ECON 452* -- Addendum to NOTE 8

$\underline{\text { A Full Interaction Regression Model with Higher Order Terms in } X_{1} \text { and } X_{2}}$

Model 5.6: Higher order terms in the continuous explanatory variables X_{1} and X_{2}

Expand Model 5.5 to include cubic (3rd order) and quartic (4th order) terms in the two continuous explanatory variables X_{1} and X_{2}.

The population regression equation for Model 5.6 is:

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+ & \beta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{4} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\beta_{10} \mathrm{IN} 2_{\mathrm{i}}+\beta_{11} \mathrm{IN} 3_{\mathrm{i}}+\beta_{12} \mathrm{IN} 4_{\mathrm{i}} \\
+ & \delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{10} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{11} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \tag{5.6}
\end{align*}
$$

The population regression function for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3, I N 4{ }_{i}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\beta_{10} \mathrm{IN} 2_{\mathrm{i}}+\beta_{11} \mathrm{IN} 3_{\mathrm{i}}+\beta_{12} \mathrm{IN} 4_{\mathrm{i}} \\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{il}}^{2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{il}}^{3}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{10} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{11} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.6'}
\end{align*}
$$

$$
\begin{align*}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}, I N 4{ }_{i}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\beta_{10} \mathrm{IN} 2_{\mathrm{i}}+\beta_{11} \mathrm{IN} 3_{\mathrm{i}}+\beta_{12} \mathrm{IN} 4_{\mathrm{i}} \\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i1}}^{4}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{10} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{11} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.6'}
\end{align*}
$$

- The female population regression function for Model 5.6 is obtained by setting the female indicator $\mathrm{F}_{\mathrm{i}}=1$ in (5.6'):

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2}+\beta_{10} I N 2_{i}+\beta_{11} \mathrm{IN}_{i}+\beta_{12} \mathrm{IN}_{\mathrm{i}} \\
& +\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{X}_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{10} \mathrm{IN}_{\mathrm{i}}+\delta_{11} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{IN} 4_{\mathrm{i}} \\
& =\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{3}+\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{4}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{6}+\delta_{6}\right) \mathrm{X}_{\mathrm{i} 2}^{2} \\
& +\left(\beta_{7}+\delta_{7}\right) \mathrm{X}_{\mathrm{i} 2}^{3}+\left(\beta_{8}+\delta_{8}\right) \mathrm{X}_{\mathrm{i} 2}^{4}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{10}+\delta_{10}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\beta_{11}+\delta_{11}\right) \mathrm{IN} 3_{\mathrm{i}}+\left(\beta_{12}+\delta_{12}\right) \mathrm{IN} 4_{\mathrm{i}} \tag{5.6f}
\end{align*}
$$

$$
\begin{align*}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}, I N 4{ }_{i}\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2} \\
& +\beta_{10} \mathrm{IN} 2_{\mathrm{i}}+\beta_{11} \mathrm{IN} 3_{\mathrm{i}}+\beta_{12} \mathrm{IN} 4_{\mathrm{i}} \\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{10} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{11} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.6'}
\end{align*}
$$

- The male population regression function for Model 5.6 is obtained by setting the female indicator $F_{i}=0$ in (5.6'):

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2} \\
& \quad+\beta_{10} I N 2_{i}+\beta_{11} I N 3_{i}+\beta_{12} I N 4_{i} \tag{5.6m}
\end{align*}
$$

- The female-male difference in conditional mean Y for Model 5.6 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right) \\
& =\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{X}_{\mathrm{i1}}^{3}+\delta_{4} \mathrm{X}_{\mathrm{il}}^{4}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& \quad+\delta_{10} \mathrm{IN} 2_{i}+\delta_{11} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{IN} 4_{\mathrm{i}} \tag{5.6d}
\end{align*}
$$

The population regression equation for Model 5.6 is:

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+ & \beta_{2} \mathrm{X}_{\mathrm{i1}}^{2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{4} \mathrm{X}_{\mathrm{i1}}^{4}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\beta_{10} \mathrm{IN} 2_{\mathrm{i}}+\beta_{11} \mathrm{IN} 3_{\mathrm{i}}+\beta_{12} \mathrm{IN} 4 \\
+\delta_{0} \mathrm{~F}_{\mathrm{i}}+ & \delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{10} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{11} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \tag{5.6}
\end{align*}
$$

Stata command for OLS estimation of Model 5.6:
regress y x1 x1sq x13rd x14th x2 x2sq x23rd x24th x1x2 in2 in3 in4 f fx1 fx1sq fx13rd fx14th fx2 fx2sq fx23rd fx24th fx1x2 fin2 fin3 fin4

The Marginal Effect of $\mathbf{X}_{\mathbf{1}}$ in Model 5.6

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \begin{aligned}
=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+ & \beta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{4} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} X_{\mathrm{i} 2}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\beta_{10} \mathrm{IN} 2_{\mathrm{i}}+\beta_{11} \mathrm{IN} 3_{\mathrm{i}}+\beta_{12} \mathrm{IN} 4_{\mathrm{i}}
\end{aligned} \\
& \quad+\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& \\
& \quad+\delta_{10} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{11} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \tag{5.6'}
\end{align*}
$$

- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 5.6 is:

$$
\begin{aligned}
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} \\
& =\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{in}}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}+\delta_{1} \mathrm{~F}_{\mathrm{i}}+2 \delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{il}}^{2}+4 \delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- The marginal effect of \mathbf{X}_{1} in Model 5.6 is:

$$
\begin{aligned}
\frac{\partial Y_{i}}{\partial X_{i 1}} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} \\
& =\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i1}}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}+\delta_{1} \mathrm{~F}_{\mathrm{i}}+2 \delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 2}
\end{aligned}
$$

- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for \boldsymbol{f} emales in Model $\mathbf{5 . 6}$ is obtained by setting $\mathrm{F}_{\mathrm{i}}=1$:

$$
\begin{aligned}
\left.\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right|_{\mathrm{F}=1} & =\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} \\
& =\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i1}}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{X}_{\mathrm{i} 2} \\
& =\left(\beta_{1}+\delta_{1}\right)+2\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}+3\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+4\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{3}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males in Model 5.6 is obtained by setting $\mathrm{F}_{\mathrm{i}}=0$:

$$
\left.\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{il}}}\right|_{\mathrm{F}=0}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{i1}}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}
$$

- The female-male difference in the marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 5.6 is:

$$
\begin{aligned}
& \frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}-\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} \\
&= \beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{X}_{\mathrm{i} 2} \\
&-\beta_{1}-2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}-3 \beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}-4 \beta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}-\beta_{9} \mathrm{X}_{\mathrm{i} 2} \\
&= \delta_{1}+2 \delta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

Computing Estimates of the Marginal Effect of the Continuous Explanatory Variable $\mathbf{X}_{\mathbf{1}}$ in Model 5.6

- First, select specific values of the two continuous explanatory variables $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ at which to compute estimates of the marginal effect of X_{1} for males and females, and the corresponding female-male difference. To illustrate, select the sample median values - or $\mathbf{5 0}$-th percentile values - of the variables $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$.

Stata commands for defining as scalars the sample median values of \mathbf{X}_{1} and $\mathbf{X}_{\mathbf{2}}$:

```
summarize x1, detail
return list
scalar x1med = r(p50)
summarize x2, detail
return list
scalar x2med = r(p50)
scalar list x1med x2med
```

- Recall that the Stata command for OLS estimation of Model 5.6:

```
regress y x1 x1sq x13rd x14th x2 x2sq x23rd x24th x1x2 in2 in3 in4 f fx1
```

fx1sq fx13rd fx14th fx2 fx2sq fx23rd fx24th fx1x2 fin2 fin3 fin4

- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males in Model 5.6 is given by the following function:

$$
\left.\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{il}}}\right|_{\mathrm{F}=0}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}
$$

Stata command for computing an estimate of the marginal effect of \mathbf{X}_{1} for males at the sample median values of X_{1} and X_{2} :
lincom _b[x1] + 2*_b[x1sq]*x1med + 3*_b[x13rd]*x1med*x1med + 4*_b[x14th]*x1med*x1med*x1med + _b[x1x2]*x2med

- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for females in Model $\mathbf{5 . 6}$ is given by the following function:

$$
\left.\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right|_{\mathrm{F}=1}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\left(\beta_{1}+\delta_{1}\right)+2\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}+3\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+4\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i1}}^{3}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 2}
$$

Stata command for computing an estimate of the marginal effect of $\mathbf{X}_{\mathbf{1}}$ for females at the sample median values of X_{1} and X_{2} :

```
lincom _b[x1] + _b[fx1] + 2*(_b[x1sq] + _b[fx1sq])*x1med
+ 3*(_b[x13rd] + _b[fx13rd])*x1med*x1med
+ 4*(_b[x14th] + _b[fx14th])*x1med*x1med*x1med
+ (_b[x1x2] + _b[fx1x2])*x2med
```

- The female-male difference in the marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 5.6 is given by the following function:

$$
\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}-\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\delta_{1}+2 \delta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{X}_{\mathrm{i1}}^{3}+\delta_{9} \mathrm{X}_{\mathrm{i} 2}
$$

Stata command for computing an estimate of the female-male difference in the marginal effect of X_{1} at the sample median values of X_{1} and X_{2} :
lincom _b[fx1] + 2*_b[fx1sq]*x1med + 3*_b[fx13rd]*x1med*x1med + 4*_b[fx14th]*x1med*x1med*x1med + _b[fx1x2]*x2med

Hypothesis Tests Respecting the Marginal Effect of \mathbf{X}_{1} for Males in Model 5.6

- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males in Model 5.6 is:

$$
\left.\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right|_{\mathrm{F}=0}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}
$$

- Test 1m: Test the hypothesis that the marginal effect of $X_{\mathbf{1}}$ on \mathbf{Y} for males is zero for all values of X_{1} and X_{2}.
- Sufficient conditions for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 1}=0$ for all i for males are $\beta_{1}=0$ and $\beta_{2}=0$ and $\beta_{3}=0$ and $\beta_{4}=0$ and $\beta_{9}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}=0 \text { and } \beta_{2}=0 \text { and } \beta_{3}=0 \text { and } \beta_{4}=0 \text { and } \beta_{9}=0 \\
& \mathrm{H}_{1}: \beta_{1} \neq 0 \text { and/or } \beta_{2} \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and/or } \beta_{4} \neq 0 \text { and/or } \beta_{9} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x1 x1sq x13rd x14th x1x2
```

- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males in Model 5.6 is:

$$
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\left.\partial \mathrm{X}_{\mathrm{i} 1}\right|_{\mathrm{F}=0}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{il}}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}
$$

- Test 2m: Test the hypothesis that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ on \mathbf{Y} for males is constant - i.e., is unrelated to the values of X_{1} and X_{2}.
- Sufficient conditions for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 1}=\beta_{1}$ (a constant) for all males are $\beta_{2}=0$ and $\beta_{3}=0$ and $\beta_{4}=0$ and $\beta_{9}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{2}=0 \text { and } \beta_{3}=0 \text { and } \beta_{4}=0 \text { and } \beta_{9}=0 \\
& \mathrm{H}_{1}: \beta_{2} \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and/or } \beta_{4} \neq 0 \text { and/or } \beta_{9} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x1sq x13rd x14th x1x2
```

- Test 3m: Test the hypothesis that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ on \mathbf{Y} for males is unrelated to, or does not depend upon, X_{1}.
- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males in Model 5.6 is:

$$
\left.\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right|_{\mathrm{F}=0}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{il}}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}
$$

- Sufficient conditions for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 1}$ to be unrelated to $\mathrm{X}_{\mathrm{i} 1}$ for all males are $\beta_{2}=0$ and $\beta_{3}=0$ and $\beta_{4}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{2}=0 \text { and } \beta_{3}=0 \text { and } \beta_{4}=0 \\
& \mathrm{H}_{1}: \beta_{2} \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and/or } \beta_{4} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x1sq x13rd x14th
```

- Test 4m: Test the hypothesis that the marginal effect of X_{1} on \mathbf{Y} for males is unrelated to, or does not depend upon, X_{2}.
- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for males in Model 5.6 is:

$$
\left.\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right|_{\mathrm{F}=0}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}
$$

- A sufficient condition for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 1}$ to be unrelated to $\mathrm{X}_{\mathrm{i} 2}$ for all males is $\beta_{9}=0$.
- The null and alternative hypotheses for this proposition are:

$$
\begin{aligned}
& H_{0}: \beta_{9}=0 \\
& H_{1}: \beta_{9} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x1x2 or test x1x2 = 0
```

- Equivalently, compute a two-tail t-test of H_{0} against H_{1} using the following Stata lincom command:
lincom _b[x1x2]

Hypothesis Tests Respecting the Marginal Effect of $\mathbf{X}_{\mathbf{1}}$ for Females in Model 5.6

- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for females in Model 5.6 is:

$$
\begin{aligned}
\left.\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right|_{\mathrm{F}=1}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} & =\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{X}_{\mathrm{i} 2} \\
& =\left(\beta_{1}+\delta_{1}\right)+2\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}+3\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+4\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{in}}^{3}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- Test 1f: Test the hypothesis that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ on \mathbf{Y} for females is zero for all values of X_{1} and X_{2}.
- Sufficient conditions for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 1}=0$ for all females are $\beta_{1}+\delta_{1}=0$ and $\beta_{2}+\delta_{2}=0$ and $\beta_{3}+\delta_{3}=0$ and $\beta_{4}+$ $\delta_{4}=0$ and $\beta_{9}+\delta_{9}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{1}+\delta_{1}=0 \text { and } \beta_{2}+\delta_{2}=0 \text { and } \beta_{3}+\delta_{3}=0 \text { and } \beta_{4}+\delta_{4}=0 \text { and } \beta_{9}+\delta_{9}=0 \\
& \mathrm{H}_{1}: \beta_{1}+\delta_{1} \neq 0 \text { and/or } \beta_{2}+\delta_{2} \neq 0 \text { and/or } \beta_{3}+\delta_{3} \neq 0 \text { and/or } \beta_{4}+\delta_{4} \neq 0 \text { and/or } \beta_{9}+\delta_{9} \neq 0
\end{aligned}
$$

- Compute an \mathbf{F}-test of H_{0} against H_{1} using the following Stata test commands:

```
test x1 + fx1 = 0, notest
test x1sq + fx1sq = 0, accumulate notest
test x13rd + fx13rd = 0, accumulate notest
test x14th + fx14th = 0, accumulate notest
test x1x2 + fx1x2 = 0, accumulate
```

- Test 2f: Test the hypothesis that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ on \mathbf{Y} for females is constant - i.e., is unrelated to the values of X_{1} and X_{2}.
- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for females in Model 5.6 is:

$$
\begin{aligned}
& \left.\frac{\partial Y_{i}}{\partial X_{i 1}}\right|_{\mathrm{F}=1}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{X}_{\mathrm{i} 2} \\
& =\left(\beta_{1}+\delta_{1}\right)+2\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}+3\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+4\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{3}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- Sufficient conditions for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{in}}=\beta_{1}+\delta_{1}$ (a constant) for all females are $\beta_{2}+\delta_{2}=0$ and $\beta_{3}+\delta_{3}=0$ and β_{4} $+\delta_{4}=0$ and $\beta_{9}+\delta_{9}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{2}+\delta_{2}=0 \text { and } \beta_{3}+\delta_{3}=0 \text { and } \beta_{4}+\delta_{4}=0 \text { and } \beta_{9}+\delta_{9}=0 \\
& \mathrm{H}_{1}: \beta_{2}+\delta_{2} \neq 0 \text { and/or } \beta_{3}+\delta_{3} \neq 0 \text { and/or } \beta_{4}+\delta_{4} \neq 0 \text { and/or } \beta_{9}+\delta_{9} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x1sq + fx1sq = 0, notest
test x13rd + fx13rd = 0, accumulate notest
test x14th + fx14th = 0, accumulate notest
test x1x2 + fx1x2 = 0, accumulate
```

- Test 3f: Test the hypothesis that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ on \mathbf{Y} for females is unrelated to, or does not depend upon, X_{1}.
- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for females in Model 5.6 is:

$$
\begin{aligned}
\left.\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\partial \mathrm{X}_{\mathrm{i} 1}}\right|_{\mathrm{F}=1}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} & =\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i1}}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{X}_{\mathrm{i} 2} \\
& =\left(\beta_{1}+\delta_{1}\right)+2\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}+3\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+4\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{3}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- Sufficient conditions for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 1}$ to be unrelated to $\mathrm{X}_{\mathrm{i} 1}$ for all females are $\beta_{2}+\delta_{2}=0$ and $\beta_{3}+\delta_{3}=0$ and $\beta_{4}+$ $\delta_{4}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{2}+\delta_{2}=0 \text { and } \beta_{3}+\delta_{3}=0 \text { and } \beta_{4}+\delta_{4}=0 \\
& \mathrm{H}_{1}: \beta_{2}+\delta_{2} \neq 0 \text { and/or } \beta_{3}+\delta_{3} \neq 0 \text { and/or } \beta_{4}+\delta_{4} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x1sq + fx1sq = 0, notest
test x13rd + fx13rd = 0, accumulate notest
test x14th + fx14th = 0, accumulate
```

- Test 4f: Test the hypothesis that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ on \mathbf{Y} for females is unrelated to, or does not depend upon, X_{2}.
- The marginal effect of $\mathbf{X}_{\mathbf{1}}$ for females in Model 5.6 is:

$$
\begin{aligned}
\frac{\partial \mathrm{Y}_{\mathrm{i}}}{\left.\partial \mathrm{X}_{\mathrm{i} 1}\right|_{\mathrm{F}=1}}=\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}} & =\beta_{1}+2 \beta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \beta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \beta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{9} \mathrm{X}_{\mathrm{i} 2}+\delta_{1}+2 \delta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{X}_{\mathrm{i} 2} \\
& =\left(\beta_{1}+\delta_{1}\right)+2\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}+3\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+4\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{3}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- A sufficient condition for $\partial \mathrm{Y}_{\mathrm{i}} / \partial \mathrm{X}_{\mathrm{i} 1}$ to be unrelated to $\mathrm{X}_{\mathrm{i} 2}$ for all females is $\beta_{9}+\delta_{9}=0$.
- The null and alternative hypotheses for this proposition are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{9}+\delta_{9}=0 \\
& \mathrm{H}_{1}: \beta_{9}+\delta_{9} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:
test $\mathrm{x} 1 \mathrm{x} 2+\mathrm{fx} 1 \mathrm{x} 2=0$
- Equivalently, compute a two-tail t-test of H_{0} against H_{1} using the following Stata lincom command:

```
lincom _b[x1x2] + _b[fx1x2]
```


Hypothesis Tests for Female-Male Differences in the Marginal Effect of \mathbf{X}_{1} in Model 5.6

- The female-male difference in the marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 5.6 is:

$$
\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}-\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\delta_{1}+2 \delta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{X}_{\mathrm{i} 2}
$$

- Test 5: Test the hypothesis that the marginal effect of $\mathbf{X}_{\mathbf{1}}$ on \mathbf{Y} for females equals the marginal effect of $\mathbf{X}_{\mathbf{1}}$ on Y for males for any values of X_{1} and X_{2}-i.e., the female-male difference in the marginal effect of X_{1} on \mathbf{Y} is zero for any values of X_{1} and X_{2}.
- Sufficient conditions for the female-male difference in the marginal effect of X_{1} on Y to equal zero for all values of X_{1} and X_{2} are $\delta_{1}=0$ and $\delta_{2}=0$ and $\delta_{3}=0$ and $\delta_{4}=0$ and $\delta_{9}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \delta_{1}=0 \text { and } \delta_{2}=0 \text { and } \delta_{3}=0 \text { and } \delta_{4}=0 \text { and } \delta_{9}=0 \\
& \mathrm{H}_{1}: \delta_{1} \neq 0 \text { and/or } \delta_{2} \neq 0 \text { and/or } \delta_{3} \neq 0 \text { and/or } \delta_{4} \neq 0 \text { and/or } \delta_{9} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

> test fx1 fx1sq fx13rd fx14th fx1x2

- Test 6: Test the hypothesis that the female-male difference in the marginal effect of $X_{1} \mathbf{o n} \mathbf{Y}$ is a constant for any values of X_{1} and X_{2}.
- The female-male difference in the marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 5.6 is:

$$
\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}-\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\delta_{1}+2 \delta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{X}_{\mathrm{i} 2}
$$

- Sufficient conditions for the female-male difference in the marginal effect of X_{1} on Y to equal the constant $\boldsymbol{\delta}_{\mathbf{1}}$ for all values of X_{1} and X_{2} are $\delta_{2}=0$ and $\delta_{3}=0$ and $\delta_{4}=0$ and $\delta_{9}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \delta_{2}=0 \text { and } \delta_{3}=0 \text { and } \delta_{4}=0 \text { and } \delta_{9}=0 \\
& \mathrm{H}_{1}: \delta_{2} \neq 0 \text { and/or } \delta_{3} \neq 0 \text { and/or } \delta_{4} \neq 0 \text { and/or } \delta_{9} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test fx1sq fx13rd fx14th fx1x2
```

- Test 7: Test the hypothesis that the female-male difference in the marginal effect of \mathbf{X}_{1} on \mathbf{Y} is unrelated to, or does not depend upon, \mathbf{X}_{1}.
- The female-male difference in the marginal effect of \mathbf{X}_{1} in Model 5.6 is:

$$
\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}-\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\delta_{1}+2 \delta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{X}_{\mathrm{i} 2}
$$

- Sufficient conditions for the female-male difference in the marginal effect of X_{1} on Y to be unrelated to $\mathrm{X}_{\mathbf{1}}$ are $\delta_{2}=0$ and $\delta_{3}=0$ and $\delta_{4}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \delta_{2}=0 \text { and } \delta_{3}=0 \text { and } \delta_{4}=0 \\
& \mathrm{H}_{1}: \delta_{2} \neq 0 \text { and/or } \delta_{3} \neq 0 \text { and/or } \delta_{4} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test fx1sq fx13rd fx14th
```

- Test 8: Test the hypothesis that the female-male difference in the marginal effect of \mathbf{X}_{1} on \mathbf{Y} is unrelated to, or does not depend upon, \mathbf{X}_{2}.
- The female-male difference in the marginal effect of $\mathbf{X}_{\mathbf{1}}$ in Model 5.6 is:

$$
\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}-\frac{\partial \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)}{\partial \mathrm{X}_{\mathrm{i} 1}}=\delta_{1}+2 \delta_{2} \mathrm{X}_{\mathrm{i} 1}+3 \delta_{3} \mathrm{X}_{\mathrm{i} 1}^{2}+4 \delta_{4} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{9} \mathrm{X}_{\mathrm{i} 2}
$$

- A sufficient condition for the female-male difference in the marginal effect of X_{1} on Y to be unrelated to $\mathrm{X}_{\mathbf{2}}$ is $\delta_{9}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& H_{0}: \delta_{9}=0 \\
& H_{1}: \delta_{9} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test fx1x2 or test fx1x2 = 0
```

- Equivalently, compute a two-tail t-test of H_{0} against H_{1} using the following Stata lincom command:

```
lincom _b[fx1x2]
```


Hypothesis Tests Respecting the Effects of Industry in Model 5.6

- Test 1-Industry: Test the hypothesis of no industry effects for males. This is equivalent to the hypothesis that conditional mean Y for males is unrelated to industry, i.e., that there are no inter-industry differences in conditional mean \mathbf{Y} for males.
- The male population regression function for Model 5.6 is:

$$
\begin{aligned}
& E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, \text { IN } 2_{i}, \text { IN3 } 3, I N 4\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2}+\beta_{10} I N N_{i}+\beta_{11} \mathrm{IN}_{i}+\beta_{12} \mathrm{IN}_{4} \quad \text { (5.6m) }
\end{aligned}
$$

- Sufficient conditions for the conditional mean value of Y for males to be unrelated to industry are $\beta_{10}=0$ and $\beta_{11}=0$ and $\beta_{12}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{10}=0 \text { and } \beta_{11}=0 \text { and } \beta_{12}=0 \\
& \mathrm{H}_{1}: \beta_{10} \neq 0 \text { and/or } \beta_{11} \neq 0 \text { and/or } \beta_{12} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test in2 in3 in4
```

- Test 2-Industry: Test the hypothesis of no industry effects for females. This is equivalent to the hypothesis that conditional mean Y for females is unrelated to industry, i.e., that there are no inter-industry differences in conditional mean Y for females.
- The female population regression function for Model 5.6 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}, \text { IN4 } 4_{\mathrm{i}}\right) \\
& =\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{3}+\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{4}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{6}+\delta_{6}\right) \mathrm{X}_{\mathrm{i} 2}^{2} \\
& +\left(\beta_{7}+\delta_{7}\right) \mathrm{X}_{\mathrm{i} 2}^{3}+\left(\beta_{8}+\delta_{8}\right) \mathrm{X}_{\mathrm{i} 2}^{4}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{10}+\delta_{10}\right) \mathrm{IN}_{\mathrm{i}}+\left(\beta_{11}+\delta_{11}\right) \mathrm{IN}_{\mathrm{i}}+\left(\beta_{12}+\delta_{12}\right) \mathrm{IN}_{\mathrm{i}} \tag{5.6f}
\end{align*}
$$

- Sufficient conditions for the conditional mean value of Y for females to be unrelated to industry are $\beta_{10}+\delta_{10}=$ 0 and $\beta_{11}+\delta_{11}=0$ and $\beta_{12}+\delta_{12}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{10}+\delta_{10}=0 \text { and } \beta_{11}+\delta_{11}=0 \text { and } \beta_{12}+\delta_{12}=0 \\
& \mathrm{H}_{1}: \beta_{10}+\delta_{10} \neq 0 \text { and/or } \beta_{11}+\delta_{11} \neq 0 \text { and/or } \beta_{12}+\delta_{12} \neq 0
\end{aligned}
$$

- Compute an \mathbf{F}-test of H_{0} against H_{1} using the following Stata test commands:

```
test in2 + fin2 = 0, notest
test in3 + fin3 = 0, accumulate notest
test in4 + fin4 = 0, accumulate
```

- Test 3-Industry: Test the hypothesis of no female-male differences in industry effects - i.e., that the femalemale difference in conditional mean Y is unrelated to industry.

This is equivalent to the hypothesis that industry effects are equal for females and males, i.e., that interindustry differences in conditional mean \mathbf{Y} for females equal inter-industry differences in conditional mean Y for males.

- The female-male difference in conditional mean Y for Model 5.6 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, x_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right) \\
& =\delta_{0}+\delta_{1} X_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} X_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} X_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{10} \mathrm{IN} 2_{\mathrm{i}}+\delta_{11} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{IN} 4_{\mathrm{i}} \tag{5.6d}
\end{align*}
$$

- Sufficient conditions for the female-male difference in conditional mean Y to be unrelated to industry (for equal industry effects for males and females) are $\delta_{11}=0$ and $\delta_{12}=0$ and $\delta_{13}=0$.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \delta_{10}=0 \text { and } \delta_{11}=0 \text { and } \delta_{12}=0 \\
& \mathrm{H}_{1}: \delta_{10} \neq 0 \text { and/or } \delta_{11} \neq 0 \text { and/or } \delta_{12} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test fin2 fin3 fin4
```


Hypothesis Tests Respecting Female-Male Differences in Conditional Mean Y in Model 5.6

- The female-male difference in conditional mean Y for Model 5.6 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right) \\
& =\delta_{0}+\delta_{1} X_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{ii} 1}^{2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{X}_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} X_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{10} \mathrm{IN} 2_{i}+\delta_{11} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{IN} 4_{\mathrm{i}} \tag{5.6d}
\end{align*}
$$

- Test 1: The female-male difference in conditional mean Y equals zero for all observations, i.e., for any given values of the explanatory variables $\mathrm{X}_{1}, \mathrm{X}_{2}$, and industry.
- The null and alternative hypotheses are:
$\mathrm{H}_{0}: \delta_{0}=0$ and $\delta_{1}=0$ and $\delta_{2}=0$ and $\delta_{3}=0$ and $\delta_{4}=0$ and $\delta_{5}=0$ and $\delta_{6}=0$ and $\delta_{7}=0$ and $\delta_{8}=0$ and $\delta_{9}=0$ and $\delta_{10}=0$ and $\delta_{11}=0$ and $\delta_{12}=0$
or $\quad \delta_{j}=0 \quad$ for all $\mathrm{j}=0,1, \ldots, 12$
$\mathrm{H}_{1}: \delta_{0} \neq 0$ and/or $\delta_{1} \neq 0$ and/or $\delta_{2} \neq 0$ and/or $\delta_{3} \neq 0$ and/or $\delta_{4} \neq 0$ and/or $\delta_{5} \neq 0$ and/or $\delta_{6} \neq 0$ and/or $\delta_{7} \neq 0$ and/or $\delta_{8} \neq 0$ and/or $\delta_{9} \neq 0$ and/or $\delta_{10} \neq 0$ and/or $\delta_{11} \neq 0$ and/or $\delta_{12} \neq 0$
or $\quad \delta_{j} \neq 0 \quad j=0,1, \ldots, 12$
- Compute an \mathbf{F}-test of H_{0} against H_{1} using the following Stata test command:
test f fx1 fx1sq fx13rd fx14th fx2 fx2sq fx23rd fx24th fx1x2 fin2 fin3
fin4
- The female-male difference in conditional mean \mathbf{Y} for Model 5.6 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right) \\
& =\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{X}_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{X}_{\mathrm{in} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{10} \mathrm{IN} 2_{\mathrm{i}}+\delta_{11} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{IN} 4_{\mathrm{i}} \tag{5.6d}
\end{align*}
$$

- Test 2: The female-male difference in conditional mean \mathbf{Y} equals a constant, i.e., it does not depend on the values of the explanatory variables $\mathbf{X}_{1}, \mathbf{X}_{2}$, and industry.
- The null and alternative hypotheses are:
$\mathrm{H}_{0}: \delta_{1}=0$ and $\delta_{2}=0$ and $\delta_{3}=0$ and $\delta_{4}=0$ and $\delta_{5}=0$ and $\delta_{6}=0$ and $\delta_{7}=0$ and $\delta_{8}=0$ and $\delta_{9}=0$ and $\delta_{10}=0$ and $\delta_{11}=0$ and $\delta_{12}=0$
or $\quad \delta_{j}=0 \quad$ for all $\mathrm{j}=1,2, \ldots, 12$
$\mathrm{H}_{1}: \delta_{1} \neq 0$ and/or $\delta_{2} \neq 0$ and/or $\delta_{3} \neq 0$ and/or $\delta_{4} \neq 0$ and/or $\delta_{5} \neq 0$ and/or $\delta_{6} \neq 0$ and/or $\delta_{7} \neq 0$ and/or $\delta_{8} \neq 0$ and/or $\delta_{9} \neq 0$ and/or $\delta_{10} \neq 0$ and/or $\delta_{11} \neq 0$ and/or $\delta_{12} \neq 0$
or $\quad \delta_{j} \neq 0 \quad j=1,2, \ldots, 12$
- Compute an F-test of H_{0} against H_{1} using the following Stata test command:
test fx1 fx1sq fx13rd fx14th fx2 fx2sq fx23rd fx24th fx1x2 fin2 fin3 fin4
- The female-male difference in conditional mean \mathbf{Y} for Model 5.6 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right) \\
& =\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{X}_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{10} \mathrm{IN} 2_{\mathrm{i}}+\delta_{11} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{IN} 4_{\mathrm{i}} \tag{5.6d}
\end{align*}
$$

- Test 3: The female-male difference in conditional mean Y does not depend on X_{1} - i.e., the marginal effect of X_{1} is equal for males and females.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \delta_{1}=0 \text { and } \delta_{2}=0 \text { and } \delta_{3}=0 \text { and } \delta_{4}=0 \text { and } \delta_{9}=0 \\
& \quad \text { or } \quad \delta_{\mathrm{j}}=0 \quad \text { for all } \mathrm{j}=1,2,3,4,9
\end{aligned}
$$

$$
\mathrm{H}_{1}: \delta_{1} \neq 0 \text { and/or } \delta_{2} \neq 0 \text { and/or } \delta_{3} \neq 0 \text { and/or } \delta_{4} \neq 0 \text { and/or } \delta_{9} \neq 0
$$

$$
\text { or } \quad \delta_{j} \neq 0 \quad j=1,2,3,4,9
$$

- Compute an \mathbf{F}-test of H_{0} against H_{1} using the following Stata test command:

```
test fx1 fx1sq fx13rd fx14th fx1x2
```

- The female-male difference in conditional mean Y for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, x_{i}^{T}\right)-E\left(Y_{i} \mid F_{i}=0, x_{i}^{T}\right) \\
& =\delta_{0}+\delta_{1} X_{i 1}+\delta_{2} X_{i 1}^{2}+\delta_{3} X_{i 1}^{3}+\delta_{4} X_{i 1}^{4}+\delta_{5} X_{i 2}+\delta_{6} X_{i 2}^{2}+\delta_{7} X_{i 2}^{3}+\delta_{8} X_{i 2}^{4}+\delta_{9} X_{i 1} X_{i 2}+\delta_{10} I N 2_{i}+\delta_{11} I N 3_{i}+\delta_{12} I N 4 \tag{5.6d}
\end{align*}
$$

- Test 4: The female-male difference in conditional mean Y does not depend on X_{2} - i.e., the marginal effect of X_{2} is equal for males and females.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \delta_{5}=0 \text { and } \delta_{6}=0 \text { and } \delta_{7}=0 \text { and } \delta_{8}=0 \text { and } \delta_{9}=0 \\
& \mathrm{H}_{1}: \delta_{5} \neq 0 \text { and/or } \delta_{6} \neq 0 \text { and/or } \delta_{7} \neq 0 \text { and/or } \delta_{8} \neq 0 \text { and/or } \delta_{9} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:
test fx2 fx2sq fx23rd fx24th fx1x2
- The female-male difference in conditional mean Y for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, x_{i}^{T}\right)-E\left(Y_{i} \mid F_{i}=0, x_{i}^{T}\right) \\
& =\delta_{0}+\delta_{1} X_{i 1}+\delta_{2} X_{i 1}^{2}+\delta_{3} X_{i 1}^{3}+\delta_{4} X_{i 1}^{4}+\delta_{5} X_{i 2}+\delta_{6} X_{i 2}^{2}+\delta_{7} X_{i 2}^{3}+\delta_{8} X_{i 2}^{4}+\delta_{9} X_{i 1} X_{i 2}+\delta_{10} I N 2_{i}+\delta_{11} I N 3_{i}+\delta_{12} I N 4 \tag{5.6d}
\end{align*}
$$

- Test 5: The female-male difference in conditional mean Y does not depend on industry - i.e., industry effects are equal for males and females.
- The null and alternative hypotheses are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \delta_{10}=0 \text { and } \delta_{11}=0 \text { and } \delta_{12}=0 \\
& \mathrm{H}_{1}: \delta_{10} \neq 0 \text { and/or } \delta_{11} \neq 0 \text { and/or } \delta_{12} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

test fin2 fin3 fin4

Hypothesis Tests for Selecting the Order of Polynomial for $\mathbf{X}_{\mathbf{1}}$ in Model 5.6

- The male population regression function for Model 5.6:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, \operatorname{IN} 2_{i}, I N 3_{i}, I N 44_{i}\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2}+\beta_{10} I N 2_{i}+\beta_{11} I N 3_{i}+\beta_{12} I N 4_{i} \tag{5.6m}
\end{align*}
$$

- The female population regression function for Model 5.6 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \text { IN2 } 2_{\mathrm{i}}, \text { IN3 }_{\mathrm{i}}, \text { IN4 } 4_{\mathrm{i}}\right) \\
& =\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{il}}^{3}+\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{4}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{6}+\delta_{6}\right) \mathrm{X}_{\mathrm{i} 2}^{2} \\
& \quad+\left(\beta_{7}+\delta_{7}\right) \mathrm{X}_{\mathrm{i} 2}^{3}+\left(\beta_{8}+\delta_{8}\right) \mathrm{X}_{\mathrm{i} 2}^{4}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{10}+\delta_{10}\right) \mathrm{IN}_{\mathrm{i}}+\left(\beta_{11}+\delta_{11}\right) \mathrm{IN}_{\mathrm{i}}+\left(\beta_{12}+\delta_{12}\right) \mathrm{IN}_{\mathrm{i}} \tag{5.6f}
\end{align*}
$$

Again, the Stata command for OLS estimation of Model 5.6:
regress y x1 x1sq x13rd x14th $x 2$ x2sq x23rd x24th x1x2 in2 in3 in4 f fx1 fx1sq fx13rd fx14th fx2 fx2sq fx23rd fx24th fx1x2 fin2 fin3 fin4

Tests for Selecting the Order of Polynomial for $\mathbf{X}_{\mathbf{1}}$ for Males in Model 5.6

- Test 5m: Test the hypothesis that a third-order polynomial is adequate for representing the conditional effect of X_{1} on Y for males.
- The male population regression function for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& \qquad \begin{array}{l}
=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2} \\
\quad+\beta_{10} I N 2_{i}+\beta_{11} I N 3_{i}+\beta_{12} I N 4_{i}
\end{array}
\end{align*}
$$

- A sufficient condition for the male population regression function to be a third-order polynomial in $X_{i 1}$ is $\beta_{4}=$ 0.
- The null and alternative hypotheses for this proposition are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}=0 \\
& \mathrm{H}_{1}: \beta_{4} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x14th or test x14th = 0
```

- Equivalently, compute a two-tail t-test of H_{0} against H_{1} using the following Stata lincom command:
lincom _b[x14th]
- Test 6 m : Test the hypothesis that a second-order polynomial is adequate for representing the conditional effect of X_{1} on Y for males.
- The male population regression function for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2} \\
& \quad+\beta_{10} I N 2_{i}+\beta_{11} \mathrm{IN}_{i}+\beta_{12} \mathrm{IN} 4_{i} \tag{5.6m}
\end{align*}
$$

- Sufficient conditions for the male population regression function to be a second-order polynomial in $X_{i 1}$ are $\beta_{4}=0$ and $\beta_{3}=0$.
- The null and alternative hypotheses for this proposition are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}=0 \text { and } \beta_{3}=0 \\
& \mathrm{H}_{1}: \beta_{4} \neq 0 \text { and/or } \beta_{3} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x14th x13rd
```

- Test 7m: Test the hypothesis that a first-order polynomial is adequate for representing the conditional effect of $\mathrm{X}_{\mathbf{1}}$ on Y for males.
- The male population regression function for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2} \\
& \quad+\beta_{10} I N 2_{i}+\beta_{11} I N 3_{i}+\beta_{12} I N 4_{i} \tag{5.6m}
\end{align*}
$$

- Sufficient conditions for the male population regression function to be a second-order polynomial in $X_{i 1}$ are $\beta_{4}=0$ and $\beta_{3}=0$ and $\beta_{2}=0$.
- The null and alternative hypotheses for this proposition are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}=0 \text { and } \beta_{3}=0 \text { and } \beta_{2}=0 \\
& \mathrm{H}_{1}: \beta_{4} \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and/or } \beta_{2} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x14th x13rd x1sq
```

- Test 8m: Test the hypothesis that a zero-order polynomial is adequate for representing the conditional effect of X_{1} on Y for males.
- The male population regression function for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2} \\
& \quad+\beta_{10} I N 2_{i}+\beta_{11} I N 3_{i}+\beta_{12} I N 4_{i} \tag{5.6m}
\end{align*}
$$

- Sufficient conditions or the male population regression function to be a second-order polynomial in $\mathrm{X}_{\mathrm{i} 1}$ are $\beta_{4}=0$ and $\beta_{3}=0$ and $\beta_{2}=0$ and $\beta_{1}=0$.
- The null and alternative hypotheses for this proposition are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}=0 \text { and } \beta_{3}=0 \text { and } \beta_{2}=0 \text { and } \beta_{1}=0 \\
& \mathrm{H}_{1}: \beta_{4} \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and/or } \beta_{2} \neq 0 \text { and/or } \beta_{1} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x14th x13rd x1sq x1
```


Tests for Selecting the Order of Polynomial for $\mathbf{X}_{\mathbf{1}}$ for Females in Model 5.6

- Test 5f: Test the hypothesis that a third-order polynomial is adequate for representing the conditional effect of X_{1} on Y for females.
- The female population regression function for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}, \text { IN3 } 3_{i}, I N 4_{i}\right) \\
& =\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) X_{i 1}+\left(\beta_{2}+\delta_{2}\right) X_{i 1}^{2}+\left(\beta_{3}+\delta_{3}\right) X_{i 1}^{3}+\left(\beta_{4}+\delta_{4}\right) X_{i 1}^{4}+\left(\beta_{5}+\delta_{5}\right) X_{i 2}+\left(\beta_{6}+\delta_{6}\right) X_{i 2}^{2} \\
& \quad+\left(\beta_{7}+\delta_{7}\right) X_{i 2}^{3}+\left(\beta_{8}+\delta_{8}\right) X_{i 2}^{4}+\left(\beta_{9}+\delta_{9}\right) X_{i 1} X_{i 2}+\left(\beta_{10}+\delta_{10}\right) I N 2_{i}+\left(\beta_{11}+\delta_{11}\right) I N 3_{i}+\left(\beta_{12}+\delta_{12}\right) I N 4_{i} \tag{5.6f}
\end{align*}
$$

- A sufficient condition for the female population regression function to be a third-order polynomial in $\mathrm{X}_{\mathrm{i} 1}$ is $\beta_{4}+\delta_{4}=0$.
- The null and alternative hypotheses for this proposition are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}+\delta_{4}=0 \\
& \mathrm{H}_{1}: \beta_{4}+\delta_{4} \neq 0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x14th + fx14th = 0
```

- Equivalently, compute a two-tail t-test of H_{0} against H_{1} using the following Stata lincom command:

```
lincom _b[x14th] + _b[fx14th]
```

- Test 6f: Test the hypothesis that a second-order polynomial is adequate for representing the conditional effect of $X_{1} \mathrm{on} Y$ for female.
- The female population regression function for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2, I N 3, I N 4{ }_{i}\right) \\
& =\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{3}+\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{4}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{6}+\delta_{6}\right) \mathrm{X}_{\mathrm{i} 2}^{2} \\
& +\left(\beta_{7}+\delta_{7}\right) \mathrm{X}_{\mathrm{i} 2}^{3}+\left(\beta_{8}+\delta_{8}\right) \mathrm{X}_{\mathrm{i} 2}^{4}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{10}+\delta_{10}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\beta_{11}+\delta_{11}\right) \mathrm{IN}_{\mathrm{i}}+\left(\beta_{12}+\delta_{12}\right) \mathrm{IN}_{\mathrm{i}} \tag{5.6f}
\end{align*}
$$

- Sufficient conditions for the female population regression function to be a second-order polynomial in $X_{i 1}$ are $\beta_{4}+\delta_{4}=0$ and $\beta_{3}+\delta_{3}=0$.
- The null and alternative hypotheses for this proposition are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}+\delta_{4}=0 \text { and } \beta_{3}+\delta_{3}=0 \\
& \mathrm{H}_{1}: \beta_{4}+\delta_{4}=0 \text { and/or } \beta_{3}+\delta_{3}=0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following series of linked Stata test commands:

```
test x14th + fx14th = 0, notest
test x13rd + fx13rd = 0, accumulate
```

- Test 7f: Test the hypothesis that a first-order polynomial is adequate for representing the conditional effect of X_{1} on Y for females.
- The female population regression function for Model 5.6 is:

$$
\begin{align*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid\right. & \left.\mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4 \mathrm{i}\right) \\
= & \left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{3}+\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{4}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{6}+\delta_{6}\right) \mathrm{X}_{\mathrm{i} 2}^{2} \\
& +\left(\beta_{7}+\delta_{7}\right) \mathrm{X}_{\mathrm{i} 2}^{3}+\left(\beta_{8}+\delta_{8}\right) \mathrm{X}_{\mathrm{i} 2}^{4}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{10}+\delta_{10}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\beta_{11}+\delta_{11}\right) \mathrm{IN} 3_{\mathrm{i}}+\left(\beta_{12}+\delta_{12}\right) \mathrm{IN} 4_{\mathrm{i}} \tag{5.6f}
\end{align*}
$$

- Sufficient conditions for the female population regression function to be a second-order polynomial in $X_{i 1}$ are $\beta_{4}+\delta_{4}=0$ and $\beta_{3}+\delta_{3}=0$ and $\beta_{2}+\delta_{2}=0$.
- The null and alternative hypotheses for this proposition are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}=0 \text { and } \beta_{3}=0 \text { and } \beta_{2}=0 \\
& \mathrm{H}_{1}: \beta_{4} \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and/or } \beta_{2} \neq 0
\end{aligned}
$$

- Compute an \mathbf{F}-test of H_{0} against H_{1} using the following Stata test command:

```
test x14th + fx14th = 0, notest
test x13rd + fx13rd = 0, accumulate notest
test x1sq + fx1sq = 0, accumulate
```

- Test 8f: Test the hypothesis that a zero-order polynomial is adequate for representing the conditional effect of X_{1} on Y for females.
- The female population regression function for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2, I N 3, I N 4{ }_{i}\right) \\
& =\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{3}+\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{4}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{6}+\delta_{6}\right) \mathrm{X}_{\mathrm{i} 2}^{2} \\
& +\left(\beta_{7}+\delta_{7}\right) \mathrm{X}_{\mathrm{i} 2}^{3}+\left(\beta_{8}+\delta_{8}\right) \mathrm{X}_{\mathrm{i} 2}^{4}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{10}+\delta_{10}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\beta_{11}+\delta_{11}\right) \mathrm{IN}_{\mathrm{i}}+\left(\beta_{12}+\delta_{12}\right) \mathrm{IN}_{\mathrm{i}} \tag{5.6f}
\end{align*}
$$

- Sufficient conditions for the female population regression function to be a second-order polynomial in $X_{i 1}$ are $\beta_{4}+\delta_{4}=0$ and $\beta_{3}+\delta_{3}=0$ and $\beta_{2}+\delta_{2}=0$ and $\beta_{1}+\delta_{1}=0$.
- The null and alternative hypotheses for this proposition are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}+\delta_{4}=0 \text { and } \beta_{3}+\delta_{3}=0 \text { and } \beta_{2}+\delta_{2}=0 \text { and } \beta_{1}+\delta_{1}=0 \\
& \mathrm{H}_{1}: \beta_{4}+\delta_{4}=0 \text { and/or } \beta_{3}+\delta_{3}=0 \text { and/or } \beta_{2}+\delta_{2}=0 \text { and/or } \beta_{1}+\delta_{1}=0
\end{aligned}
$$

- Compute an F-test of H_{0} against H_{1} using the following Stata test command:

```
test x14th + fx14th = 0, notest
test x13rd + fx13rd = 0, accumulate notest
test x1sq + fx1sq = 0, accumulate notest
test x1 + fx1 = 0, accumulate
```


A Symmetric Simplification Strategy for Selecting the Order of Polynomial in $\mathbf{X}_{\mathbf{1}}$ for Both Males and Females

General Nature: This model simplification procedure tests jointly for both males and females the proposition that some specific order of polynomial in X_{1} is adequate.

Advantages of Keeping the Selected Order of Polynomial for X_{1} the Same for Both Males and Females

- It results in the same order of polynomial in $\mathbf{X}_{\mathbf{1}}$ being adopted for both males and females.
- It is relatively straightforward to implement.

Propositions in the Hypothesis Testing Sequence on Model 5.6

- Test 1: Test that a 3rd-order polynomial (or cubic) in \mathbf{X}_{1} is adequate for both males and females, i.e., that both the male and female slope coefficients on the regressor $\mathrm{X}_{\mathrm{i} 1}^{4}$ are equal to zero.
- Test 2: Test that a 2nd-order polynomial (or quadratic) in $\mathbf{X}_{\mathbf{1}}$ is adequate for both males and females, i.e., that both the male and female slope coefficients on the regressors $X_{i 1}^{3}$ and $X_{i 1}^{4}$ are equal to zero.
- Test 3: Test that a 1st-order polynomial (or linear function) in \mathbf{X}_{1} is adequate for both males and females, i.e., that both the male and female slope coefficients on the regressors $X_{i 1}^{2}, X_{i 1}^{3}$ and $X_{i 1}^{4}$ are equal to zero.
- Test 1: A 3rd-order polynomial (or cubic) in X_{1} is adequate for representing the partial, or conditional, relationship of X_{1} to Y for both males and females, i.e., that both the male and female slope coefficients on the regressor $\mathrm{X}_{\mathrm{i} 1}^{4}$ are equal to zero.
- The null and alternative hypotheses to test on Model 5.6 are:

$$
\begin{array}{lll}
\mathrm{H}_{0}: \beta_{4}=0 \text { and } \beta_{4}+\delta_{4}=0 & \text { OR } & \mathrm{H}_{0}: \beta_{4}=0 \text { and } \delta_{4}=0 \\
\mathrm{H}_{1}: \beta_{4} \neq 0 \text { and/or } \beta_{4}+\delta_{4} \neq 0 & \text { OR } & \mathrm{H}_{1}: \beta_{4} \neq 0 \text { and/or } \delta_{4} \neq 0
\end{array}
$$

Note: Imposing the 2 coefficient restrictions in H_{0} on Model 5.6 implies a 3rd-order polynomial in X_{1} for both males and females.

- Compute an F-test of H_{0} against H_{1} on Model 5.6 using the following Stata test commands:

```
test x14th = 0, notest
test x14th + fx14th = 0, accumulate
OR
test x14th fx14th
```

- How to Proceed:

If $\mathbf{H}_{\mathbf{0}}$ is retained, proceed to Test 2, the next test in the testing sequence.
If $\mathbf{H}_{\mathbf{0}}$ is rejected, choose a 4th-order polynomial in $\mathbf{X}_{\mathbf{1}}$ for both males and females.

- Test 2: A 2nd-order polynomial (or quadratic) in $\mathbf{X}_{\mathbf{1}}$ is adequate for representing the partial, or conditional, relationship of X_{1} to Y for both males and females, i.e., that both the male and female slope coefficients on the regressors $X_{i 1}^{3}$ and $X_{i 1}^{4}$ are equal to zero.
- The null and alternative hypotheses to test on Model 5.6 are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}=0 \text { and } \beta_{4}+\delta_{4}=0 \text { and } \beta_{3}=0 \text { and } \beta_{3}+\delta_{3}=0 \\
& \mathrm{H}_{1}: \beta_{4} \neq 0 \text { and/or } \beta_{4}+\delta_{4} \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and/or } \beta_{3}+\delta_{3} \neq 0
\end{aligned}
$$

OR

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}=0 \text { and } \delta_{4}=0 \text { and } \beta_{3}=0 \text { and } \delta_{3}=0 \\
& \mathrm{H}_{1}: \beta_{4} \neq 0 \text { and/or } \delta_{4} \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and/or } \delta_{3} \neq 0
\end{aligned}
$$

Note: Imposing the 4 coefficient restrictions in H_{0} on Model 5.6 implies a 2nd-order polynomial in X_{1} for both males and females.

- Compute an F-test of H_{0} against H_{1} on Model 5.6 using the following Stata test commands:

```
test x14th = 0, notest
test x14th + fx14th = 0, notest accumulate
test x13rd = 0, notest accumulate
test x13rd + fx13rd = 0, accumulate
test x14th fx14th x13rd fx13rd
```

OR

- How to Proceed:

If $\mathbf{H}_{\mathbf{0}}$ is retained, proceed to Test 3, the next test in the testing sequence.
If \mathbf{H}_{0} is rejected, choose a 3rd-order polynomial in \mathbf{X}_{1} for both males and females.

- Test 3: A 1st-order polynomial (or linear function) in \mathbf{X}_{1} is adequate for representing the partial, or conditional, relationship of X_{1} to Y for both males and females, i.e., that both the male and female slope coefficients on the regressors $X_{i 1}^{2}, X_{i 1}^{3}$ and $X_{i 1}^{4}$ are equal to zero.
- The null and alternative hypotheses to test on Model 5.6 are:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}=0 \text { and } \beta_{4}+\delta_{4}=0 \text { and } \beta_{3}=0 \text { and } \beta_{3}+\delta_{3}=0 \text { and } \beta_{2}=0 \text { and } \beta_{2}+\delta_{2}=0 \text { and } \\
& \mathrm{H}_{1}: \beta_{4} \neq 0 \text { and/or } \beta_{4}+\delta_{4} \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and/or } \beta_{3}+\delta_{3} \neq 0 \text { and/or } \beta_{2} \neq 0 \text { and/or } \beta_{2}+\delta_{2} \neq 0
\end{aligned}
$$

OR

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{4}=0 \text { and } \delta_{4}=0 \text { and } \beta_{3}=0 \text { and } \delta_{3}=0 \text { and } \beta_{2}=0 \text { and } \delta_{2}=0 \\
& \mathrm{H}_{1}: \beta_{4} \neq 0 \text { and/or } \delta_{4} \neq 0 \text { and/or } \beta_{3} \neq 0 \text { and/or } \delta_{3} \neq 0 \text { and/or } \beta_{2} \neq 0 \text { and/or } \delta_{2} \neq 0
\end{aligned}
$$

Note: Imposing the 6 coefficient restrictions in H_{0} on Model 5.6 implies a 1st-order polynomial in X_{1} for both males and females.

- Compute an F-test of H_{0} against H_{1} on Model 5.6 using the following Stata test commands:

```
test x14th = 0, notest
test x14th + fx14th = 0, notest accumulate
test x13rd = 0, notest accumulate
test x13rd + fx13rd = 0, notest accumulate
test x1sq = 0, notest accumulate
test x1sq + fx1sq = 0, accumulate
test x14th fx14th x13rd fx13rd x1sq fx1sq
```

OR

- How to Proceed:

If $\mathbf{H}_{\mathbf{0}}$ is retained, adopt a 1st-order polynomial in $\mathbf{X}_{\mathbf{1}}$ for both males and females.
If $\mathbf{H}_{\mathbf{0}}$ is rejected, choose a 2nd-order polynomial in $\mathbf{X}_{\mathbf{1}}$ for both males and females.

Evaluating the Marginal Effects of the Categorical Explanatory Variable in Model 5.6

General Nature: The marginal effects of a categorical explanatory variable such as industry consist of the differences in conditional mean values of \mathbf{Y} between pairs of industry categories - e.g., the conditional mean Y difference between males in industries 4 and 2 , and the conditional mean Y difference between females in industries 4 and 2.

Recall that the population regression function for Model 5.6 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& \quad+\beta_{10} \mathrm{IN} 2_{\mathrm{i}}+\beta_{11} \mathrm{IN} 3_{\mathrm{i}}+\beta_{12} \mathrm{IN} 4_{\mathrm{i}} \\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+ \\
& +\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{il}}^{4}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i1} 1} \mathrm{X}_{\mathrm{i} 2} \tag{5.6'}\\
& \quad+\delta_{10} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{11} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{~F}_{\mathrm{i}} \mathrm{NN} 4_{\mathrm{i}}
\end{align*}
$$

$$
\begin{align*}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}, I N 4{ }_{i}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\beta_{3} \mathrm{X}_{\mathrm{i} 1}^{4}+\beta_{5} \mathrm{X}_{\mathrm{i} 2}+\beta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\beta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\beta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\beta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\beta_{10} \mathrm{IN} 2_{\mathrm{i}}+\beta_{11} \mathrm{IN} 3_{\mathrm{i}}+\beta_{12} \mathrm{IN} 4_{\mathrm{i}} \\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i1}}^{4}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{10} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{11} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.6'}
\end{align*}
$$

- The female population regression function for Model 5.6 is obtained by setting the female indicator $\mathrm{F}_{\mathrm{i}}=1$ in (5.6'):

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2}+\beta_{10} I N 2_{i}+\beta_{11} \mathrm{IN}_{i}+\beta_{12} \mathrm{IN}_{\mathrm{i}} \\
& +\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{X}_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\delta_{10} \mathrm{IN}_{\mathrm{i}}+\delta_{11} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{IN} 4_{\mathrm{i}} \\
& =\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{3}+\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{4}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{6}+\delta_{6}\right) \mathrm{X}_{\mathrm{i} 2}^{2} \\
& +\left(\beta_{7}+\delta_{7}\right) \mathrm{X}_{\mathrm{i} 2}^{3}+\left(\beta_{8}+\delta_{8}\right) \mathrm{X}_{\mathrm{i} 2}^{4}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{10}+\delta_{10}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\beta_{11}+\delta_{11}\right) \mathrm{IN} 3_{\mathrm{i}}+\left(\beta_{12}+\delta_{12}\right) \mathrm{IN} 4_{\mathrm{i}} \tag{5.6f}
\end{align*}
$$

$$
\begin{align*}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}, I N 4{ }_{i}\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2} \\
& +\beta_{10} \mathrm{IN} 2_{\mathrm{i}}+\beta_{11} \mathrm{IN} 3_{\mathrm{i}}+\beta_{12} \mathrm{IN} 4_{\mathrm{i}} \\
& +\delta_{0} \mathrm{~F}_{\mathrm{i}}+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& +\delta_{10} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{11} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.6'}
\end{align*}
$$

- The male population regression function for Model 5.6 is obtained by setting the female indicator $F_{i}=0$ in (5.6'):

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2} \\
& \quad+\beta_{10} I N 2_{i}+\beta_{11} I N 3_{i}+\beta_{12} I N 4_{i} \tag{5.6m}
\end{align*}
$$

- The female-male difference in conditional mean Y for Model 5.6 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right) \\
& =\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 1}^{2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{X}_{\mathrm{i} 1}^{4}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& \quad+\delta_{10} \mathrm{IN} 2_{i}+\delta_{11} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{IN} 4_{\mathrm{i}} \tag{5.6d}
\end{align*}
$$

Marginal Effects of Industry for Males in Model 5.6

- The male population regression function for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, \text { IN4 } 4\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2} \\
& \quad+\beta_{10} I N 2_{i}+\beta_{11} I N 3_{i}+\beta_{12} I N 4_{i} \tag{5.6m}
\end{align*}
$$

The Stata command for computing OLS estimates of Model 5.6 is:
regress y x1 x1sq x13rd x14th $x 2$ x2sq x23rd x24th x1x2 in2 in3 in4 f fx1 fx1sq fx13rd fx14th fx2 fx2sq fx23rd fx24th fx1x2 fin2 fin3 fin4

1. The industry 2-industry $\mathbf{1}$ difference in conditional mean \mathbf{Y} for males equals β_{10} in Model 5.6. To display an estimate of β_{10} in Model 5.6, use the following Stata limcom command:
lincom _b[in2]
2. The industry 3 -industry $\mathbf{1}$ difference in conditional mean \mathbf{Y} for males equals β_{11} in Model 5.6. To display an estimate of β_{11} in Model 5.6, use the following Stata limcom command:
```
lincom _b[in3]
```

- The male population regression function for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 1}^{2}+\beta_{3} X_{i 1}^{3}+\beta_{4} X_{i 1}^{4}+\beta_{5} X_{i 2}+\beta_{6} X_{i 2}^{2}+\beta_{7} X_{i 2}^{3}+\beta_{8} X_{i 2}^{4}+\beta_{9} X_{i 1} X_{i 2} \\
& \quad+\beta_{10} I N 2_{i}+\beta_{11} I N 3_{i}+\beta_{12} I N 4_{i} \tag{5.6m}
\end{align*}
$$

3. The industry 4 -industry $\mathbf{1}$ difference in conditional mean \mathbf{Y} for males equals β_{12} in Model 5.6. To display an estimate of β_{12} in Model 5.6, use the following Stata limcom command:
```
lincom _b[in4]
```

4. The industry $\mathbf{3}$-industry $\mathbf{2}$ difference in conditional mean \mathbf{Y} for males equals $\beta_{11}-\beta_{10}$ in Model 5.6. To compute an estimate of $\beta_{11}-\beta_{10}$ in Model 5.6, use the following Stata limcom command:
```
lincom _b[in3] - _b[in2]
```

5. The industry 4-industry $\mathbf{2}$ difference in conditional mean \mathbf{Y} for males equals $\beta_{12}-\beta_{10}$ in Model 5.6. To compute an estimate of $\beta_{12}-\beta_{10}$ in Model 5.6, use the following Stata limcom command:
```
lincom _b[in4] - _b[in2]
```

6. The industry 4-industry $\mathbf{3}$ difference in conditional mean \mathbf{Y} for males equals $\beta_{12}-\beta_{11}$ in Model 5.6. To compute an estimate of $\beta_{12}-\beta_{11}$ in Model 5.6, use the following Stata limcom command:
lincom _b[in4] - _b[in3]

Marginal Effects of Industry for Females in Model 5.6

- The female population regression function for Model 5.6 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \text { IN2 } 2_{\mathrm{i}}, \text { IN3 }_{\mathrm{i}}, \text { IN4 } 4_{\mathrm{i}}\right) \\
& =\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i1}}^{2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i1}}^{3}+\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i1}}^{4}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{6}+\delta_{6}\right) \mathrm{X}_{\mathrm{i} 2}^{2} \\
& \quad+\left(\beta_{7}+\delta_{7}\right) \mathrm{X}_{\mathrm{i} 2}^{3}+\left(\beta_{8}+\delta_{8}\right) \mathrm{X}_{\mathrm{i} 2}^{4}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{10}+\delta_{10}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\beta_{11}+\delta_{11}\right) \mathrm{IN} 3_{\mathrm{i}}+\left(\beta_{12}+\delta_{12}\right) \mathrm{IN} 4_{\mathrm{i}} \tag{5.6f}
\end{align*}
$$

Again, the Stata command for computing OLS estimates of regression equation (5.5) is:
regress y x1 x1sq x13rd x14th $x 2$ x2sq x23rd x24th x1x2 in2 in3 in4 f fx1 fx1sq fx13rd fx14th fx2 fx2sq fx23rd fx24th fx1x2 fin2 fin3 fin4

1. The industry 2-industry $\mathbf{1}$ difference in conditional mean \mathbf{Y} for females equals $\boldsymbol{\beta}_{\mathbf{1 0}}+\boldsymbol{\delta}_{\mathbf{1 0}}$ in Model 5.6. To compute an estimate of $\beta_{10}+\delta_{10}$ in Model 5.6, use the following Stata limcom command:
```
lincom _b[in2] + _b[fin2]
```

2. The industry 3-industry $\mathbf{1}$ difference in conditional mean \mathbf{Y} for females equals $\boldsymbol{\beta}_{\mathbf{1 1}}+\boldsymbol{\delta}_{\mathbf{1 1}}$ in Model 5.6. To compute an estimate of $\beta_{11}+\delta_{11}$ in Model 5.6, use the following Stata limcom command:
```
lincom _b[in3] + _b[fin3]
```

- The female population regression function for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 1}^{2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{3}+\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{4}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{6}+\delta_{6}\right) \mathrm{X}_{\mathrm{i} 2}^{2} \\
& +\left(\beta_{7}+\delta_{7}\right) \mathrm{X}_{\mathrm{i} 2}^{3}+\left(\beta_{8}+\delta_{8}\right) \mathrm{X}_{\mathrm{i} 2}^{4}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{10}+\delta_{10}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\beta_{11}+\delta_{11}\right) \mathrm{IN} 3_{\mathrm{i}}+\left(\beta_{12}+\delta_{12}\right) \mathrm{IN} 4_{\mathrm{i}} \tag{5.6f}
\end{align*}
$$

3. The industry 4-industry $\mathbf{1}$ difference in conditional mean \mathbf{Y} for females equals $\boldsymbol{\beta}_{12}+\boldsymbol{\delta}_{12}$ in Model 5.6. To compute an estimate of $\beta_{12}+\delta_{12}$ in Model 5.6, use the following Stata limcom command:
```
lincom _b[in4] + _b[fin4]
```

4. The industry $\mathbf{3}$-industry $\mathbf{2}$ difference in conditional mean \mathbf{Y} for females equals $\left(\boldsymbol{\beta}_{\mathbf{1 1}}+\boldsymbol{\delta}_{\mathbf{1 1}}\right)-\left(\boldsymbol{\beta}_{\mathbf{1 0}}+\boldsymbol{\delta}_{\mathbf{1 0}}\right)$ in Model 5.6. To compute an estimate of $\left(\beta_{11}+\delta_{11}\right)-\left(\beta_{10}+\delta_{10}\right)$ in Model 5.6, use the following Stata limcom command:
```
lincom _b[in3] + _b[fin3] - (_b[in2] + _b[fin2])
```

5. The industry $\mathbf{4}$-industry $\mathbf{2}$ difference in conditional mean \mathbf{Y} for females equals $\left(\boldsymbol{\beta}_{12}+\boldsymbol{\delta}_{\mathbf{1 2}}\right)-\left(\boldsymbol{\beta}_{\mathbf{1 0}}+\boldsymbol{\delta}_{\mathbf{1 0}}\right)$ in Model 5.6. To compute an estimate of $\left(\beta_{12}+\delta_{12}\right)-\left(\beta_{10}+\delta_{10}\right)$ in Model 5.6, use the following Stata limcom command:
```
lincom _b[in4] + _b[fin4] - (_b[in2] + _b[fin2])
```

- The female population regression function for Model 5.6 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \text { IN2 } \mathrm{IN}_{\mathrm{i}}, \text { IN3 } \mathrm{IN}_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& =\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i1}}^{2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{X}_{\mathrm{i} 1}^{3}+\left(\beta_{4}+\delta_{4}\right) \mathrm{X}_{\mathrm{i} 1}^{4}+\left(\beta_{5}+\delta_{5}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{6}+\delta_{6}\right) \mathrm{X}_{\mathrm{i} 2}^{2} \\
& \quad+\left(\beta_{7}+\delta_{7}\right) \mathrm{X}_{\mathrm{i} 2}^{3}+\left(\beta_{8}+\delta_{8}\right) \mathrm{X}_{\mathrm{i} 2}^{4}+\left(\beta_{9}+\delta_{9}\right) \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{10}+\delta_{10}\right) \mathrm{IN}_{\mathrm{i}}+\left(\beta_{11}+\delta_{11}\right) \mathrm{IN}_{\mathrm{i}}+\left(\beta_{12}+\delta_{12}\right) \mathrm{IN} 4_{\mathrm{i}} \tag{5.6f}
\end{align*}
$$

6. The industry 4-industry $\mathbf{3}$ difference in conditional mean Y for females equals $\left(\boldsymbol{\beta}_{12}+\boldsymbol{\delta}_{12}\right)-\left(\boldsymbol{\beta}_{11}+\boldsymbol{\delta}_{11}\right)$ in Model 5.6. To compute an estimate of $\left(\beta_{12}+\delta_{12}\right)-\left(\beta_{11}+\delta_{11}\right)$ in Model 5.6, use the following Stata limcom command:
```
lincom _b[in4] + _b[fin4] - (_b[in3] + _b[fin3])
```


Female-Male Differences in the Marginal Effects of Industry in Model 5.6

- The female-male difference in conditional mean \mathbf{Y} for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, x_{i}^{T}\right)-E\left(Y_{i} \mid F_{i}=0, x_{i}^{T}\right) \\
& \qquad \begin{array}{l}
=\delta_{0}+\delta_{1} X_{i 1}+\delta_{2} X_{i 1}^{2}+\delta_{3} X_{i 1}^{3}+\delta_{4} X_{i 1}^{4}+\delta_{5} X_{i 2}+\delta_{6} X_{i 2}^{2}+\delta_{7} X_{i 2}^{3}+\delta_{8} X_{i 2}^{4}+\delta_{9} X_{i 1} X_{i 2} \\
\quad+\delta_{10} I N 2_{i}+\delta_{11} I N 3_{i}+\delta_{12} I N 4_{i}
\end{array}
\end{align*}
$$

Again, the Stata command for computing OLS estimates of regression equation (5.6) is:
regress y x1 x1sq x13rd x14th $x 2$ x2sq x23rd x24th x1x2 in2 in3 in4 f fx1 fx1sq fx13rd fx14th fx2 fx2sq fx23rd fx24th fx1x2 fin2 fin3 fin4

1. The industry 2-industry $\mathbf{1}$ difference in conditional mean \mathbf{Y} for females equals $\boldsymbol{\beta}_{\mathbf{1 0}}+\boldsymbol{\delta}_{\mathbf{1 0}}$ in Model 5.6. The industry 2-industry 1 difference in conditional mean \mathbf{Y} for males equals $\boldsymbol{\beta}_{10}$.

The female-male difference in the industry 2-industry $\mathbf{1}$ difference in conditional mean \mathbf{Y} is therefore:

$$
=\boldsymbol{\beta}_{10}+\boldsymbol{\delta}_{10}-\boldsymbol{\beta}_{10}=\boldsymbol{\delta}_{\mathbf{1 0}}
$$

To display an estimate of δ_{10} in Model 5.6, use the following Stata limcom command:

```
lincom _b[fin2]
```

- The female-male difference in conditional mean Y for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, x_{i}^{T}\right)-E\left(Y_{i} \mid F_{i}=0, x_{i}^{T}\right) \\
& =\delta_{0}+\delta_{1} X_{i 1}+\delta_{2} X_{i 1}^{2}+\delta_{3} X_{i 1}^{3}+\delta_{4} X_{i 1}^{4}+\delta_{5} X_{i 2}+\delta_{6} X_{i 2}^{2}+\delta_{7} X_{i 2}^{3}+\delta_{8} X_{i 2}^{4}+\delta_{9} X_{i 1} X_{i 2} \\
& \quad+\delta_{10} \mathrm{IN} 2_{i}+\delta_{11} I N 3_{i}+\delta_{12} \mathrm{IN} 4_{i} \tag{5.6d}
\end{align*}
$$

2. The industry $\mathbf{3}$-industry $\mathbf{1}$ difference in conditional mean \mathbf{Y} for females equals $\boldsymbol{\beta}_{\mathbf{1 1}}+\boldsymbol{\delta}_{\mathbf{1 1}}$ in Model 5.6. The industry 3-industry 1 difference in conditional mean \mathbf{Y} for males equals $\boldsymbol{\beta}_{11}$.

The female-male difference in the industry 3-industry $\mathbf{1}$ difference in conditional mean \mathbf{Y} is therefore:

$$
=\boldsymbol{\beta}_{11}+\boldsymbol{\delta}_{11}-\boldsymbol{\beta}_{11}=\boldsymbol{\delta}_{11}
$$

To display an estimate of δ_{11} in Model 5.6, use the following Stata limcom command:

```
lincom _b[fin3]
```

3. The industry 4-industry $\mathbf{1}$ difference in conditional mean \mathbf{Y} for females equals $\boldsymbol{\beta}_{12}+\boldsymbol{\delta}_{\mathbf{1 2}}$ in Model 5.6. The industry 4-industry 1 difference in conditional mean \mathbf{Y} for males equals $\boldsymbol{\beta}_{12}$.

The female-male difference in the industry 4-industry $\mathbf{1}$ difference in conditional mean \mathbf{Y} is therefore:

$$
=\boldsymbol{\beta}_{12}+\boldsymbol{\delta}_{12}-\boldsymbol{\beta}_{12}=\boldsymbol{\delta}_{12}
$$

To display an estimate of δ_{12} in Model 5.6, use the following Stata limcom command:
lincom _b[fin4]

- The female-male difference in conditional mean Y for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, x_{i}^{T}\right)-E\left(Y_{i} \mid F_{i}=0, x_{i}^{T}\right) \\
& =\delta_{0}+\delta_{1} X_{i 1}+\delta_{2} X_{i 1}^{2}+\delta_{3} X_{i 1}^{3}+\delta_{4} X_{i 1}^{4}+\delta_{5} X_{i 2}+\delta_{6} X_{i 2}^{2}+\delta_{7} X_{i 2}^{3}+\delta_{8} X_{i 2}^{4}+\delta_{9} X_{i 1} X_{i 2} \\
& \quad+\delta_{10} I N 2_{i}+\delta_{11} I N 3_{i}+\delta_{12} I N 4_{i} \tag{5.6d}
\end{align*}
$$

4. The industry $\mathbf{3}$-industry $\mathbf{2}$ difference in conditional mean \mathbf{Y} for $\boldsymbol{f e m a l e s}$ equals $\left(\boldsymbol{\beta}_{\mathbf{1 1}}+\boldsymbol{\delta}_{\mathbf{1 1}}\right)-\left(\boldsymbol{\beta}_{\mathbf{1 0}}+\boldsymbol{\delta}_{\mathbf{1 0}}\right)$ in Model 5.6. The industry $\mathbf{3}$-industry $\mathbf{2}$ difference in conditional mean \mathbf{Y} for males equals $\boldsymbol{\beta}_{\mathbf{1 1}}-\boldsymbol{\beta}_{\mathbf{1 0}}$.

The female-male difference in the industry 3-industry $\mathbf{2}$ difference in conditional mean \mathbf{Y} is therefore:

$$
\begin{aligned}
& =\left(\boldsymbol{\beta}_{11}+\boldsymbol{\delta}_{11}\right)-\left(\boldsymbol{\beta}_{10}+\boldsymbol{\delta}_{10}\right)-\left(\boldsymbol{\beta}_{11}-\boldsymbol{\beta}_{10}\right) \\
& =\boldsymbol{\beta}_{11}+\boldsymbol{\delta}_{11}-\boldsymbol{\beta}_{10}-\boldsymbol{\delta}_{10}-\left(\boldsymbol{\beta}_{11}-\boldsymbol{\beta}_{10}\right) \\
& =\left(\boldsymbol{\beta}_{11}-\boldsymbol{\beta}_{10}\right)+\left(\boldsymbol{\delta}_{11}-\boldsymbol{\delta}_{10}\right)-\left(\boldsymbol{\beta}_{11}-\boldsymbol{\beta}_{10}\right) \\
& =\left(\boldsymbol{\delta}_{11}-\boldsymbol{\delta}_{10}\right)
\end{aligned}
$$

To compute an estimate of $\left(\delta_{11}-\delta_{10}\right)$ in Model 5.6, use the following Stata limcom command:

```
lincom _b[fin3] - _b[fin2]
```

- The female-male difference in conditional mean \mathbf{Y} for Model 5.6 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i}}^{\mathrm{T}}\right) \\
& =\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i1}}^{2}+\delta_{3} \mathrm{X}_{\mathrm{i} 1}^{3}+\delta_{4} \mathrm{X}_{\mathrm{in}}^{4}+\delta_{5} \mathrm{X}_{\mathrm{i} 2}+\delta_{6} \mathrm{X}_{\mathrm{i} 2}^{2}+\delta_{7} \mathrm{X}_{\mathrm{i} 2}^{3}+\delta_{8} \mathrm{X}_{\mathrm{i} 2}^{4}+\delta_{9} \mathrm{X}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i} 2} \\
& \quad+\delta_{10} \mathrm{IN} 2_{i}+\delta_{111} \mathrm{IN} 3_{\mathrm{i}}+\delta_{12} \mathrm{IN} 4_{\mathrm{i}} \tag{5.6d}
\end{align*}
$$

5. The industry 4-industry $\mathbf{2}$ difference in conditional mean \mathbf{Y} for females equals $\left(\boldsymbol{\beta}_{12}+\boldsymbol{\delta}_{12}\right)-\left(\boldsymbol{\beta}_{10}+\boldsymbol{\delta}_{\mathbf{1 0}}\right)$ in Model 5.6. The industry 4-industry $\mathbf{2}$ difference in conditional mean \mathbf{Y} for males equals $\boldsymbol{\beta}_{\mathbf{1 2}}-\boldsymbol{\beta}_{10}$.

The female-male difference in the industry 4-industry $\mathbf{2}$ difference in conditional mean \mathbf{Y} is therefore:

$$
\begin{aligned}
& =\left(\boldsymbol{\beta}_{12}+\boldsymbol{\delta}_{12}\right)-\left(\boldsymbol{\beta}_{10}+\boldsymbol{\delta}_{10}\right)-\left(\boldsymbol{\beta}_{12}-\boldsymbol{\beta}_{10}\right) \\
& =\boldsymbol{\beta}_{12}+\boldsymbol{\delta}_{12}-\boldsymbol{\beta}_{10}-\boldsymbol{\delta}_{10}-\left(\boldsymbol{\beta}_{12}-\boldsymbol{\beta}_{10}\right) \\
& =\left(\boldsymbol{\beta}_{12}-\boldsymbol{\beta}_{10}\right)+\left(\boldsymbol{\delta}_{12}-\boldsymbol{\delta}_{10}\right)-\left(\boldsymbol{\beta}_{12}-\boldsymbol{\beta}_{10}\right) \\
& =\left(\boldsymbol{\delta}_{12}-\boldsymbol{\delta}_{10}\right)
\end{aligned}
$$

To compute an estimate of $\left(\delta_{12}-\delta_{10}\right)$ in Model 5.6, use the following Stata limcom command:

```
lincom _b[fin4] - _b[fin2]
```

- The female-male difference in conditional mean \mathbf{Y} for Model 5.6 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, x_{i}^{T}\right)-E\left(Y_{i} \mid F_{i}=0, x_{i}^{T}\right) \\
& =\delta_{0}+\delta_{1} X_{i 1}+\delta_{2} X_{i 1}^{2}+\delta_{3} X_{i 1}^{3}+\delta_{4} X_{i 1}^{4}+\delta_{5} X_{i 2}+\delta_{6} X_{i 2}^{2}+\delta_{7} X_{i 2}^{3}+\delta_{8} X_{i 2}^{4}+\delta_{9} X_{i 1} X_{i 2} \\
& \quad+\delta_{10} I N 2_{i}+\delta_{11} I N 3_{i}+\delta_{12} I N 4_{i} \tag{5.6d}
\end{align*}
$$

6. The industry 4-industry $\mathbf{3}$ difference in conditional mean \mathbf{Y} for females equals ($\left.\boldsymbol{\beta}_{12}+\boldsymbol{\delta}_{12}\right)-\left(\boldsymbol{\beta}_{11}+\boldsymbol{\delta}_{11}\right)$ in Model 5.6. The industry 4-industry $\mathbf{3}$ difference in conditional mean \mathbf{Y} for males equals $\boldsymbol{\beta}_{\mathbf{1 2}}-\boldsymbol{\beta}_{11}$.

The female-male difference in the industry 4-industry $\mathbf{2}$ difference in conditional mean \mathbf{Y} is therefore:

$$
\begin{aligned}
& =\left(\boldsymbol{\beta}_{12}+\boldsymbol{\delta}_{12}\right)-\left(\boldsymbol{\beta}_{11}+\boldsymbol{\delta}_{11}\right)-\left(\boldsymbol{\beta}_{12}-\boldsymbol{\beta}_{11}\right) \\
& =\boldsymbol{\beta}_{12}+\boldsymbol{\delta}_{12}-\boldsymbol{\beta}_{11}-\boldsymbol{\delta}_{11}-\left(\boldsymbol{\beta}_{12}-\boldsymbol{\beta}_{11}\right) \\
& =\left(\boldsymbol{\beta}_{12}-\boldsymbol{\beta}_{11}\right)+\left(\boldsymbol{\delta}_{12}-\boldsymbol{\delta}_{11}\right)-\left(\boldsymbol{\beta}_{12}-\boldsymbol{\beta}_{11}\right) \\
& =\left(\boldsymbol{\delta}_{\mathbf{1 2}}-\boldsymbol{\delta}_{11}\right)
\end{aligned}
$$

To compute an estimate of ($\delta_{12}-\delta_{11}$) in Model 5.6, use the following Stata limcom command:

```
lincom _b[fin4] - _b[fin3]
```

