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ECON 452* -- NOTE 9 
 

OLS Estimation of the Classical Linear Regression Model: Matrix 
Notation and Derivations 

 
1. Population Regression Equation (PRE) 
 
The PRE is for a sample of N observations is 
 

u)X|y(EuXy +=+β=                (1) 
 
where 
   
  y  =  the N×1 regressand vector 

  X  =  the N×K regressor matrix    

  β  =  the K×1 regression coefficient vector 

β= X)X|y(E   =  the N×1 population regression function (PRF) 

β−=−= Xy)X|y(Eyu   =  the N×1 error vector 
 
• Details 
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 =  the N×1 regressand vector  

 

   =  the N×1 column vector of observed sample values of the regressand,  
 or dependent variable, Yi (i = 1, ..., N);   
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 =  the N×K regressor matrix  

 

  =   the N×K matrix of observed sample values of the K = k + 1  
regressors Xi0, Xi1, Xi2, ..., Xik, where Xi0 = 1 ∀ i = 1, ..., N and the  
remaining k = K − 1 regressors are variables.  
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 =  the K×1 coefficient vector  

 

=  the K×1 or (k+1)×1column vector of regression coefficients βj,  
j = 0, 1, ..., k.  

 

  =  the N×1 error vector  
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       =   the N×1 column vector of random errors  (i = 1, ..., N)  iu
corresponding to each of the N sample observations.   
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 =  the N×1 regression function vector  

 

=  the N×1 column vector of values of the PRF for each of the N  
    sample observations, ∑ β+β=β= j ijj0

T
i

T
ii Xx)x|Y(E , i = 1, ..., N.   

 
 
The Error Covariance Matrix Under Assumption A3 
 
Assumption A3 is the assumption of homoskedastic and nonautoregressive errors:  
 
• Assumption A3.1 of Constant Error Variances (Homoskedastic Errors) 
 

( ) ( ) ( ) 2
ik2i1i

2
i

T
i

2
i

T
ii X,,X,X,1uExuExuVar σ=== K  > 0 ∀ i.   (A3.1) 

 
where σ2 is a finite positive (unknown) constant.   

 
• Assumption A3.2 of Zero Error Covariances (Nonautoregressive Errors) 
 
 ( ) ( ) .si0x,xuuEx,xu,uCov T

s
T
isi

T
s

T
isi ≠∀==         (A3.2) 

 

 
ECON 452* -- Note 9: Filename 452note09.doc  … Page 3 of 16 pages 
 



ECON 452* -- NOTE 9: OLS Estimation in Matrix Notation M.G. Abbott 
 

Under Assumption A3 the error covariance matrix takes the form 
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          (NxN)          (NxN) 

 
where  
 
uuT  is an N×N (square) symmetric matrix known as the outer product of the 
vector u   

 
NI  is an N×N identity matrix with 1s along the principal diagonal and 0s in all 

the off-diagonal cells.     
 

1. By A3.1, all diagonal elements of ( )XuV  equal the positive constant σ2, 

since A3.1 says that ( ) ( ) 2T
i

2
i

T
ii xuExuVar σ==  > 0 ∀ i.   

 
2. By A3.2, all off diagonal elements of ( )XuV  equal zero, since A3.2 says that 

( ) ( ) .si0x,xuuEx,xu,uCov T
s

T
isi

T
s

T
isi ≠∀==    
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2. OLS Estimator of the Coefficient Vector β 
 

( ) yXXXˆˆ T1T
OLS

−
=β=β                  (2) 

 
where 
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 =  the K×1 OLS coefficient vector estimator 

 

=  the K×1 or (k+1)×1column vector of OLS coefficient estimators j   β̂

    of the unknown partial regression coefficients βj, j = 0, 1, ..., k.  
 

XXT  =   the K×K regressor cross-product matrix, a symmetric matrix with  

diagonal elements equal to ∑  (j = 0, 1, …, k) and  
=

N

1i

2
ijX

off-diagonal elements equal to ∑ (j ≠ h,  h = 0, 1, …, k) 
=

N

1i
ihijXX

   
( ) 1TXX −  =  the inverse of the regressor cross-product matrix (a K×K matrix) 

 
yXT   =   the K×1 cross-product vector with elements equal to  

∑
=

N

1i
iijYX  (j = 0, 1, …, k)  

 
The OLS coefficient estimator  is derived by minimizing the residual sum of 
squares function, denoted as RSS(β ), for given sample values of the observable 
variables  (Yi, 1, Xi1, Xi2, …, Xik) i = 1, …, N. The RSS(β ) function can be written in 
both scalar and matrix terms.  

OLSβ̂
ˆ

ˆ

 

 
ECON 452* -- Note 9: Filename 452note09.doc  … Page 5 of 16 pages 
 



ECON 452* -- NOTE 9: OLS Estimation in Matrix Notation M.G. Abbott 
 

 Scalar Expression for RSS( β̂ ) 
 

Since the OLS residuals { : i = 1, …, N} are  iû
 

ikk2i21i10ii XˆXˆXˆˆYû β−−β−β−β−= L   (i = 1, …, N)    (3) 
 

the RSS( ) function can be written in scalar terms as β̂
 

RSS(β )  =      (4.1) ˆ ( )∑∑
==

β−−β−β−β−=
N
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 Matrix Expression for RSS( β̂ ) 

 
• The inner product of the N×1 residual vector û with itself is the RSS( β̂ ):  
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û
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Result:                   (4.2) ûû)ˆ(RSS T=β

 
• Rewrite ûû  in terms of the observable variables y and X and the 

coefficient estimator β̂ .  
)ˆ(RSS T=β

 
1. Since the residual vector β− , the transpose of û  is  = ˆXyû
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2. We can therefore write )ˆ(  in terms of y, X and β̂  as:   RSS β
 

ûû)ˆ(RSS T=β  = ( ) ( )β−β− ˆXyˆXy
T

 
 

= ( )( )β−β− ˆXyXˆy TTT  
 

= .       (5) ββ+β−β− ˆXXˆˆXyyXˆyy TTTTTT

 
3. Since all four terms on the right-hand side of (5) are scalars (1×1 quantities), 

the second term yXˆ TTβ  is equal to its transpose β̂XyT , which is the third term. 
We can therefore sum these two terms as follows:  

 
yXˆ2yXˆyXˆˆXyyXˆ TTTTTTTTT β−=β−β−=β−β− . 

 
• Result:  The residual sum of squares )ˆ(RSS β  can therefore be written as: 

 
ûû)ˆ(RSS T=β  = .         (6) ββ+β− ˆXXˆyXˆ2yy TTTTT

 
 

 The OLS Estimation Criterion   
 

The OLS coefficient estimator is that expression for β  which minimizes  
for given values of the regressand vector y and the regressor matrix X. 

ˆ )ˆ(RSS β

 
The OLS estimation criterion can therefore be stated as:  
 

minimize   =  .       (7.1) )ˆ(RSS β ββ+β− ˆXXˆyXˆ2yy TTTTT

   { }     =    (7.2) β̂ ( )∑
=

β−−β−β−β−
N

1i

2
ikk2i21i10i XˆXˆXˆˆY L
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3. The OLS Sample Regression Equation (the OLS SRE)  
 

ûŷûˆXy +=+β= ,  ,        (8) β= ˆXŷ β−=−= ˆXyŷyû
 
where  
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 =  the N×1 regressand vector  

 

=  the N×1 column vector of observed sample values of the regressand,  
    or dependent variable, Yi (i = 1, ..., N);   
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ŷ

T
N

T
3

T
2

T
1

N

3

2

1

MM

 =  the N×1 vector of OLS estimated values of Yi  

 

=  the N×1 column vector of OLS estimated (predicted) values  
   (i = 1, ..., N) corresponding to each  ∑ β+β=β= j ijj0

T
ii XˆˆˆxŶ

    of the N sample observations.   
 

  =  the N×1 OLS residual vector  
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   =  the N×1 column vector of OLS residuals  (i = 1, ..., N)  iû
    corresponding to each of the N sample observations.   
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Remarks:  
 

1. The OLS sample regression function β= ˆXŷ  is an estimator of the population 
regression function (PRF) β= X)   Xy(E .

 

2. The OLS residual vector β−  is, in effect, an estimator of the 
unobservable random error vector 

=−= ˆXyŷyû
β−=−= Xy   )Xyu .(Ey

 
 
4. Sampling Distribution of the OLS Coefficient Estimator 
 
The finite sampling distribution of the OLS coefficient estimator  has two 
important sets of moments that are required for performing statistical inference 
(hypothesis testing and confidence interval estimation):   

OLSβ̂

 
1. the mean, or expectation, of OLSβ̂ , denoted as E( OLSβ̂ );  

 

2. the variance-covariance matrix of OLSβ̂ , denoted as V( OLSβ̂ ) = VOLS. 
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5. Mean of the OLS Coefficient Estimator 
 
In this section, we derive the mean, or expectation, of ; in the next section we 
derive the variance-covariance matrix of  and an unbiased estimator of it.  

OLSβ̂

OLSβ̂
 
• The OLS coefficient estimator OLSβ̂  is given by the formula 
 

( ) yXXXˆ T1T
OLS

−
=β .                   (2) 

 
 Proposition: E( OLSβ̂ ) = β, meaning that OLSβ̂  is an unbiased estimator of β. 

 
Proof:   
 
1. Substitute for the regressand vector y in the formula for OLSβ̂  the expression 

for y: 
 

( ) yXXXˆ T1T
OLS

−
=β   

( ) )uX(XXXˆ T1T
OLS +β=β

−
    since uXy +β=  by A1 

( ) ( ) uXXXXXXXˆ T1TT1T
OLS

−−
+β=β   

( ) uXXXˆ T1T
OLS

−
+β=β      since ( ) β=β=β

−
K

T1T IXXXX  
 

Result:  
 

( ) uXXXˆ T1T
OLS

−
+β=β                  (9) 

 
Note: The difference between  and β is called the sampling error of . 
The above equation implies that  

OLSβ̂ OLSβ̂

 
sampling error of  =   − β  =  OLSβ̂ OLSβ̂ ( ) uXXX T1T −

.        (10) 
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2. Use equation (9) to take the expectation of OLSβ̂  conditional on given values of 
the regressors, i.e., conditional on the regressor matrix X.    

 
( ) uXXXˆ T1T

OLS
−

+β=β                   (9) 
 

Now take the conditional expectation of . Since we are conditioning on 
the regressor matrix X, we can move the expectation operator past all terms in 
X. We also use assumption A2, the assumption of zero conditional mean 
errors, which states that 

OLSβ̂

( ) 0XuE = .   
 

( ) ( ) ( )[ ]XuXXXEXEXˆE T1T
OLS

−
+β=β  

       =  ( ) ( )XuEXXX T1T −
+β   since β = a constant vector 

       =  ( ) 0XXX T1T −
+β     since ( ) 0XuE =  by A2  

       =  β  
 

 Result:  
 

( ) β=β XˆE OLS  ⇒   is an unbiased estimator of β.      (11) OLSβ̂
 

Note: The unbiasedness property of the OLS coefficient estimator  depends 
only on Assumptions A1 and A2 of the classical linear regression model. 
Assumptions A1 and A2 are the only two assumptions used in the proof of the 
unbiasedness property.  

OLSβ̂
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6. Variance-Covariance Matrix for the OLS Coefficient Estimator 
 

 Definition:  The variance-covariance matrix of the OLS coefficient estimator 
OLSβ̂  -- or more briefly the covariance matrix of OLSβ̂  -- conditional on the 

regressor matrix X is defined as  
 

( ) [ ][ ]{ }X)Xˆ(Eˆ)Xˆ(EˆEXˆV
T

OLSOLSOLSOLSOLS β−ββ−β=β        (12) 
 

 Simplification:  The unbiasedness of OLSβ̂  means that ( ) β=β XˆE OLS . Replacing 

( )XOLS  with β in definition (12) permits ˆE β ( )XˆV OLSβ  to be written as  
 

( ) [ ][ ]{ }XˆˆEXˆV
T

OLSOLSOLS β−ββ−β=β             (13) 
 

Remarks:  
 

1. Recall that the difference between OLSβ̂  and β is called the sampling error of 

OLSβ̂ :   
 

sampling error of  =   − β  =  OLSβ̂ OLSβ̂ ( ) uXXX T1T −
.        (10) 

 
2. The covariance matrix ( )XˆV OLSβ  in (13) is thus the expectation, conditional 

on the regressor matrix X, of the outer product of the K×1 vector of sampling 
errors ( )β− . βOLS

ˆ
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 Derivation of the Conditional Covariance Matrix for OLSβ̂ , ( )XˆV OLSβ   
 

• From equation (10), the K×1 vector of sampling errors of OLSβ̂  is 
 

( ) uXXXˆ T1T
OLS

−
=β−β                   (10) 

 
• The transpose of the K×1 vector ( )β−βOLS

ˆ  is therefore the 1×K vector  
 

( ) ( )[ ] ( ) 1TT
T

T1TT
OLS XXXuuXXXˆ −−

==β−β            (14) 
 

• The outer product of the K×1 vector ( )β−  is therefore the K×K matrix  βOLS
ˆ

 
( )( ) ( ) ( ) 1TTT1TT

OLSOLS XXXuuXXXˆˆ −−
=β−ββ−β .          (15) 

 
• Now substitute the right-hand side of equation (15) into equation (13) for 

( )XˆV OLSβ :   
 
( ) [ ][ ]{ }XˆˆEXˆV

T
OLSOLSOLS β−ββ−β=β              (13) 

     
    =  ( ) ( ){ }XXXXuuXXXE

1TTT1T −−
   from equation (15) 

 

    =  ( ) ( ) ( ) 1TTT1T XXXXuuEXXX
−−

 
 

    =  ( ) ( ) ( ) 1T
N

2T1T XXXIXXX
−−

σ  since ( ) N
2T IXuuE σ=  by A3 

 

    =  ( ) ( ) 1T
N

T1T2 XXXIXXX
−−

σ  since 2σ  is a scalar constant 
 

    =  ( ) ( ) 1TT1T2 XXXXXX
−−

σ   since  XXXIX T
N

T =
 

    =        since ( ) K
1T2 IXX
−

σ ( ) K
1TT IXXXX =
−

 
 

    =        since ( ) 1T2 XX
−

σ ( ) ( 1T
K

1T XXIXX
−−

= )    
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• Result:  The conditional covariance matrix for the OLS coefficient estimator OLS  
is  

β̂

 
( ) ( ) 1T2

OLS XXXˆV
−

σ=β .                 (16) 
 
Remarks:   

 

1. The constant error variance 2σ  is unknown, meaning we do not know its value.  

2. Consequently, it is necessary to obtain an estimator of 2σ  in order to estimate 
the covariance matrix ( ) ( ) 1T2

OLS XXXˆV
−

σ=β . 
 

 An Unbiased Estimator of the Error Variance 2σ  
 

• It is possible to show that an unbiased estimator of the constant error variance 
2σ  is obtained by dividing the OLS residual sum of squares RSS by its degrees of 

freedom N−K:  
 

KN
ûû

KN
)ˆ(RSSˆ

T
OLS2

OLS −
=

−
β

=σ                 (17) 

 
where   
 

( ) ( )OLS
T

OLS
T

OLS
ˆXyˆXyûû)ˆ(RSS β−β−==β  

    =  the residual sum of squares for the coefficient estimator  OLSβ̂
 
• The unbiasedness of 2

OLSσ̂  follows from the fact that 
 

( ) ( ) 2T
OLS )KN(ûûE)ˆ(RSSE σ−==β  

 
which in turn implies that  
 

( ) ( ) 2
2T

2
OLS KN

)KN(
KN
ûûEˆE σ=

−
σ−

=
−

=σ . 
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• The square root of 2
OLSσ̂  is the standard deviation of the observed Yi sample 

values about the OLS sample regression function OLS
ˆXβ .  

 

KN
ûû

KN
)ˆ(RSSˆˆ

T
OLS2

OLSOLS −
=

−
β

=σ=σ .             (18) 

 
Unfortunately,  has a bewildering array of names.  OLSσ̂
 

OLSσ̂  is called (1) the standard error of estimate  
     (2) the standard error of the regression (SER) 

      (3) the root mean square error (RMSE)  
 

 An Unbiased Estimator of the Covariance Matrix for OLS  β̂
 

• Start with the formula for the conditional covariance matrix of OLSβ̂  given above 
in equation (16):   

 
( ) ( ) 1T2

OLS XXXˆV
−

σ=β .                 (16) 
 
• An unbiased estimator of ( )XˆV OLSβ  is obtained by simply substituting for the 

unknown error variance 2σ  in (16) the unbiased estimator 2
OLSσ̂ :  

 
( ) 1T2

OLSOLS XXˆV̂
−

σ= .                   (19) 
 

 
ECON 452* -- Note 9: Filename 452note09.doc  … Page 15 of 16 pages 
 



ECON 452* -- NOTE 9: OLS Estimation in Matrix Notation M.G. Abbott 
 

• Interpreting the Elements of OLSV̂   
 
• OLSV̂  is a square, symmetric K×K matrix, the elements of which are the 

estimated variances and covariances of the OLS coefficient estimates jβ̂  j = 0, 1, 

…, k. The symmetry of OLSV̂  follows from the fact that  
 

)ˆ,ˆ(vôC)ˆ,ˆ(vôC fggf ββ=ββ  for all f ≠ g. 
 
• The OLSV̂  matrix in general is written as:   

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

βββββββ

βββββββ
βββββββ
βββββββ

=

)ˆ(râV)ˆ,ˆ(vôC)ˆ,ˆ(vôC)ˆ,ˆ(vôC

)ˆ,ˆ(vôC)ˆ(râV)ˆ,ˆ(vôC)ˆ,ˆ(vôC
)ˆ,ˆ(vôC)ˆ,ˆ(vôC)ˆ(râV)ˆ,ˆ(vôC
)ˆ,ˆ(vôC)ˆ,ˆ(vôC)ˆ,ˆ(vôC)ˆ(râV

V̂

k2k1k0k

k221202

k121101

k020100

OLS

L

MOMMM

L

L

L

.     (20) 

 
• The software program Stata stores and displays the elements of OLSV̂  in a slightly 

different arrangement than that given in (20) above. Stata places the estimated 
variances and covariances involving the intercept coefficient estimate 0β̂  in the 
last row and last column of the OLSV̂  matrix, rather than in the first row and 
column as in (20).  
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