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ECON 452* -- NOTE 10

Testing Linear Coefficient Restrictions in Linear Reqression
Models: The Fundamentals

This note outlines the fundamentals of statistical inference in linear regression
models.

e In scalar notation, the population regression equation, or PRE, for the linear
regression model is written in general as:

Y, =By + B X+ B, X, ++ B X, + U, Vi (1.1)
or
Y, = BO+§BJ.X”+Ui Vi (1.2)
or "
Y, = j_zzﬁjxij tu, X,=1Vi Vi (1.3)
i
where

Y; = the i-th population value of the regressand, or dependent variable;
Xjj = the i-th population value of the j-th regressor, j =1, ..., k;
Bj = the partial slope coefficient of X, j =1, ..., k;

u; = the i-th population value of the unobservable random error term.
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e Invector-matrix notation, the population regression equation, or PRE, for a
sample of N observations on a linear regression model can be written as:

y=XB+u (2)

where

y=| Y, | = the Nx1 regressand vector

= the Nx1 column vector of observed sample values of the regressand,
or dependent variable, Y; (i=1, ..., N);

u=| U, | = the Nx1 error vector

= the Nx1 column vector of unobserved random error terms u;
(i=1, ..., N) corresponding to each of the N sample observations.

XlT 1 Xy Xy, o Xy
X, 1 Xy Xy Xk

X=|x:|=|1 X; X, - Xz | = the NxK regressor matrix
_XL_ _1 XNl XNZ XNk_

= the NxK matrix of observed sample values of the K=k + 1
regressors Xig, Xiz, Xiz, ..., Xik (i=1, ..., N), where the first regressor
Is a constant equal to 1 for all observations (Xip=1Vi=1,..., N).
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Po
P,

B=|PB, | = the Kx1 regression coefficient vector

P |
= the Kx1 or (k+1)x1column vector of unknown partial regression
coefficients ;,J =0, 1, ..., k.

 Statistical inference consists of both
1. testing hypotheses on the regression coefficient vector § and

2. constructing confidence intervals for the individual elements of (3.

1. Assumption A6: The Error Normality Assumption

In order to perform statistical inference in the linear regression model, it is
necessary to specify the form of the probability distribution of the error vector u in
population regression equation (1). The normality assumption does this.

Q Scalar Formulation of the Error Normality Assumption A6

The random error terms u; are independently and identically distributed as the
normal distribution with

1. zero conditional means
E(ui\xiT)z E(u)=0 Vi

2. constant conditional variances

Var(ui\xiT) = E(uf‘xf) = E(uf‘ 1, Xil,Xiz,...,X.k): c’>0 Vi

3. zero conditional covariances

Cov(u- u xiT,xsT): E(uiuS xiT,xsT)= 0 Vizs

17~s
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e A compact way of stating error normality assumption A6 is:
conditional on x. , the u; are iid as N(0, o) (A6.1)

where

"iid" means "independently and identically distributed"

N(0, o®) denotes a normal distribution with zero mean and variance o°.

Even more briefly, we can say that

u, |x] areiid as N(0, &°). (A6.2)

O Matrix Formulation of the Error Normality Assumption A6
The Nx1 error vector u has a multivariate normal distribution with
1. a zero conditional mean vector

E(u|X)=0 where 0 is an Nx1 vector of zeros
2. aconstant scalar diagonal covariance matrix V(u)
V(u\ X) = E(uuT\ X) = o°l where ly is the NxN identity matrix
o A compact way of stating the error normality assumption in matrix terms is:
u|x ~ N(0,0%1,) (A6)

where N(-,-) here denotes the N-variate normal distribution.
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Q Implications of Assumption A6 for the Distribution of the Regressand
Vector y

e Linearity Property of Normal Distribution: Any linear function of a
normally distributed random variable is itself normally distributed.

e Vyisa linear function of u: The PRE y = X + u states that the regressand
vector y is a linear function of the error vector u.

o Implication: Since u is normally distributed by assumption A6 and y is a linear

function of u by assumption A1, the linearity property of the normal distribution
implies that

y|X ~ N(XB,5%l,).
That is, the regressand vector y has an N-variate normal distribution with

(1) conditional mean vector equal to E(y\x) = Xp
and

2) conditional covariance matrix equal to V(y|X) = 6%l ,,.
( q y N
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Q Implications of Assumption A6 for the Distribution of the OLS Coefficient
Estimator B

. B Is a linear function of y. Conditional on the regressors X, the OLS
coefficient estimator B Is a linear function of the regressand vector y:

B = (X™)"XTy

e Implication: Since y is normally distributed by implication of assumption A6
and B is a linear function of y, the linearity property of the normal distribution
implies that

BIX ~ N(p. o*(X"x) %) 3)

That is, the OLS coefficient estimator B has an K-variate normal
distribution with

X)=p

(1) conditional mean vector equal to E(ﬁ

and

(2) conditional covariance matrix equal to V(B\X) = c*(X"X)™.
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2. Formulation of Linear Equality Restrictions on 8

The general hypothesis to be tested is that the coefficient vector [3 satisfies a set of
g independent linear restrictions, where g < K. We formulate this general
hypothesis in vector-matrix form, since this corresponds to the way in which
econometric software such as Stata is written.
The null hypothesis Hy is written in general as:

Ho: RB=r < RB-r=0
The alternative hypothesis Hj is written in general as:

Hi: RB=r < RB-r=0

In Hy and H, above:

R = a gxK matrix of specified constants;
B = the Kx1 coefficient vector;
r = a qx1 vector of specified constants;

0 =agx1 null vector, i.e., a qx1 vector of zeros.

e The gxK restrictions matrix R takes the form

r'10 r'11 r'12 I‘lk
R _ r.20 r21 r.2:2 r.2 k
o T T M
where

I'mj = the constant on coefficient ; in the m-th linear restriction, m=1, ..., g.
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e The gx1 restrictions vector r takes the form

r1
r.2
r=1:
K
where

Im = the constant term in the m-th linear restriction,m=1, ..., q.

o The matrix-vector product Rp is a gx1 vector of linear functions of the

regression coefficients By, B1, B2, ... , Bk
_ - _Bo _ -
o T hp - Iy B rlOBO + r11[31 + rlZBZ teeet rlkBk
1
o T T oo Ty r20[30 + r21Bl + rzsz teeet erBk
RE=1. . . |B:]= .
_rqO rql rqz o qu 1 B _rqOBO + rqlBl + rquz teeet quBk_
LMk
(9xK) (Kx1) (9x1)

o The null and alternative hypotheses can therefore be written as follows:

I r1oBo + I’11B1 + I’12B2 Tt rlkBk | I
He RB=r = rzoBo + r2161 + rz'zﬁz Tt erBk _ r-z
_rqOBO + rqlBl + quBZ teeet quBk_ _rq_
| r10[30 + rllBl + r12Bz oot rlkBk | _rl_
HiRB#r = r20[30 + I’21[31 + I’2.2Bz et erBk ~ r.z
_rqOBO + rqlBl + rquz teeet quBk_ _rq_
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Some Specific Examples

Consider the linear regression model given by the PRE

Y. =By + BXi + B, X, + B Xis + B, X, + U, i=1,...,N) 4)
Test 1
The null and alternative hypotheses are:

Ho: PB2=0 one linear restriction on coefficient vector 3

Hl: Bz #0
e The restrictions matrix R in this case is the 1x5 row vector:
R=[0 01 0 0

o The restrictions vector r is in this case the scalar 0 since there is only one
restriction specified by the null hypothesis H:

r = 0.

e The matrix-vector product Rp in this case is:

Bo
B,
RB=[0 0 1 0 0]p,|=0Bo+0By+1B,+0Bs+0Bs = P2
Bs
B

e The null hypothesis Ho: Rp = r is therefore the single equation:

Ho: B2=0
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Test 2

The PRE is again

Yi = Bo+ BiXi+ B X + BaXig + B Xy + U, (i=1,..,N) (4)
The null and alternative hypotheses are:
Ho: p1=0 and B,=0 two linear restrictions on coefficient vector 3

Hy:  B:#0 and/or B, =0

e The restrictions matrix R in this case is the 2x5 row vector:
01 000
R =
0 01 00O

e The restrictions vector r is in this case the 2x1 column vector of zeros:

gl

e The matrix-vector product R in this case is:

B
[0 10 0 0] | _[0g,+16,+08,+0p,+08,] [P,
P=1o 0100 E ~ | 0p, +08, +18,+ 0B, + 0B, | ~ | P,
B

e The null hypothesis Hq: R =r is therefore the matrix equation:

Ho: {gl} = {8} which says "B, =0 and B, =0"
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Test 3
The PRE is again

Y= Bo+ BXiyp+ BXip + BeXis + B Xy + U, (i

1
J_\

) (4)
The null and alternative hypotheses are:

Ho: B1:B3 and BQZ—B4 or Bl—B3=O and B2+B4:0 (q=2)
Hy:  Bi#P3 and/or B, =PBs or B1—PBs=0 and/or B, +P4=0

e The restrictions matrix R in this case is the 2x5 row vector:

R_010—10
"o 01 0 1

e The restrictions vector r is in this case the 2x1 column vector of zeros:

gl

e The matrix-vector product Rp in this case is:

Bo
RB = 010 -10 Py | 0By +18, + 0B, —1B, + 0B, | | By —Bs
b= 001 0 1 gz | OB, + 0B, +18, + OB, +1B, | |B,+B.
B

e The null hypothesis Hq: RB =r is therefore the matrix equation:

Ho: L[:: ;Ej = B} which says "1 —Bs=0 and P, + B, =0"

ECON 452* -- Note 10: Filename 452note10.doc ... Page 11 of 27 pages



ECON 452* -- NOTE 10: Statistical Inference: The Fundamentals M.G. Abbott

Test 4

The PRE is again

Y, =B+ B X+ B Xy, + BaXis + B X+ U, (i=1,....N) (4)
The null and alternative hypotheses are:
Ho:  Pat2B2=Ps+2Bs or Pr+2B,-Ps—2B4=0 9=1)
Hl: Bl + 2[32 #* Bg + 2[34 or Bl + 2[32 - Bg - ZB4 #0
e The restrictions matrix R in this case is the 1x5 row vector:
R=[012 -1 -2]
e The restrictions vector r is in this case the 1x1 scalar O:
r=2=0
e The matrix-vector product Rf in this case is the 1x1 scalar:
_BO_
B,
RB=1[0 12 -1 -2]p,|=[0B,+18,+2B,-18,—2p,]
B,
B,

= B1+2B2—PBz— 24

o The null hypothesis Hq: RB =r is therefore the equation:

Ho:  B1+2B2—B3—2B4=0
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3. The Three Principles of Hypothesis Testing

e Given the null hypothesis Hy: RB—r =0 and the alternative hypothesis Hj:
RB—r =0, there are two alternative sets of parameter estimates of the PRE
y = XB + u that one might use to compute a test statistic.

1. The restricted parameter estimates computed under Ho: RB—r =0, which
are denoted as follows:

B = the restricted OLS estimator of f3;

~

=Yy —Xp = the restricted OLS residual vector;

e

RSS, =RSS, =RSS(B) =10 = .
= the restricted residual su;;l of squares;
df, =N—-(K-q)=N-K+q = the degrees of freedom for RSSy;
6> =RSS,/df, =RSS,/N — (K —q) = the restricted OLS estimator of ¢°;

RZ =ESS,/TSS=1-(RSS,/TSS) = the restricted R-squared.

2. The unrestricted parameter estimates computed under Hy: RB—r=0,
which are denoted as follows:

[3 = the unrestricted OLS estimator of f3;

A~

U=y—Xp =the unrestricted residual vector;

~ N
RSS, =RSS, =RSS(B)=0"0=>07
i=1
= the unrestricted residual sum of squares;

df, = N - K = the degrees of freedom for RSS;;
6° =RSS,; /N — K = the unrestricted OLS estimator of o°.

RZ =ESS,/TSS=1-(RSS,/TSS) = the unrestricted R-squared.
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The computation of hypothesis tests of linear coefficient restrictions can be
performed in general in three different ways:

1. using only the unrestricted parameter estimates of the model,

2. using only the restricted parameter estimates of the model;

3. using both the restricted and unrestricted parameter estimates of the
model.

These three options correspond to the three fundamental principles of
hypothesis testing.

1. The Wald principle of hypothesis testing computes hypothesis tests using
only the unrestricted parameter estimates of the model computed under
the alternative hypothesis H;.

2. The Lagrange Multiplier (LM) principle of hypothesis testing computes
hypothesis tests using only the restricted parameter estimates of the model
computed under the null hypothesis Ho.

3. The Likelihood Ratio (LR) principle of hypothesis testing computes
hypothesis tests using both the restricted parameter estimates of the model
computed under the null hypothesis Hy and the unrestricted parameter
estimates of the model computed under the alternative hypothesis H;.

4. Likelihood Ratio F-Tests of Linear Coefficient Restrictions
Null and Alternative Hypotheses

The null hypothesis is that the regression coefficient vector 3 satisfies a set of
g independent linear coefficient restrictions:

Ho: RB=r < RB-r=0

The alternative hypothesis is that the regression coefficient vector 3 does not
satisfy the set of g independent linear coefficient restrictions specified by Ho:

Hi: RB=r < RB-r=0
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O The Likelihood Ratio F-Statistic
The LR F-statistic can be written in either of two equivalent forms.

1. Form 1 of the LR F-statistic is expressed in terms of the restricted and
unrestricted residual sums of squares, RSS, and RSS;:

_ (RSS, —RSS,)/(df,—df,) (RSS,—RSS,) df,

Fp= F1
R RSS, /df, RSS,  (df,—df,) (F)
_ (RSS,—RSS))/q _ (RSS, —RSS;) (N-K) (F1)
"R RSS,/(N-K) RSS, q
where:

RSSy = the residual sum of squares for the restricted OLS-SRE;
dfy, = N - K, = the degrees of freedom for RSS,, the restricted RSS;

Ko = K—q = the number of free regression coefficients in the restricted
model;

RSS; = the residual sum of squares for the unrestricted OLS-SRE;
df;, = N - K = the degrees of freedom for RSS, the unrestricted RSS;

K = k+1 = the number of free regression coefficients in the unrestricted
model;

g = dfy — df; = K- Ky = the number of independent linear coefficient
restrictions specified by the null hypothesis Hy.

Note: The value of g is calculated as follows:

g-= dfo—dfl = N—KO—(N—K) = N-Ky—-N+K = K-K,.
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2. Form 2 of the LR F-statistic is expressed in terms of the restricted and
unrestricted R-squared values, R and R?,:

- _ (RE-RY)/(df,—df) _(RE-RZ)  df, 2)
(1-R%)/df; 1-R%) (df,—df)

_ (RI-R3)/g _ (Ri-R%)(N-K)
M-R3)/(N-K)  (@-R}) g

(F2)

where:

RZ = the R-squared value for the restricted OLS-SRE;
Ko = K—q = the number of free regression coefficients in the restricted
model,
dfy =N-Ky=N-(K-q)=N-K+qg = the degrees of freedom for RSS,,
the restricted RSS;

RZ = the R-squared value for the unrestricted OLS-SRE;

K = k+1 = the number of free regression coefficients in the unrestricted
model;

df;, = N - K = the degrees of freedom for RSS, the unrestricted RSS;

g = dfy — df; = K- Ky = the number of independent linear coefficient
restrictions specified by the null hypothesis Hy.

Q Null distribution of the LR F-statistic

Under error normality assumption A6, the LR F-statistic F r is distributed
under Hy (i.e., assuming the null hypothesis Hy is true) as F[q, N—K], the F
distribution with g numerator degrees of freedom and N-K denominator
degrees of freedom:

FLR - F[q; N — K] under Ho: RB =r.
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O Computation of the LR F-statistic

Computation of the LR F-statistic requires estimation of both the restricted and
unrestricted models.

o The restricted OLS-SRE estimated under the null hypothesis
Ho: RB=r < RB-r=0

The regression coefficient vector 3 satisfies g independent linear
coefficient restrictions

IS written in matrix form as
y=XB+U=y+0 (5)

or in scalar form as

~

Yi :EO+Elxil+EZXi2+".+kaik+u' :?. +U. (I =1, ..., N)

where:

~

« P isthe restricted OLS estimator of the coefficient vector 3 with typical
element E,— (J =0, ..., k), the restricted OLS estimate of B;;

.« Y= XB is the restricted OLS prediction vector with typical element

Y; (i=1, ..., N), the restricted predicted value of the dependent variable Y for
observation i, where

?i :EO-'_leil—i_sziZ+"'+kaik (i=1.,N)

U=y-y=y-— XE Is the restricted OLS residual vector with typical element
u, (i=1, ..., N), the restricted OLS residual for observation i, where

~

u, =Y, _?i =Y, _Bo _Elxil_EZXiZ _'”_kaik (i=1,..N)
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. the OLS decomposition equation for the restricted OLS-SRE is

TSS = ESS; + RSS, (5.1)
where
. N o N _
TSS=yTy—NY2=Z(Yi—Y)2=2Yi2—NY2 hasdf =N -1
i=1 i=1

_ N ~ _ N ~ —
ESS, =V V-NY?=3(Y,-Y)’ =Y Y7 -NY? has df = Ko—1-q
i=1 i=1

N
RSS,=U"0=> U’ has dfo=N - (Ko-g)=N-Ko+q
i=1

. the restricted R-squared for the restricted OLS-SRE is

R = ESS, _, _ RSS; 52)
TSS TSS

e The unrestricted OLS-SRE estimated under the alternative hypothesis

Hi: RB=r < RB-r=0

The regression coefficient vector 3 does not satisfy the g independent
linear coefficient restrictions specified by Hy

Is written in matrix form as

y=XB+0=9+0 (6)
or in scalar form as

Y, =P +B Xy +BXpp + +B Xy +0; =Y, +0, (=1, ..., N)
where:

. ﬁ Is the unrestricted OLS estimator of the coefficient vector 3 with typical
element 6,— (4 =0, ..., k), the unrestricted OLS estimate of 3;;
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. Y= XB is the unrestricted OLS prediction vector with typical element
\A(i (i=1, ..., N), the unrestricted predicted value of the dependent variable Y
for observation i, where

?u :Bo +B1Xi1 +ﬁ2Xi2 Tt kaik (i=1.,N)

e lU=y-y=y- XB Is the unrestricted OLS residual vector with typical
element 0. (i=1, ..., N), the unrestricted OLS residual for observation i,

where

u; =Y, _?i =Y, _Bo _61Xil_ﬁzxi2 _"'_kaik (i=1,..,N)

. the OLS decomposition equation for the unrestricted OLS-SRE is

TSS = ESS; + RSS; (6.1)
where

TSS=yy—NY?2 = zc( Y)_;YQ NY? hasdf=N -1

ESS, =99 —NY? :%(\?i—V) %\? Y? hasdf = K — 1

RSS, GG:ZG has df; = N - K

i=1

. the unrestricted R-squared for the unrestricted OLS-SRE is

R~ ESS. _; _RSS, 62)
TSS TSS
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Compare the OLS decomposition equations for the restricted and
unrestricted OLS-SREs.

TSS = ESSy + RSS,. [for restricted SRE] (5.1)

TSS

ESS; + RSS,. [for unrestricted SRE] (6.1)

Since the Total Sum of Squares (TSS) is the same for both decompositions, it
follows that

ESS, + RSS, = ESS; + RSS,. (7)

Subtracting first RSS; and then ESS, from both sides of equation (9) allows
equation (9) to be written as:

RSS, — RSS; = ESS; - ESS, (8)
where

RSSy — RSS; = the increase in RSS attributable to imposing the
restrictions specified by the null hypothesis Ho;

ESS; — ESS, = the increase in ESS attributable to relaxing the
restrictions specified by the null hypothesis Ho.

Result: Imposing one or more linear coefficient restrictions on the
regression coefficients B (j =0, ..., k) always increases (or leaves unchanged)
the residual sum of squares, and hence always reduces (or leaves unchanged)
the explained sum of squares. Consequently,

RSSO > RSS]_ = ESSl > ESSO
so that

RSS; -RSS; 20 <«  ESS; - ESSy > 0.

In other words, both sides of equation (8) are always non-negative.
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5. Wald F-Tests of Linear Coefficient Restrictions
O The Wald F-Test is Based on the Wald Principle of Hypothesis Testing

The Wald principle of hypothesis testing computes hypothesis tests using only
the unrestricted parameter estimates of the model computed under the
alternative hypothesis Hy: R # r. These unrestricted parameter estimates can be

denoted as 6 = (B, 5?).

O General Wald F-statistic. The general Wald F-statistic is obtained by simply
dividing the general Wald statistic W in (10) by g, the number of independent
linear coefficient restrictions specified by the null hypothesis Hq: R =r:

2 ey 1
Fwalo = %W = (RB_r) (vai RTT (RB—I’)

9)

where:

W = the general Wald statistic given below;

[3 = a consistent unrestricted estimator of B, such as the OLS estimator;

A~

VB = a consistent estimator of Vﬁ.

The general Wald test statistic W for testing the null hypothesis Hy: RB =r
against the alternative hypothesis Hi: R # r takes the form

W = (RB—r)T(R\A/f3 RTyl(RB—r)i v*[q] under Hy (10)
where

B = aconsistent unrestricted estimator of B, such as the OLS estimator;

~

Vf5 = a consistent estimator of Vﬁ;

v*[q] = the chi-square distribution with g degrees of freedom.
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Notes: Both the coefficient estimator B and the coefficient covariance matrix
estimator \A/[A3 used in the general Wald statistic W must be consistent, and are

computed using only unrestricted estimates of the linear regression model
under the alternative hypothesis H;: Rp = .

o Null distribution of Wald-F Statistic: With the error normality assumption
A6, the null distribution of the general Wald-F statistic -- that is, the distribution
of the Wald-F statistic if the null hypothesis Hy is true -- is F[q, N — K], the

central F distribution with g numerator degrees of freedom and N-K
denominator degrees of freedom.

The short way of saying this is:

Fvalp = &W ~ F[g, N=K] underHqo:RB=r (11)

where

F[q, N—K] = the F-distribution with g numerator degrees of freedom and
N-K denominator degrees of freedom.

Notes:

1. The null distribution of the Fyap statistic is exactly F[g, N-K] only if the
error normality assumption A6 is true.

2. However, even if the normality assumption A6 is not true, the null
distribution of the Fa,p Statistic is still approximately F[g, N—K] under
fairly general conditions.
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O Common Form of the Wald F-statistic. In practice, the most common form
of the Wald F-statistic is that obtained by using the OLS coefficient covariance

matrix estimator in place of \A/ﬁ in (9) and (10):

Far = ~Woys = RS =) (RVous RT) (R~ (12)

q q

where

VOLs(B) = Vous = cAfz(XTX)_l = the OLS estimator of V;

N

2
2. U

0’ =
N —

62 RSSl —

- NoK - = = the unrestricted OLS estimator of c*:

K N-K

~

Wq s = (RB—r)T(RQOLS RT)_l(RB—r)fi v2[q]  under Ho.

o Null distribution of the F, Statistic: With the error normality assumption A6,
the null distribution of the Fy statistic (12) — that is, the distribution of the
Wald-F statistic if the null hypothesis Hy is true — is F[q, N — K], the central F

distribution with g numerator degrees of freedom and N-K denominator
degrees of freedom.

The short way of saying this is:

Fy = EWOLS ~ F[q, N-K] under Ho: RB =T (13)
q

where

F[q, N—K] = the F-distribution with g numerator degrees of freedom and
N-K denominator degrees of freedom.
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e Notes on Computation of Fyy

« The Wald F-statistic Fy, in (12) is computed using only the unrestricted OLS
coefficient estimates 3 and the OLS estimate V,, ¢ of the variance-covariance

matrix of B

« Both the unrestricted OLS coefficient estimator ﬁ and the OLS covariance

matrix estimator V., ¢ are unbiased and consistent under the assumptions of
the classical linear regression model.

6. Relationship Between Wald and LR F-Tests

O The Wald and LR F-Statistics

S Wy = RS 1) (RVous R (RB-r) _ Fla, N — K] under Hq

Fov = =
W q q
= (RSS, —RSS,)/q _ (RSS,—RSS)) (N-K) _ F[g, N — K] under Hg
RSS, /(N - K) RSS,
O Key Result

The key to understanding the relationship between the Wald F-statistic Fy, and
the LR F-statistic F r is the following important result (given without the
tedious proof):

The quadratic form CD(B) defined as

o@) = Rp-r) (RX™)RT)*(RB-1)

can be shown to equal the difference between the restricted and unrestricted
residual sums of squares

RSS,—RSS, = U'U—-0"0 .
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That is,

o) = (RB-1) (R(X™X)'RT)(Rp—r) = TT0-0"0 = RSS, —RSS,. (14)
O Rewrite the Fyy Statistic
o Use the result (14) and the formula for 63 to rewrite the Wald F-statistic Fyy.

1. Rewrite the Wald F-statistic Fyy as follows

Substitute for \70LS in the formula for Fyy the expression

Vos = 62(XTX)"

This gives

- _ [RB-1J(RVosRT)(RB-r)

v q
_ RE-1J (R&2,(X™X) "R 'R~ 1)
q
_ (Rﬁ—r)T(c“séLsR(Xq%1RT)1(RB—r) -
_ (RB—f)T(R(XTX)‘lRT)‘l(RB—r)
A56Ls
_ RB-rJ (ROCX) R RB- 1)
5is

2. Now substitute for 5, ¢ in the last line of (15) the expression
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This allows us to rewrite the Fy statistic as

. (RB- r)T(R(XTZ()‘lRT)_l(RB— )/q
G?DLS

(RB-r (RX™X)*RT) ' (RB-r)/q
GT0/(N-K) '

Finally, use result (14) above to replace the quadratic form in the numerator of
Fw, namely (RB — r)T(R (XTX)'RT )_l(RB — r), with the equivalent difference
between the restricted residual sum of squares U'U and the unrestricted
residual sum of squares (' (. This permits the Fyy statistic to be written as:

. (RB-r) (RX™X)*RTJ'(RB-r)/q

GT0/(N-K)
_ (@3- 0"a)/
~aTa/(N=K) (16.1)
_ (RSS, — RSS,)/q (16.2)

RSS, /(N -K)

where RSS, =1'U = the restricted residual sum of squares and RSS, =00 =
the unrestricted residual sum of squares.

Result: The Wald F-statistic Fy, can be written in terms of the restricted and
unrestricted residual sums of squares as

Fv = (RB_ r)T(R\A/OLS RT)_l(RB_r) _ (RSS, —RSS,)/q _ (17)
q RSS, /(N—K)
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O The Fy and F_r Statistics are Equal

E — (Rﬁ—r)T(RVOLSRT)_l(Rﬁ—r) _ (RSS,—RSS,)/q _
w R -

q RSS, /(N -K)

O Tests Based on the F\y and F_r Statistics are Equivalent

The Wald F-statistic Fyy and the LR F-statistic F_r yield equivalent or identical
tests of Hy: R =ragainst Hy: R = .

This equivalence follows from two facts:

1. The two test statistics F\y and F g are equal; that is, they yield identical
calculated sample values of the F-statistic.

I:w = FLR

2. The two test statistics Fy and F_g have identical null distributions,
namely the F[g, N—K] distribution.

Fw =~ FI0,N=K] under Hp:RB=r
and
Fr ~ FI9,N-K] under Ho:RB=r.

e Result:

Fw = Flr ~ FIg,N-K] under HgRB=r.
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