\beta}_{\mathrm{k}} \mathrm{X}_{\mathrm{ik}}+\hat{\mathrm{u}}_{\mathrm{i}}=\hat{Y}_{\mathrm{i}}+\hat{\mathrm{u}}_{\mathrm{i}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N})
$$

where:

- $\hat{\beta}$ is the unrestricted OLS estimator of the coefficient vector β with typical element $\hat{\beta}_{j}(\mathrm{j}=0, \ldots, \mathrm{k})$, the unrestricted OLS estimate of β_{j};
- $\hat{y}=X \hat{\beta}$ is the unrestricted OLS prediction vector with typical element $\hat{\mathrm{Y}}_{\mathrm{i}}(\mathrm{i}=1, \ldots, \mathrm{~N})$, the unrestricted predicted value of the dependent variable Y for observation i , where

$$
\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i 1}+\hat{\beta}_{2} X_{i 2}+\cdots+\hat{\beta}_{k} X_{i k} \quad(i=1, \ldots, N)
$$

- $\hat{u}=y-\hat{y}=y-X \hat{\beta}$ is the unrestricted OLS residual vector with typical element $\hat{u}_{i}(i=1, \ldots, N)$, the unrestricted OLS residual for observation i, where

$$
\hat{u}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}-\hat{Y}_{\mathrm{i}}=\mathrm{Y}_{\mathrm{i}}-\hat{\beta}_{0}-\hat{\beta}_{1} \mathrm{X}_{\mathrm{i} 1}-\hat{\beta}_{2} \mathrm{X}_{\mathrm{i} 2}-\cdots-\hat{\beta}_{\mathrm{k}} \mathrm{X}_{\mathrm{ik}} \quad(\mathrm{i}=1, \ldots, \mathrm{~N})
$$

- the OLS decomposition equation for the unrestricted OLS-SRE is

$$
\begin{equation*}
\mathrm{TSS}=\mathrm{ESS}_{1}+\mathrm{RSS}_{1} \tag{6.1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\text { TSS }=y^{\mathrm{T}} \mathrm{y}-\mathrm{N} \overline{\mathrm{Y}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{Y}_{\mathrm{i}}^{2}-\mathrm{N} \overline{\mathrm{Y}}^{2} & \text { has } \mathrm{df}=\mathrm{N}-1 \\
\mathrm{ESS}_{1}=\hat{\mathrm{y}}^{\mathrm{T}} \hat{\mathrm{y}}-\mathrm{N} \overline{\mathrm{Y}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\hat{\mathrm{Y}}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)^{2}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{Y}}_{\mathrm{i}}^{2}-\mathrm{N} \overline{\mathrm{Y}}^{2} & \text { has df }=\mathrm{K}-1 \\
\operatorname{RSS}_{1}=\hat{\mathrm{u}}^{\mathrm{T}} \hat{\mathrm{u}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2} & \text { has } \mathrm{df}_{1}=\mathrm{N}-\mathrm{K}
\end{array}
$$

- the unrestricted R-squared for the unrestricted OLS-SRE is

$$
\begin{equation*}
\mathrm{R}_{\mathrm{U}}^{2}=\frac{\mathrm{ESS}_{1}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}_{1}}{\mathrm{TSS}} . \tag{6.2}
\end{equation*}
$$

- Compare the OLS decomposition equations for the restricted and unrestricted OLS-SREs.

$$
\begin{array}{ll}
\text { TSS }=\text { ESS }_{0}+\text { RSS }_{0} . & \text { [for restricted SRE] } \\
\text { TSS }=\text { ESS }_{1}+\text { RSS }_{1} . & {[\text { for } \underline{\text { unrestricted }} \mathbf{~ S R E] ~}} \tag{6.1}
\end{array}
$$

- Since the Total Sum of Squares (TSS) is the same for both decompositions, it follows that

$$
\begin{equation*}
\mathrm{ESS}_{0}+\mathrm{RSS}_{0}=\mathrm{ESS}_{1}+\mathrm{RSS}_{1} . \tag{7}
\end{equation*}
$$

- Subtracting first RSS_{1} and then ESS_{0} from both sides of equation (9) allows equation (9) to be written as:

$$
\begin{equation*}
\mathrm{RSS}_{0}-\mathrm{RSS}_{1}=\mathrm{ESS}_{1}-\mathrm{ESS}_{0} \tag{8}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
\mathrm{RSS}_{0}-\mathrm{RSS}_{1}= & \text { the increase in RSS attributable to imposing the } \\
\text { restrictions specified by the null hypothesis } H_{0} ;
\end{array}\right\}
$$

- Result: Imposing one or more linear coefficient restrictions on the regression coefficients $\beta_{\mathrm{j}}(\mathrm{j}=0, \ldots, \mathrm{k})$ always increases (or leaves unchanged) the residual sum of squares, and hence always reduces (or leaves unchanged) the explained sum of squares. Consequently,

$$
\mathrm{RSS}_{0} \geq \mathrm{RSS}_{1} \Leftrightarrow \mathrm{ESS}_{1} \geq \mathrm{ESS}_{0}
$$

so that

$$
\mathrm{RSS}_{0}-\mathrm{RSS}_{1} \geq 0 \Leftrightarrow E S S_{1}-\mathrm{ESS}_{0} \geq 0 .
$$

In other words, both sides of equation (8) are always non-negative.

5. Wald F-Tests of Linear Coefficient Restrictions

- The Wald F-Test is Based on the Wald Principle of Hypothesis Testing

The Wald principle of hypothesis testing computes hypothesis tests using only the unrestricted parameter estimates of the model computed under the alternative hypothesis $\mathrm{H}_{1}: \mathrm{R} \beta \neq \mathrm{r}$. These unrestricted parameter estimates can be denoted as $\hat{\theta}=\left(\hat{\beta}, \hat{\sigma}^{2}\right)$.

- General Wald F-statistic. The general Wald F-statistic is obtained by simply dividing the general Wald statistic W in (10) by q , the number of independent linear coefficient restrictions specified by the null hypothesis H_{0} : $\mathrm{R} \beta=\mathrm{r}$:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{WALD}}=\frac{1}{\mathrm{q}} \mathrm{~W}=\frac{(\mathrm{R} \hat{\beta}-\mathrm{r})^{\mathrm{T}}\left(\mathrm{R} \hat{\mathrm{~V}}_{\hat{\beta}} R^{\mathrm{T}}\right)^{-1}(\mathrm{R} \hat{\beta}-\mathrm{r})}{\mathrm{q}} \tag{9}
\end{equation*}
$$

where:

$$
\begin{aligned}
& W=\text { the general Wald statistic given below; } \\
& \hat{\beta}=\text { a consistent unrestricted estimator of } \beta \text {, such as the OLS estimator; } \\
& \hat{V}_{\hat{\beta}}=\text { a consistent estimator of } \mathbf{V}_{\hat{\beta}} \text {. }
\end{aligned}
$$

The general Wald test statistic \mathbf{W} for testing the null hypothesis $\mathrm{H}_{0}: \mathrm{R} \beta=\mathrm{r}$ against the alternative hypothesis $\mathrm{H}_{1}: \mathrm{R} \beta \neq \mathrm{r}$ takes the form

$$
\begin{equation*}
W=(R \hat{\beta}-r)^{T}\left(R \hat{V}_{\hat{\beta}} R^{T}\right)^{-1}(R \hat{\beta}-r) \stackrel{a}{\sim} \chi^{2}[q] \quad \text { under } H_{0} \tag{10}
\end{equation*}
$$

where
$\hat{\beta}=$ a consistent unrestricted estimator of β, such as the OLS estimator;
$\hat{\mathrm{V}}_{\hat{\beta}}=$ a consistent estimator of $\mathbf{V}_{\hat{\beta}}$;
$\chi^{2}[q]=$ the chi-square distribution with \mathbf{q} degrees of freedom.

Notes: Both the coefficient estimator $\hat{\beta}$ and the coefficient covariance matrix estimator $\hat{V}_{\hat{\beta}}$ used in the general Wald statistic W must be consistent, and are computed using only unrestricted estimates of the linear regression model under the alternative hypothesis $\mathrm{H}_{1}: \mathrm{R} \beta \neq \mathrm{r}$.

- Null distribution of Wald-F Statistic: With the error normality assumption A6, the null distribution of the general Wald-F statistic -- that is, the distribution of the Wald-F statistic if the null hypothesis H_{0} is true -- is $\mathrm{F}[\mathrm{q}, \mathrm{N}-\mathrm{K}]$, the central F distribution with q numerator degrees of freedom and $\mathrm{N}-\mathrm{K}$ denominator degrees of freedom.

The short way of saying this is:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{WALD}}=\frac{1}{\mathrm{q}} \mathrm{~W} \sim \mathrm{~F}[\mathrm{q}, \mathrm{~N}-\mathrm{K}] \quad \text { under } \mathrm{H}_{0}: \mathrm{R} \beta=\mathrm{r} \tag{11}
\end{equation*}
$$

where
$\mathrm{F}[\mathrm{q}, \mathrm{N}-\mathrm{K}]=$ the F -distribution with q numerator degrees of freedom and $\mathrm{N}-\mathrm{K}$ denominator degrees of freedom.

Notes:

1. The null distribution of the $\mathrm{F}_{\text {Wald }}$ statistic is exactly $\mathrm{F}[\mathrm{q}, \mathrm{N}-\mathrm{K}]$ only if the error normality assumption A6 is true.
2. However, even if the normality assumption A6 is not true, the null distribution of the $\mathrm{F}_{\text {WALD }}$ statistic is still approximately $\mathrm{F}[\mathrm{q}, \mathrm{N}-\mathrm{K}]$ under fairly general conditions.

Common Form of the Wald F-statistic. In practice, the most common form of the Wald F-statistic is that obtained by using the OLS coefficient covariance matrix estimator in place of $\hat{V}_{\hat{\beta}}$ in (9) and (10):

$$
\begin{equation*}
\mathrm{F}_{\mathrm{W}}=\frac{1}{\mathrm{q}} \mathrm{~W}_{\mathrm{OLS}}=\frac{(\mathrm{R} \hat{\beta}-\mathrm{r})^{\mathrm{T}}\left(\mathrm{R} \hat{\mathrm{~V}}_{\mathrm{OLS}} \mathrm{R}^{\mathrm{T}}\right)^{-1}(\mathrm{R} \hat{\beta}-\mathrm{r})}{\mathrm{q}} \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
& \hat{\mathrm{V}}_{\mathrm{OLS}}(\hat{\beta})=\hat{\mathrm{V}}_{\mathrm{OLS}}=\hat{\sigma}^{2}\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1}=\text { the OLS estimator of } \mathrm{V}_{\hat{\beta}} ; \\
& \hat{\sigma}^{2}=\frac{\mathrm{RSS}_{1}}{\mathrm{~N}-\mathrm{K}}=\frac{\hat{\mathrm{u}}^{\mathrm{T}} \hat{\mathrm{u}}}{\mathrm{~N}-\mathrm{K}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{N}} \hat{\mathrm{u}}_{\mathrm{i}}^{2}}{\mathrm{~N}-\mathrm{K}}=\text { the unrestricted OLS estimator of } \sigma^{2} ; \\
& \mathrm{W}_{\mathrm{OLS}}=(\mathrm{R} \hat{\beta}-\mathrm{r})^{\mathrm{T}}\left(\mathrm{R} \hat{\mathrm{~V}}_{\mathrm{OLS}} \mathrm{R}^{\mathrm{T}}\right)^{-1}(\mathrm{R} \hat{\beta}-\mathrm{r}) \stackrel{\mathrm{a}}{\sim} \chi^{2}[\mathrm{q}] \quad \text { under } \mathrm{H}_{0} .
\end{aligned}
$$

- Null distribution of the $\mathbf{F}_{\mathbf{W}}$ Statistic: With the error normality assumption A6, the null distribution of the F_{W} statistic (12) - that is, the distribution of the Wald-F statistic if the null hypothesis H_{0} is true - is $\mathrm{F}[\mathrm{q}, \mathrm{N}-\mathrm{K}]$, the central F distribution with q numerator degrees of freedom and $\mathrm{N}-\mathrm{K}$ denominator degrees of freedom.

The short way of saying this is:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{W}}=\frac{1}{\mathrm{q}} \mathrm{~W}_{\mathrm{OLS}} \sim \mathrm{~F}[\mathrm{q}, \mathrm{~N}-\mathrm{K}] \quad \text { under } \mathrm{H}_{0}: \mathrm{R} \beta=\mathrm{r} \tag{13}
\end{equation*}
$$

where
$\mathrm{F}[\mathrm{q}, \mathrm{N}-\mathrm{K}]=$ the F -distribution with q numerator degrees of freedom and $\mathrm{N}-\mathrm{K}$ denominator degrees of freedom.

- Notes on Computation of $\mathbf{F}_{\mathbf{W}}$
- The Wald F-statistic F_{W} in (12) is computed using only the unrestricted OLS coefficient estimates $\hat{\beta}$ and the OLS estimate $\hat{V}_{\text {OLS }}$ of the variance-covariance matrix of $\hat{\beta}$.
- Both the unrestricted OLS coefficient estimator $\hat{\beta}$ and the OLS covariance matrix estimator $\hat{\mathrm{V}}_{\text {OLS }}$ are unbiased and consistent under the assumptions of the classical linear regression model.

6. Relationship Between Wald and LR F-Tests

- The Wald and LR F-Statistics

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{W}}=\frac{1}{\mathrm{q}} \mathrm{~W}_{\mathrm{OLS}}=\frac{(\mathrm{R} \hat{\beta}-\mathrm{r})^{\mathrm{T}}\left(\mathrm{R} \hat{\mathrm{~V}}_{\mathrm{OLS}} \mathrm{R}^{\mathrm{T}}\right)^{-1}(\mathrm{R} \hat{\beta}-\mathrm{r})}{\mathrm{q}} \sim \mathrm{~F}[\mathrm{q}, \mathrm{~N}-\mathrm{K}] \text { under } \mathrm{H}_{0} \\
& \mathrm{~F}_{\mathrm{LR}}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) / \mathrm{q}}{\mathrm{RSS}_{1} /(\mathrm{N}-\mathrm{K})}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right)}{\mathrm{RSS}_{1}} \frac{(\mathrm{~N}-\mathrm{K})}{\mathrm{q}} \sim \mathrm{~F}[\mathrm{q}, \mathrm{~N}-\mathrm{K}] \text { under } \mathrm{H}_{0}
\end{aligned}
$$

- Key Result

The key to understanding the relationship between the Wald F-statistic F_{W} and the LR F-statistic F_{LR} is the following important result (given without the tedious proof):

The quadratic form $\Phi(\hat{\beta})$ defined as

$$
\Phi(\hat{\beta})=(R \hat{\beta}-r)^{T}\left(R\left(X^{T} X\right)^{-1} R^{T}\right)^{-1}(R \hat{\beta}-r)
$$

can be shown to equal the difference between the restricted and unrestricted residual sums of squares

$$
\mathrm{RSS}_{0}-\mathrm{RSS}_{1}=\tilde{\mathrm{u}}^{\mathrm{T}} \tilde{\mathrm{u}}-\hat{\mathrm{u}}^{\mathrm{T}} \hat{\mathbf{u}} .
$$

That is,

$$
\begin{equation*}
\Phi(\hat{\beta})=(\mathrm{R} \hat{\beta}-\mathrm{r})^{\mathrm{T}}\left(\mathrm{R}\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1} \mathrm{R}^{\mathrm{T}}\right)^{-1}(\mathrm{R} \hat{\beta}-\mathrm{r})=\tilde{\mathrm{u}}^{\mathrm{T}} \tilde{\mathrm{u}}-\hat{\mathrm{u}}^{\mathrm{T}} \hat{\mathrm{u}}=\mathrm{RSS}_{0}-\mathrm{RSS}_{1} . \tag{14}
\end{equation*}
$$

\square Rewrite the F_{W} Statistic

- Use the result (14) and the formula for $\hat{\sigma}_{\mathrm{OLS}}^{2}$ to rewrite the Wald F-statistic F_{W}.

1. Rewrite the Wald F-statistic F_{W} as follows

Substitute for $\hat{V}_{\text {OLS }}$ in the formula for F_{W} the expression

$$
\hat{\mathrm{V}}_{\mathrm{OLS}}=\hat{\sigma}^{2}\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1}
$$

This gives

$$
\begin{align*}
F_{W} & =\frac{(R \hat{\beta}-r)^{T}\left(R \hat{V}_{O L S} R^{T}\right)^{-1}(R \hat{\beta}-r)}{q} \\
& =\frac{(R \hat{\beta}-r)^{T}\left(R \hat{\sigma}_{O L S}^{2}\left(X^{T} X\right)^{-1} R^{T}\right)^{-1}(R \hat{\beta}-r)}{q} \\
& =\frac{(R \hat{\beta}-r)^{T}\left(\hat{\sigma}_{O L S}^{2} R\left(X^{T} X\right)^{-1} R^{T}\right)^{-1}(R \hat{\beta}-r)}{q} \tag{15}\\
& =\frac{(R \hat{\beta}-r)^{T}\left(R\left(X^{T} X\right)^{-1} R^{T}\right)^{-1}(R \hat{\beta}-r)}{q \hat{\sigma}_{O L S}^{2}} \\
& =\frac{(R \hat{\beta}-r)^{T}\left(R\left(X^{T} X\right)^{-1} R^{T}\right)^{-1}(R \hat{\beta}-r) / q}{\hat{\sigma}_{O L S}^{2}}
\end{align*}
$$

2. Now substitute for $\hat{\sigma}_{\text {OLS }}^{2}$ in the last line of (15) the expression

$$
\hat{\sigma}_{\mathrm{OLS}}^{2}=\frac{\mathrm{RSS}_{1}}{\mathrm{~N}-\mathrm{K}}=\frac{\hat{\mathrm{u}}^{\mathrm{T}} \hat{\mathrm{u}}}{\mathrm{~N}-\mathrm{K}}
$$

This allows us to rewrite the F_{W} statistic as

$$
\begin{aligned}
F_{W} & =\frac{(R \hat{\beta}-r)^{T}\left(R\left(X^{T} X\right)^{-1} R^{T}\right)^{-1}(R \hat{\beta}-r) / q}{\hat{\sigma}_{O L S}^{2}} \\
& =\frac{(R \hat{\beta}-r)^{T}\left(R\left(X^{T} X\right)^{-1} R^{T}\right)^{-1}(R \hat{\beta}-r) / q}{\hat{u}^{T} \hat{u} /(N-K)} .
\end{aligned}
$$

3. Finally, use result (14) above to replace the quadratic form in the numerator of F_{W}, namely $(R \hat{\beta}-r)^{T}\left(R\left(X^{T} X\right)^{-1} R^{T}\right)^{-1}(R \hat{\beta}-r)$, with the equivalent difference between the restricted residual sum of squares $\tilde{\mathrm{u}}^{\mathrm{T}} \tilde{\mathrm{u}}$ and the unrestricted residual sum of squares $\hat{u}^{T} \hat{u}$. This permits the F_{W} statistic to be written as:

$$
\begin{align*}
F_{W} & =\frac{(R \hat{\beta}-r)^{T}\left(R\left(X^{T} X\right)^{-1} R^{T}\right)^{-1}(R \hat{\beta}-r) / q}{\hat{u}^{T} \hat{u} /(N-K)} \\
& =\frac{\left(\tilde{u}^{T} \tilde{u}-\hat{u}^{T} \hat{u}\right) / q}{\hat{u}^{T} \hat{u} /(N-K)} \tag{16.1}\\
& =\frac{\left(R S S_{0}-R^{2} S_{1}\right) / q}{R_{S S} /(N-K)} \tag{16.2}
\end{align*}
$$

where $\operatorname{RSS}_{0}=\tilde{\mathrm{u}}^{\mathrm{T}} \tilde{\mathrm{u}}=$ the restricted residual sum of squares and $\mathrm{RSS}_{1}=\hat{\mathrm{u}}^{\mathrm{T}} \hat{\mathrm{u}}=$ the unrestricted residual sum of squares.

- Result: The Wald F-statistic F_{W} can be written in terms of the restricted and unrestricted residual sums of squares as

$$
\begin{equation*}
F_{W}=\frac{(R \hat{\beta}-r)^{T}\left(R \hat{V}_{\text {OLS }} R^{T}\right)^{-1}(R \hat{\beta}-r)}{q}=\frac{\left(R S S_{0}-R S S_{1}\right) / \mathrm{q}}{\mathrm{RSS}_{1} /(\mathrm{N}-\mathrm{K})} . \tag{17}
\end{equation*}
$$

- The F_{W} and $F_{\text {LR }}$ Statistics are Equal

$$
\mathrm{F}_{\mathrm{W}}=\frac{(\mathrm{R} \hat{\beta}-\mathrm{r})^{\mathrm{T}}\left(\mathrm{R} \hat{\mathrm{~V}}_{\mathrm{OLS}} \mathrm{R}^{\mathrm{T}}\right)^{-1}(\mathrm{R} \hat{\beta}-\mathrm{r})}{\mathrm{q}}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}_{1}\right) / \mathrm{q}}{\mathrm{RSS}_{1} /(\mathrm{N}-\mathrm{K})}=\mathrm{F}_{\mathrm{LR}} .
$$

- Tests Based on the F_{W} and $F_{\text {LR }}$ Statistics are Equivalent

The Wald F-statistic F_{W} and the LR F-statistic F_{LR} yield equivalent or identical tests of $\mathrm{H}_{0}: \mathrm{R} \beta=\mathrm{r}$ against $\mathrm{H}_{1}: \mathrm{R} \beta \neq \mathrm{r}$.

This equivalence follows from two facts:

1. The two test statistics F_{W} and $F_{L R}$ are equal; that is, they yield identical calculated sample values of the F -statistic.

$$
\mathrm{F}_{\mathrm{W}}=\mathrm{F}_{\mathrm{LR}}
$$

2. The two test statistics F_{W} and $F_{L R}$ have identical null distributions, namely the $\mathrm{F}[\mathrm{q}, \mathrm{N}-\mathrm{K}]$ distribution.

$$
\mathrm{F}_{\mathrm{W}} \sim \mathrm{~F}[\mathrm{q}, \mathrm{~N}-\mathrm{K}] \quad \text { under } \quad \mathrm{H}_{0}: \mathrm{R} \beta=\mathrm{r}
$$

and

$$
\mathrm{F}_{\mathrm{LR}} \sim \mathrm{~F}[\mathrm{q}, \mathrm{~N}-\mathrm{K}] \quad \text { under } \quad \mathrm{H}_{0}: \mathrm{R} \beta=\mathrm{r} .
$$

- Result:

$$
\mathrm{F}_{\mathrm{W}}=\mathrm{F}_{\mathrm{LR}} \sim \mathrm{~F}[\mathrm{q}, \mathrm{~N}-\mathrm{K}] \quad \text { under } \quad \mathrm{H}_{0}: \mathrm{R} \beta=\mathrm{r} .
$$

