ECON 452* -- NOTE 7

Dummy Variable Interaction Terms

Model 5: Models with Several Discrete Explanatory Variables
Consider a linear regression model in which two explanatory variables are discrete or categorical variables.
To illustrate, suppose the two discrete explanatory variables are gender and industry.

- Gender can be represented by means of the following two dummy variables:
F_{i} is a female indicator (dummy) variable, defined as follows: $\mathrm{F}_{\mathrm{i}}=1$ if observation i is female, $=0$ if observation i is not female.
$\mathbf{M}_{\mathbf{i}}$ is a male indicator (dummy) variable, defined as follows:
$M_{i}=1$ if observation i is male, $=0$ if observation i is not male.
Adding-Up Property of the Gender Indicator Variables F_{i} and $\mathbf{M}_{\mathbf{i}}$

$$
\mathrm{F}_{\mathrm{i}}+\mathrm{M}_{\mathrm{i}}=1 \quad \forall \mathrm{i}
$$

- Industry can be represented by means of the following industry dummy variables (assuming a four-level categorization of the variable industry):
$\mathrm{IN}_{\mathrm{i}}=1$ if observation i is in industry $1,=0$ otherwise.
$\mathrm{IN} 2_{\mathrm{i}}=1$ if observation i is in industry $2,=0$ otherwise.
$\mathrm{IN}_{\mathrm{i}}=1$ if observation i is in industry $3,=0$ otherwise.
$\mathrm{IN}_{\mathrm{i}}=1$ if observation i is in industry $4,=0$ otherwise.

Adding-Up Property of the Industry Indicator Variables:

$$
\mathrm{IN} 1_{\mathrm{i}}+\mathrm{IN} 2_{\mathrm{i}}+\mathrm{IN} 3_{\mathrm{i}}+\mathrm{IN} 4_{\mathrm{i}}=1 \quad \forall \mathrm{i}
$$

REVIEW: Model 5.2 -- Base Groups for Gender and Industry

- Base Groups in Model 5.2
- Males are selected as the base group for gender.
- Industry 1 is selected as the base group for industry.
- The population regression equation for Model 5.2 is:
$\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN}_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}$
- The population regression function for Model 5.2 is:
$E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}, I N 4{ }_{i}\right)$

$$
\begin{equation*}
=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \tag{5.2'}
\end{equation*}
$$

- The female population regression function for Model 5.2 is obtained by setting the female indicator $F_{i}=1$ in (5.2'):

$$
\begin{align*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid\right. & \left.\mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& =\beta_{0}+\lambda_{\mathrm{f}}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{i}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{i} \tag{5.2f}
\end{align*}
$$

The female population regression function gives the female conditional mean \mathbf{Y} value for given values of the regressors $\mathrm{X}_{1}, \mathrm{X}_{2}$, IN2, IN3, and IN4.

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN}_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \tag{5.2'}
\end{align*}
$$

- The male population regression function for Model 5.2 is obtained by setting the female indicator $\mathrm{F}_{\mathrm{i}}=0$ in (5.2'):

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \tag{5.2m}
\end{align*}
$$

The male population regression function gives the male conditional mean \mathbf{Y} value for given values of the regressors $\mathrm{X}_{1}, \mathrm{X}_{2}$, IN2, IN3, and IN4.

- Compare the female and male population regression functions for Model 5.2:

Only the intercept coefficient differs between the male and female regression functions implied by Model 5.2.
The slope coefficients are all identical in the male and female regression functions for Model 5.2.

- The marginal effects of the continuous explanatory variables \mathbf{X}_{1} and \mathbf{X}_{2} are equal, or identical, for males and females.
- Inter-industry differences in the conditional mean value of Y are equal for males and females. The effects of industry on Y are identical for males and females in Model 5.2.
- The female-male difference in conditional mean \mathbf{Y} for given values of the regressors is obtained by subtracting the male population regression function (5.2m) from the female population regression function (5.2f):

The difference between the female conditional mean \mathbf{Y} for given values of the regressors $\mathrm{X}_{1}, \mathrm{X}_{2}$, $\operatorname{IN} 2$, IN3, and IN4 and the male conditional mean \mathbf{Y} for the same values of the regressors $X_{1}, X_{2}, \operatorname{IN} 2$, IN3, and IN4 is therefore:

$$
\begin{align*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=\right. & \left.1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right) \\
= & \beta_{0}+\lambda_{\mathrm{f}}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& -\left(\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}\right) \\
= & \beta_{0}+\lambda_{\mathrm{f}}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& -\beta_{0}-\beta_{1} \mathrm{X}_{\mathrm{i} 1}-\beta_{2} \mathrm{X}_{\mathrm{i} 2}-\pi_{2} \mathrm{IN} 2_{\mathrm{i}}-\pi_{3} \mathrm{IN} 3_{\mathrm{i}}-\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
= & \lambda_{\mathrm{f}} \tag{5.2*}
\end{align*}
$$

Note: The female-male difference in the conditional mean value of \mathbf{Y} for given values of the regressors X_{i}, $\mathrm{X}_{\mathrm{i} 2}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}$, and $\mathrm{IN} 4_{\mathrm{i}}$ is \boldsymbol{a} constant; it does not depend on the value of the regressors X_{1} and X_{2} or on industry.

Model 5.3 - Version 3 of Model 5: Female-Male Differences in Industry Effects

Allow for different industry effects for males and females by introducing into Model 5.2 three additional regressors that take the form of female interactions with the three industry indicator variables $\operatorname{IN} \mathbf{2}_{\mathbf{i}}, \mathbf{I N} \mathbf{i}_{i}$, and IN4 ${ }_{i}$.

- The population regression equation for Model 5.3 can be written as

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \tag{5.3}
\end{equation*}
$$

- The population regression function for Model 5.3 is obtained by taking the conditional expectation of regression equation (5.3) for any given values of the regressors $X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3$, and $\operatorname{IN} 4_{i}$:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.3'}
\end{align*}
$$

- The female population regression function for Model 5.3 is obtained by setting the female indicator $F_{i}=1$ in (5.3'):

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN}_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}+\kappa_{2} \mathrm{IN} 2_{i}+\kappa_{3} \mathrm{IN} 3_{i}+\kappa_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& \quad=\beta_{0}+\lambda_{\mathrm{f}}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\left(\pi_{2}+\kappa_{2}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\pi_{3}+\kappa_{3}\right) \mathrm{IN} 3_{\mathrm{i}}+\left(\pi_{4}+\kappa_{4}\right) \mathrm{IN} 4_{i} \tag{5.3f}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN}_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{i}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.3'}
\end{align*}
$$

- The male population regression function for Model 5.3 is obtained by setting the female indicator $\mathrm{F}_{\mathrm{i}}=0$ in (5.3'):
$\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \operatorname{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}$
- The female-male difference in conditional mean \mathbf{Y} for given values of the regressors is obtained by subtracting the male population regression function (5.3m) from the female population regression function (5.3f):
- The female population regression function for Model 5.3 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN}_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}+\kappa_{2} \mathrm{IN} 2_{i}+\kappa_{3} \mathrm{IN} 3_{i}+\kappa_{4} \mathrm{IN} 4 \\
& =\beta_{0}+\lambda_{\mathrm{f}}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\left(\pi_{2}+\kappa_{2}\right) \operatorname{IN} 2_{\mathrm{i}}+\left(\pi_{3}+\kappa_{3}\right) \mathrm{IN} 3_{i}+\left(\pi_{4}+\kappa_{4}\right) \mathrm{IN} 4_{i} \tag{5.3f}
\end{align*}
$$

- The male population regression function for Model 5.3 is:

$$
\begin{equation*}
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, \operatorname{IN} 4_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\pi_{2} \operatorname{IN} 2_{i}+\pi_{3} \operatorname{IN} 3_{i}+\pi_{4} \operatorname{IN} 4_{i} \tag{5.3m}
\end{equation*}
$$

The female-male difference in the conditional mean \mathbf{Y} for given values of the regressors $\mathrm{X}_{1}, \mathrm{X}_{2}$, IN2, IN3, and IN4 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, x_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right) \\
&=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}}+\left(\pi_{2}+\kappa_{2}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\pi_{3}+\kappa_{3}\right) \mathrm{IN} 3_{\mathrm{i}}+\left(\pi_{4}+\kappa_{4}\right) \mathrm{IN} 4_{\mathrm{i}} \\
&-\left(\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}\right) \\
&= \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}}+\left(\pi_{2}+\kappa_{2}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\pi_{3}+\kappa_{3}\right) \mathrm{IN} 3_{\mathrm{i}}+\left(\pi_{4}+\kappa_{4}\right) \mathrm{IN} 4_{\mathrm{i}} \\
&-\beta_{0}-\beta_{1} \mathrm{X}_{\mathrm{i} 1}-\beta_{2} \mathrm{X}_{\mathrm{i} 2}-\pi_{2} \mathrm{IN} 2_{\mathrm{i}}-\pi_{3} \mathrm{IN} 3_{\mathrm{i}}-\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
&= \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{3} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}+\kappa_{4} \mathrm{IN} 4_{\mathrm{i}} \\
&-\beta_{0}-\beta_{1} \mathrm{X}_{\mathrm{i} 1}-\beta_{2} \mathrm{X}_{\mathrm{i} 2}-\pi_{2} \mathrm{IN} 2_{\mathrm{i}}-\pi_{3} \mathrm{IN} 3_{\mathrm{i}}-\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
&= \lambda_{\mathrm{f}}+\kappa_{2} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{IN} 4_{\mathrm{i}} \tag{5.3*}
\end{align*}
$$

- The female population regression function for Model 5.3 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\left(\beta_{0}+\lambda_{\mathrm{f}}\right)+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\left(\pi_{2}+\kappa_{2}\right) \mathrm{IN} 2_{i}+\left(\pi_{3}+\kappa_{3}\right) \mathrm{IN} 3_{i}+\left(\pi_{4}+\kappa_{4}\right) \mathrm{IN} 4_{i} \tag{5.3f}
\end{align*}
$$

The female population regression function for Model 5.3 implies that the conditional mean value of Y for females differs across industries:

1. The conditional mean value of Y for females in industry $\mathbf{1}$ is:

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}=0, \mathrm{IN} 3=0_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}=0\right)=\left(\beta_{0}+\lambda_{\mathrm{f}}\right)+\beta_{1} X_{i 1}+\beta_{2} X_{\mathrm{i} 2}
$$

2. The conditional mean value of \mathbf{Y} for females in industry $\mathbf{2}$ is:

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}=1, \mathrm{IN} 3=0_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}=0\right)=\left(\beta_{0}+\lambda_{\mathrm{f}}\right)+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\left(\pi_{2}+\kappa_{2}\right)
$$

3. The conditional mean value of \mathbf{Y} for females in industry $\mathbf{3}$ is:

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}=0, \mathrm{IN} 3=1_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}=0\right)=\left(\beta_{0}+\lambda_{\mathrm{f}}\right)+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\left(\pi_{3}+\kappa_{3}\right)
$$

4. The conditional mean value of \mathbf{Y} for females in industry $\mathbf{4}$ is:

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}=0, \mathrm{IN} 3=0_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}=1\right)=\left(\beta_{0}+\lambda_{\mathrm{f}}\right)+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\left(\pi_{4}+\kappa_{4}\right)
$$

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{IN} 4_{i}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{i}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{i}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{i} \tag{5.3'}
\end{align*}
$$

- The male population regression function for Model 5.3 is:

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \tag{5.3~m}
\end{equation*}
$$

The male population regression function for Model 5.3 implies that the conditional mean value of Y for males differs across industries:

1. The conditional mean value of \mathbf{Y} for males in industry $\mathbf{1}$ is:

$$
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2{ }_{i}=0, I N 3=0_{i}, I N 4_{i}=0\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}
$$

2. The conditional mean value of \mathbf{Y} for males in industry $\mathbf{2}$ is:

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}=1, \mathrm{IN} 3=0_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}=0\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2}
$$

3. The conditional mean value of \mathbf{Y} for males in industry $\mathbf{3}$ is:

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}=0, \mathrm{IN} 3=1_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}=0\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{3}
$$

4. The conditional mean value of \mathbf{Y} for males in industry $\mathbf{4}$ is:

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}=0, \mathrm{IN} 3=0_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}=1\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{4}
$$

The difference between the female conditional mean \mathbf{Y} for given values of the regressors $\mathrm{X}_{1}, \mathrm{X}_{2}$, IN2, IN3, and IN4 and the male conditional mean \mathbf{Y} for the same values of the regressors $X_{1}, X_{2}, \operatorname{IN} 2$, IN3, and IN4 is:

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)=\lambda_{\mathrm{f}}+\kappa_{2} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{IN} 4_{\mathrm{i}} \tag{5.3*}
\end{equation*}
$$

1. The female-male difference in conditional mean Y for industry $\mathbf{1}$ for given values of X_{1} and X_{2} is obtained by setting $\operatorname{IN} 2_{i}=0$ and $\operatorname{IN} 3_{i}=0$ and $\operatorname{IN} 4_{i}=0$ in (5.3*):

$$
E\left(Y_{i} \mid F_{i}=1, I N 2_{i}=0, I N 3_{i}=0, \operatorname{IN} 4_{i}=0\right)-E\left(Y_{i} \mid F_{i}=0, \operatorname{IN} 2_{i}=0, I N 3_{i}=0, I N 4_{i}=0\right)=\lambda_{f}
$$

2. The female-male difference in conditional mean Y for industry 2 for given values of X_{1} and X_{2} is obtained by setting $\operatorname{IN} 2_{i}=1$ and $\operatorname{IN} 3_{i}=0$ and $\mathrm{IN}_{\mathrm{i}}=0$ in (5.3*):

$$
E\left(Y_{i} \mid F_{i}=1, I N 2_{i}=1, I N 3_{i}=0, \operatorname{IN} 4_{i}=0\right)-E\left(Y_{i} \mid F_{i}=0, I N 2_{i}=1, I N 3_{i}=0, I N 4_{i}=0\right)=\lambda_{f}+\kappa_{2}
$$

3. The female-male difference in conditional mean Y for industry $\mathbf{3}$ for given values of X_{1} and X_{2} is obtained by setting $\operatorname{IN} 2_{i}=0$ and $\operatorname{IN} 3_{i}=1$ and $\operatorname{IN} 4_{i}=0$ in (5.3*):

$$
E\left(Y_{i} \mid F_{i}=1, I N 2_{i}=0, I N 3_{i}=1, I N 4_{i}=0\right)-E\left(Y_{i} \mid F_{i}=0, I N 2_{i}=0, I N 3_{i}=1, I N 4_{i}=0\right)=\lambda_{f}+\kappa_{3}
$$

4. The female-male difference in conditional mean Y for industry 4 for given values of X_{1} and X_{2} is obtained by setting $\mathrm{IN}_{\mathrm{i}}=0$ and $\mathrm{IN} 3_{\mathrm{i}}=0$ and $\mathrm{IN} 4_{\mathrm{i}}=1$ in (5.3*):

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{IN} 2_{\mathrm{i}}=0, \mathrm{IN} 3_{\mathrm{i}}=0, \mathrm{IN} 4_{\mathrm{i}}=1\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{IN} 2_{\mathrm{i}}=0, \mathrm{IN} 3_{\mathrm{i}}=0, \mathrm{IN} 4_{\mathrm{i}}=1\right)=\lambda_{\mathrm{f}}+\kappa_{4}
$$

Propositions to Test in Model 5.3

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)=\lambda_{\mathrm{f}}+\kappa_{2} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{IN} 4_{\mathrm{i}} \tag{*}
\end{equation*}
$$

Test 1: The female-male difference in conditional mean Y equals zero for all observations.

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \lambda_{\mathrm{f}}=0 \text { and } \kappa_{2}=0 \text { and } \kappa_{3}=0 \text { and } \kappa_{4}=0 \\
\mathrm{H}_{1}: & \lambda_{\mathrm{f}} \neq 0 \text { and/or } \kappa_{2} \neq 0 \text { and/or } \kappa_{3} \neq 0 \text { and/or } \kappa_{4} \neq 0
\end{array}
$$

Test 2: The female-male difference in conditional mean Y equals a constant, i.e., does not depend on industry:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \kappa_{2}=0 \text { and } \kappa_{3}=0 \text { and } \kappa_{4}=0 \\
\mathrm{H}_{1}: & \kappa_{2} \neq 0 \text { and/or } \kappa_{3} \neq 0 \text { and/or } \kappa_{4} \neq 0
\end{array}
$$

- Interpretation of the coefficients in Model 5.3

```
E(Y
    = \beta
\beta0}== intercept for males in industry 1
\beta
\mp@subsup{\lambda}{\textrm{f}}{}}\quad= female industry 1 intercept - male industry 1 intercep
\beta0}+\mp@subsup{\pi}{2}{}\quad= intercept for males in industry 2,
\beta
\mp@subsup{\lambda}{f}{}+\mp@subsup{\kappa}{2}{}}\quad=\mathrm{ female industry 2 intercept - male industry 2 intercept
\beta0}+\mp@subsup{\pi}{3}{}\quad= intercept for males in industry 3
\beta
\mp@subsup{\lambda}{f}{}+\mp@subsup{\kappa}{3}{}}\quad= female industry 3 intercept - male industry 3 intercep
\beta
\beta
\mp@subsup{\lambda}{f}{}+\mp@subsup{\kappa}{4}{}}==\mathrm{ female industry 4 intercept - male industry 4 intercept
```

- Interpretation of the coefficients in Model 5.3 (continued)

$$
\begin{align*}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN}_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.3'}\\
& \pi_{2} \quad=\text { male industry } \mathbf{2} \text { intercept - male industry } \mathbf{1} \text { intercept } \\
& \pi_{3} \quad=\text { male industry } \mathbf{3} \text { intercept - male industry } \mathbf{1} \text { intercept } \\
& \pi_{4} \quad=\text { male industry } \mathbf{4} \text { intercept - male industry } \mathbf{1} \text { intercept } \\
& \pi_{2}+\kappa_{2} \quad=\text { female industry } \mathbf{2} \text { intercept -female industry } \mathbf{1} \text { intercept } \\
& \pi_{3}+\kappa_{3} \quad=\text { female industry } \mathbf{3} \text { intercept -female industry } \mathbf{1} \text { intercept } \\
& \pi_{4}+\kappa_{4}=\text { female industry } \mathbf{4} \text { intercept -female industry } \mathbf{1} \text { intercept }
\end{align*}
$$

What are the κ_{j} coefficients in Model $5.3(j=2,3,4)$?
$\kappa_{2} \quad=$ female industry $\mathbf{2}$ intercept - female industry $\mathbf{1}$ intercept

- (male industry 2 intercept - male industry 1 intercept)
$=$ female industry 2 effect - male industry 2 effect (relative to industry 1)
$=$ female-male difference in intercepts for industry 2
- female-male difference in intercepts for industry 1
$\kappa_{3}=$ female industry $\mathbf{3}$ intercept - female industry $\mathbf{1}$ intercept
- (male industry $\mathbf{3}$ intercept - male industry 1 intercept)
$=$ female industry 3 effect - male industry 3 effect (relative to industry 1)
$=$ female-male difference in intercepts for industry 3
- female-male difference in intercepts for industry 1
$\kappa_{4} \quad=$ female industry 4 intercept - female industry $\mathbf{1}$ intercept
- (male industry 4 intercept - male industry 1 intercept)
$=$ female industry 4 effect - male industry 4 effect (relative to industry 1)
= female-male difference in intercepts for industry 4
- female-male difference in intercepts for industry 1

Difference-in-differences interpretation of $\boldsymbol{\kappa}_{\mathbf{2}}$ coefficient in Model 5.3

Intercept Coefficients for Females and Males in Industries 1 and 2 - Model 5.3

	1 Ind 2 $\left(\mathrm{IN}_{\mathrm{i}}=1\right)$	2 Ind 1 $\left(\mathrm{IN1}_{\mathrm{i}}=1\right)$	Col. 1 - Col. 2
1. Females $\left(\mathrm{F}_{\mathrm{i}}=1\right)$	$\beta_{0}+\lambda_{\mathrm{f}}+\pi_{2}+\kappa_{2}$	$\beta_{0}+\lambda_{\mathrm{f}}$	$\pi_{2}+\kappa_{2}$
2. Males $\left(\mathrm{F}_{\mathrm{i}}=0\right)$	$\beta_{0}+\pi_{2}$	β_{0}	π_{2}
Row 1 - Row 2	$\lambda_{\mathrm{f}}+\kappa_{2}$	λ_{f}	κ_{2}

Interpretation 1: within each column, subtract the element in row 2 from the element in row 1
$\lambda_{f}+\kappa_{2}=$ Female-Male difference in intercepts for Industry 2
$\lambda_{\mathrm{f}} \quad=$ Female-Male difference in intercepts for Industry 1
$\kappa_{2} \quad=$ Female-Male difference in intercepts for Industry 2
minus
Female-Male difference in intercepts for Industry 1

Difference-in-differences interpretation of $\boldsymbol{\kappa}_{\mathbf{2}}$ coefficient in Model 5.3

Intercept Coefficients for Females and Males in Industries 1 and 2 - Model 5.3

	1 Ind 2 (IN2 $\left.2_{i}=1\right)$	2 Ind 1 (IN1 $\left.1_{\mathrm{i}}=1\right)$	Col. 1 - Col. 2
1. Females $\left(\mathrm{F}_{\mathrm{i}}=1\right)$	$\beta_{0}+\lambda_{\mathrm{f}}+\pi_{2}+\kappa_{2}$	$\beta_{0}+\lambda_{\mathrm{f}}$	$\pi_{2}+\kappa_{2}$
2. Males $\left(\mathrm{F}_{\mathrm{i}}=0\right)$	$\beta_{0}+\pi_{2}$	β_{0}	π_{2}
Row 1 - Row 2	$\lambda_{\mathrm{f}}+\mathrm{\kappa}_{2}$	λ_{f}	κ_{2}

Interpretation 2: within each row, subtract the element in column 2 from the element in column 1
$\pi_{2}+\kappa_{2}=$ Industry 2-Industry 1 difference in intercepts for Females
$\pi_{2} \quad=$ Industry 2-Industry 1 difference in intercepts for Males
$\kappa_{2} \quad=$ Industry 2-Industry 1 difference in intercepts for Females minus
Industry 2-Industry 1 difference in intercepts for Males

Two interpretations of the coefficient κ_{2} in Model 5.3

The population regression function for Model 5.3 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{IN} 4_{i}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{i}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{i}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.3'}
\end{align*}
$$

Both interpretations use the conditional mean values of \mathbf{Y} for four subgroups:

1. Conditional mean Y for females in industry 2: in regression function (5.3'), set $F_{i}=1, I N 2_{i}=1, I N 3_{i}=0, I N 4_{i}$ $=0$

$$
E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=1, I N 2_{i}=1, I N 3_{i}=0, I N 4_{i}=0\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\lambda_{f}+\pi_{2}+\kappa_{2}
$$

2. Conditional mean Y for males in industry 2: in regression function (5.3'), set $F_{i}=0, I N 2_{i}=1, I N 3_{i}=0, I N 4_{i}=$ 0

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}=0, \mathrm{IN} 2_{\mathrm{i}}=1, \mathrm{IN}_{\mathrm{i}}=0, \mathrm{IN} 4_{\mathrm{i}}=0\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2}
$$

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{i}+\pi_{3} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{IN} 4_{i}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{i}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{i}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{i} \tag{5.3'}
\end{align*}
$$

3. Conditional mean Y for females in industry 1: in regression function (5.3'), set $F_{i}=1, I N 2_{i}=0, I N 3_{i}=0, I N 4_{i}$ $=0$
$E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=1, I N 2_{i}=0, I N 3_{i}=0, I N 4_{i}=0\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\lambda_{f}$
4. Conditional mean Y for males in industry 1: in regression function (5.3'), set $F_{i}=0, I N 2_{i}=0, I N 3_{i}=0, I N 4_{i}=$ 0
$E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=0, I N 2_{i}=0, I N 3_{i}=0, I N 4_{i}=0\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}$

Interpretation 1 of κ_{2} in Model 5.3

(1) Female-male difference in conditional mean Y for industry 2:

$$
\begin{aligned}
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}}+\pi_{2}+\kappa_{2}-\beta_{0}-\beta_{1} \mathrm{X}_{\mathrm{i} 1}-\beta_{2} \mathrm{X}_{\mathrm{i} 2}-\pi_{2} \\
& =\lambda_{\mathrm{f}}+\kappa_{2}
\end{aligned}
$$

(2) Female-male difference in conditional mean Y for industry 1:

$$
\begin{aligned}
& =\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\lambda_{\mathrm{f}}-\beta_{0}-\beta_{1} X_{i 1}-\beta_{2} X_{i 2} \\
& =\lambda_{\mathrm{f}}
\end{aligned}
$$

Subtract (2) from (1):
Difference-in-differences = female-male difference in conditional mean Y for industry $\mathbf{2}$ minus female-male difference in conditional mean Y for industry 1:

$$
=\lambda_{\mathrm{f}}+\kappa_{2}-\lambda_{\mathrm{f}}=\kappa_{2}
$$

Interpretation 2 of κ_{2} in Model 5.3

(1) Industry 2-industry 1 difference in conditional mean Y for females:

$$
\begin{aligned}
= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}}+\pi_{2}+\kappa_{2} \\
& -\beta_{0}-\beta_{1} \mathrm{X}_{\mathrm{i} 1}-\beta_{2} \mathrm{X}_{\mathrm{i} 2}-\lambda_{\mathrm{f}} \\
= & \pi_{2}+\kappa_{2}
\end{aligned}
$$

(2) Industry 2-industry 1 difference in conditional mean Y for males:

$$
=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\pi_{2}-\beta_{0}-\beta_{1} X_{i 1}-\beta_{2} X_{i 2}=\pi_{2}
$$

Subtract (2) from (1):
Difference-in-differences = industry 2-industry 1 difference in conditional mean Y for females minus industry 2-industry 1 difference in conditional mean Y for males:

$$
=\pi_{2}+\kappa_{2}-\pi_{2}=\kappa_{2}
$$

Tests for Industry Effects in Model 5.3

Test 1: Test for Industry Effects for Females in Model 5.3

- The population regression function for Model 5.3 gives the conditional mean value of Y for given values of the regressors $X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}$, and $I N 4_{i}$:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{i}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{i}+\pi_{3} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{IN} 4_{i}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{i}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN}_{i}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{i} \tag{5.3'}
\end{align*}
$$

- The female population regression function for Model 5.3 is obtained by setting the female indicator $F_{i}=1$ in (5.3'):

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{IN} 4_{i}+\kappa_{2} \mathrm{IN} 2_{i}+\kappa_{3} \mathrm{IN} 3_{i}+\kappa_{4} \mathrm{IN} 4_{i} \\
& \quad=\beta_{0}+\lambda_{\mathrm{f}}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\left(\pi_{2}+\kappa_{2}\right) \mathrm{IN} 2_{i}+\left(\pi_{3}+\kappa_{3}\right) \mathrm{IN} 3_{i}+\left(\pi_{4}+\kappa_{4}\right) \mathrm{IN} 4_{\mathrm{i}} \tag{5.3f}
\end{align*}
$$

Hypothesis Test: Test the proposition of no industry effects for females - i.e., the proposition that there are no inter-industry differences in conditional mean Y values for females.

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \pi_{2}+\kappa_{2}=0 \text { and } \pi_{3}+\kappa_{3}=0 \text { and } \pi_{4}+\kappa_{4}=0 \\
\mathrm{H}_{1}: & \pi_{2}+\kappa_{2} \neq 0 \text { and/or } \pi_{3}+\kappa_{3} \neq 0 \text { and/or } \pi_{4}+\kappa_{4} \neq 0
\end{array}
$$

Restricted Model for Females: Substitute the three restrictions specified by H_{0} into the unrestricted female regression function (5.3f) to get the restricted female regression function.

$$
\begin{aligned}
& E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, \text { IN2 } 2_{i}, \operatorname{IN} 3_{i}, \operatorname{IN} 4_{i}\right) \\
& \quad=\beta_{0}+\lambda_{f}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\left(\pi_{2}+\kappa_{2}\right) \operatorname{IN} 2_{i}+\left(\pi_{3}+\kappa_{3}\right) \operatorname{IN} 3_{i}+\left(\pi_{4}+\kappa_{4}\right) \operatorname{IN} 4 \\
& \quad=\beta_{0}+\lambda_{\mathrm{f}}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}
\end{aligned}
$$

Test 2: Test for Industry Effects for Males in Model 5.3

- The male population regression function for Model 5.3 is obtained by setting the female indicator $\mathrm{F}_{\mathrm{i}}=0$ in (5.3'):

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{i}+\pi_{3} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{IN} 4_{i}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{i}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{i}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{i} \tag{5.3'}\\
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{i}+\pi_{3} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{IN} 4_{i} \tag{5.3m}
\end{align*}
$$

Hypothesis Test: Test the proposition of no industry effects for males - i.e., the proposition that there are no inter-industry differences in conditional mean Y values for males.

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \pi_{2}=0 \text { and } \pi_{3}=0 \text { and } \pi_{4}=0 \\
\mathrm{H}_{1}: & \pi_{2} \neq 0 \text { and/or } \pi_{3} \neq 0 \text { and/or } \pi_{4} \neq 0
\end{array}
$$

Restricted Model for Males: Substitute the three restrictions specified by H_{0} into the unrestricted male regression function (5.3f) to get the restricted male regression function.

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \operatorname{IN} 3_{\mathrm{i}}, \operatorname{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN}_{\mathrm{i}}+\pi_{3} \mathrm{IN}_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \tag{5.3m}\\
& \quad=\beta_{0}+\beta_{1} X_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}
\end{align*}
$$

Test 3: Test for Female-Male Differences in Industry Effects in Model 5.3

Proposition: Test the proposition of equal industry effects for females and males - i.e., the proposition that the inter-industry differences in conditional mean Y values for females are identical to the inter-industry differences in conditional mean Y values for males.

Null and Alternative Hypotheses:

$\mathrm{H}_{0}: \quad \kappa_{2}=0$ and $\kappa_{3}=0$ and $\kappa_{4}=0$
$\mathrm{H}_{1}: \kappa_{2} \neq 0$ and/or $\kappa_{3} \neq 0$ and/or $\kappa_{4} \neq 0$
Restricted Model: Substitute the three restrictions specified by H_{0} into the unrestricted pooled regression function (5.3') for Model 5.3.

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.3'}
\end{align*}
$$

The restricted pooled regression function under H_{0} is therefore:
$E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}, I N 44_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\lambda_{f} F_{i}+\pi_{2} \operatorname{IN} 2_{i}+\pi_{3} \operatorname{IN} 3_{i}+\pi_{4} \operatorname{IN} 4_{i}$
Note: This restricted model allows only for an intercept coefficient difference between males and females.

Pooling Male and Female Regression Functions with Different Regressor Sets - Model 5.3

- Question: How can we formulate a restricted version of the pooled Model 5.3 when male and female regression functions have different regressor sets?

Consider the following test outcomes for the previous three hypothesis tests:
Hypothesis Test 1: Test the proposition of no industry effects for females.
$\mathrm{H}_{0}: \quad \pi_{2}+\kappa_{2}=0$ and $\pi_{3}+\kappa_{3}=0$ and $\pi_{4}+\kappa_{4}=0 \quad$ we retain this H_{0}
Hypothesis Test 2: Test the proposition of no industry effects for males.
$\mathrm{H}_{0}: \quad \pi_{2}=0$ and $\pi_{3}=0$ and $\pi_{4}=0 \quad$ we reject this H_{0}
Hypothesis Test 3: Test the proposition of no female-male differences in industry effects.
$\mathrm{H}_{0}: \quad \kappa_{2}=0$ and $\kappa_{3}=0$ and $\kappa_{4}=0 \quad$ we reject this H_{0}

- Question: What is the restricted version of the pooled Model 5.3 implied by this set of three test outcomes?
- Derivation of Restricted Pooled Model 5.3 that incorporates industry effects for males but not for females.

1. Write the unrestricted male regression equation with industry effects:

$$
\begin{equation*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \tag{5.3~m}
\end{equation*}
$$

2. Write restricted female regression equation with no industry effects:
$\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}}+\mathrm{u}_{\mathrm{i}}$
3. Multiply the male regression equation in step 1 by the male indicator variable M_{i}, and the female regression equation in step 2 by the female indicator variable F_{i} :

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=\beta_{0} \mathrm{M}_{\mathrm{i}}+\beta_{1} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}}+\mathrm{M}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} \\
& \mathrm{~F}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}=\beta_{0} \mathrm{~F}_{\mathrm{i}}+\beta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}
\end{aligned}
$$

4. Add the above regression equations in step 3 to obtain the corresponding pooled regression equation:

$$
\begin{aligned}
\mathrm{M}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}= & \beta_{0} \mathrm{M}_{\mathrm{i}}+\beta_{1} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 2_{i}+\pi_{3} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 4_{i} \\
& +\beta_{0} \mathrm{~F}_{\mathrm{i}}+\beta_{1} \mathrm{~F}_{\mathrm{i}} X_{\mathrm{i} 1}+\beta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\mathrm{M}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{M}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}= & \beta_{0} \mathrm{M}_{\mathrm{i}}+\beta_{1} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 2_{i}+\pi_{3} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 4_{i} \\
& +\beta_{0} \mathrm{~F}_{\mathrm{i}}+\beta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\mathrm{M}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}
\end{aligned}
$$

5. Collect like terms in the regression coefficients in the above regression equation in step 4:

$$
\begin{aligned}
\left(\mathrm{M}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}}\right) \mathrm{Y}_{\mathrm{i}}= & \beta_{0}\left(\mathrm{M}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}}\right)+\beta_{1}\left(\mathrm{M}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}}\right) \mathrm{X}_{\mathrm{i} 1}+\beta_{2}\left(\mathrm{M}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}}\right) \mathrm{X}_{\mathrm{i} 2} \\
& +\pi_{2} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\left(\mathrm{M}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}}\right) \mathrm{u}_{\mathrm{i}}
\end{aligned}
$$

6. Use the adding-up property $M_{i}+F_{i}=1$ for all i to simplify the pooled regression equation in step 5:
$\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}}+\lambda_{\mathrm{f}} \mathrm{F}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}$

- Result: This pooled regression equation allows for different male and female intercept coefficients, and includes industry effects only in the male regression function.
- Analysis: The pooled regression equation that allows for different male and female intercept coefficients but includes industry effects only for males is:

$$
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{M}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}}
$$

The pooled regression function for this pooled regression equation is:

$$
\begin{aligned}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, M_{i}, F_{i}, I N 2_{i}, \operatorname{IN} 3_{i}, \operatorname{IN} 4_{i}\right) \\
& \quad=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\pi_{2} M_{i} I N 2_{i}+\pi_{3} M_{i} \operatorname{IN} 3_{i}+\pi_{4} M_{i} \operatorname{IN} 4_{i}+\lambda_{f} F_{i}
\end{aligned}
$$

- The male regression function is obtained by setting $\mathrm{M}_{\mathrm{i}}=1$ and $\mathrm{F}_{\mathrm{i}}=0$ in the above pooled regression function:

$$
E\left(Y_{i} \mid X_{i 1}, X_{i 2}, M_{i}=1, F_{i}=0, I N 2_{i}, I N 3_{i}, I N 4_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\pi_{2} \operatorname{IN} 2_{i}+\pi_{3} \mathrm{IN}_{i}+\pi_{4} \operatorname{IN} 4_{i}
$$

- The female regression function is obtained by setting $M_{i}=0$ and $F_{i}=1$ in the above pooled regression function:

$$
\begin{aligned}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, M_{i}=0, F_{i}=1, I N 2_{i}, I N 3_{i}, I N 4_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\lambda_{f} \\
& =\beta_{0}+\lambda_{\mathrm{f}}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

- The female-male difference in conditional mean Y for given values of the regressors is obtained by subtracting the male population regression function from the female population regression function.

The female regression function is:

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{M}_{\mathrm{i}}=0, \mathrm{~F}_{\mathrm{i}}=1, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right)=\beta_{0}+\lambda_{\mathrm{f}}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}
$$

The male regression function is:

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{M}_{\mathrm{i}}=1, \mathrm{~F}_{\mathrm{i}}=0, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}
$$

The female-male difference in conditional mean Y for given values of the regressors X_{1}, X_{2}, IN2, IN3, and IN4 is therefore:

$$
\begin{aligned}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, M_{i}=0, F_{i}=1, I N 2_{i}, I N 3_{i}, I N 4{ }_{i}\right) \\
& -E\left(Y_{i} \mid X_{i 1}, X_{i 2}, M_{i}=1, F_{i}=0, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\lambda_{\mathrm{f}}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}-\beta_{0}-\beta_{1} \mathrm{X}_{\mathrm{i} 1}-\beta_{2} \mathrm{X}_{\mathrm{i} 2}-\pi_{2} \mathrm{IN} 2_{\mathrm{i}}-\pi_{3} \mathrm{IN}_{\mathrm{i}}-\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& =\lambda_{\mathrm{f}}-\pi_{2} \mathrm{IN} 2_{\mathrm{i}}-\pi_{3} \mathrm{IN} 3_{\mathrm{i}}-\pi_{4} \mathrm{IN} 4_{\mathrm{i}}
\end{aligned}
$$

- The female-male difference in conditional mean \mathbf{Y} for given values of the regressors X_{1} and X_{2} is different for each of the four industries:

$$
\begin{aligned}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, M_{i}=0, F_{i}=1, I N 2_{i}, I N 3_{i}, I N 4_{i}\right)-E\left(Y_{i} \mid X_{i 1}, X_{i 2}, M_{i}=1, F_{i}=0, I N 2_{i}, I N 3_{i}, I N 4{ }_{i}\right) \\
& =\lambda_{f}-\pi_{2} \mathrm{IN} 2_{\mathrm{i}}-\pi_{3} \mathrm{IN} 3_{\mathrm{i}}-\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& =\lambda_{f} \quad \text { for Industry } 1\left(\mathrm{IN1}_{\mathrm{i}}=1 ; \mathrm{IN}_{\mathrm{i}}=\operatorname{IN} 3_{\mathrm{i}}=\mathrm{IN} 4_{\mathrm{i}}=0\right) \\
& =\lambda_{\mathrm{f}}-\pi_{2} \quad \text { for Industry } 2\left(\operatorname{IN} 2_{\mathrm{i}}=1 ; \mathrm{IN1}_{\mathrm{i}}=\operatorname{IN} 3_{\mathrm{i}}=\operatorname{IN} 4_{\mathrm{i}}=0\right) \\
& =\lambda_{\mathrm{f}}-\pi_{3} \quad \text { for Industry } 3\left(\mathrm{IN}_{\mathrm{i}}=1 ; \mathrm{IN1}_{\mathrm{i}}=\mathrm{IN} 2_{\mathrm{i}}=\mathrm{IN} 4_{\mathrm{i}}=0\right) \\
& =\lambda_{\mathrm{f}}-\pi_{4} \quad \text { for Industry } 4\left(\mathrm{IN}_{\mathrm{i}}=1 ; \mathrm{IN}_{\mathrm{i}}=\mathrm{IN} 2_{\mathrm{i}}=\mathrm{IN} 3_{\mathrm{i}}=0\right)
\end{aligned}
$$

Model 5.4: Female-Male Differences in Industry Effects and in Marginal Effects of X_{1} and X_{2}

Add to Model 5.3 female-male differences in the marginal effects of the two continuous explanatory variables X_{1} and X_{2}.

Allow the effects of the regressors X_{1} and X_{2} to differ between males and females by introducing into Model 5.3 two additional regressors that take the form of female interactions with the two regressors $\mathbf{X}_{\mathbf{i 1}}$ and $\mathbf{X}_{\mathrm{i} 2}$.

- The population regression equation for Model 5.4 can be written as

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}= & \beta_{0}+\beta_{1} X_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& +\eta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\eta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \tag{5.4}
\end{align*}
$$

- The population regression function for Model 5.4 is obtained by taking the conditional expectation of regression equation (5.4) for any given values of the regressors $X_{i 1}, X_{i 2}, F_{i}, \operatorname{IN} 2_{i}, \operatorname{IN} 3_{i}$, and $\operatorname{IN} 4_{i}$:

$$
\begin{align*}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN}_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& +\eta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\eta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.4'}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{i}+\pi_{3} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{IN} 4_{i} \\
& \tag{5.4'}\\
& \quad+\eta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\eta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{i}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{i}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}}
\end{align*}
$$

- The female population regression function for Model 5.4 is obtained by setting the female indicator $\mathbf{F}_{\mathbf{i}}=\mathbf{1}$ in (5.4'):

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN}_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}+\eta_{1} \mathrm{X}_{\mathrm{i} 1}+\eta_{2} \mathrm{X}_{\mathrm{i} 2}+\kappa_{2} \mathrm{IN}_{\mathrm{i}}+\kappa_{3} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& \quad=\left(\beta_{0}+\lambda_{\mathrm{f}}\right)+\left(\beta_{1}+\eta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\eta_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\pi_{2}+\kappa_{2}\right) \mathrm{IN} 2_{i}+\left(\pi_{3}+\kappa_{3}\right) \mathrm{IN} 3_{i}+\left(\pi_{4}+\kappa_{4}\right) \mathrm{IN} 4_{\mathrm{i}} \tag{5.4f}
\end{align*}
$$

- The male population regression function for Model 5.4 is obtained by setting the female indicator $\mathbf{F}_{\mathbf{i}}=\mathbf{0}$ in (5.4'):

$$
\begin{equation*}
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\pi_{2} \mathrm{IN} 2_{i}+\pi_{3} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{IN} 4_{i} \tag{5.4m}
\end{equation*}
$$

- The female population regression function for Model 5.4 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\left(\beta_{0}+\lambda_{\mathrm{f}}\right)+\left(\beta_{1}+\eta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\eta_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\pi_{2}+\kappa_{2}\right) \operatorname{IN} 2_{\mathrm{i}}+\left(\pi_{3}+\kappa_{3}\right) \operatorname{IN} 3_{\mathrm{i}}+\left(\pi_{4}+\kappa_{4}\right) \operatorname{IN} 4_{\mathrm{i}} \tag{5.4f}
\end{align*}
$$

The female population regression function for Model 5.4 implies that the conditional mean value of \mathbf{Y} for females differs across industries:

1. The conditional mean value of \mathbf{Y} for females in industry $\mathbf{1}$ is:

$$
E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}=0, \text { IN3 }=0_{i}, I N 4_{i}=0\right)=\left(\beta_{0}+\lambda_{f}\right)+\left(\beta_{1}+\eta_{1}\right) X_{i 1}+\left(\beta_{2}+\eta_{2}\right) X_{i 2}
$$

2. The conditional mean value of \mathbf{Y} for females in industry $\mathbf{2}$ is:

$$
E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}=1, I N 3=0_{i}, I N 4_{i}=0\right)=\left(\beta_{0}+\lambda_{f}\right)+\left(\beta_{1}+\eta_{1}\right) X_{i 1}+\left(\beta_{2}+\eta_{2}\right) X_{i 2}+\left(\pi_{2}+\kappa_{2}\right)
$$

3. The conditional mean value of \mathbf{Y} for females in industry $\mathbf{3}$ is:

$$
E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}=0, \text { IN3 }=1_{i}, \text { IN4 }{ }_{i}=0\right)=\left(\beta_{0}+\lambda_{f}\right)+\left(\beta_{1}+\eta_{1}\right) X_{i 1}+\left(\beta_{2}+\eta_{2}\right) X_{i 2}+\left(\pi_{3}+\kappa_{3}\right)
$$

4. The conditional mean value of \mathbf{Y} for females in industry $\mathbf{4}$ is:

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}=0, \mathrm{IN} 3=0_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}=1\right)=\left(\beta_{0}+\lambda_{\mathrm{f}}\right)+\left(\beta_{1}+\eta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\eta_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\pi_{4}+\kappa_{4}\right)
$$

- The male population regression function for Model 5.4 is:

$$
\begin{equation*}
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, \operatorname{IN} 3_{i}, \operatorname{IN} 4_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\pi_{2} \operatorname{IN} 2_{i}+\pi_{3} \operatorname{IN} 3_{i}+\pi_{4} \operatorname{IN} 4_{i} \tag{5.4m}
\end{equation*}
$$

The male population regression function for Model 5.4 implies that the conditional mean value of \mathbf{Y} for males differs across industries:

1. The conditional mean value of \mathbf{Y} for males in industry $\mathbf{1}$ is:

$$
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}=0, \operatorname{IN} 3=0_{i}, \operatorname{IN} 4_{i}=0\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}
$$

2. The conditional mean value of \mathbf{Y} for males in industry $\mathbf{2}$ is:

$$
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}=1, \text { IN3 }=0_{i}, I N 44_{i}=0\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\pi_{2}
$$

3. The conditional mean value of \mathbf{Y} for males in industry $\mathbf{3}$ is:

$$
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}=0, I N 3=1_{i}, I N 4{ }_{i}=0\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\pi_{3}
$$

4. The conditional mean value of \mathbf{Y} for males in industry $\mathbf{4}$ is:

$$
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}=0, \text { IN3 }=0_{i}, \text { IN4 } i_{i}=1\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\pi_{4}
$$

- The female-male difference in conditional mean \mathbf{Y} for given values of the regressors is obtained by subtracting the male population regression function (5.4 m) from the female population regression function (5.4f):

The difference between the female conditional mean \mathbf{Y} for given values of the regressors $\mathrm{X}_{1}, \mathrm{X}_{2}$, IN2, IN3, and IN4 and the male conditional mean \mathbf{Y} for the same values of the regressors X_{1}, X_{2}, IN2, IN3, and IN4 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, x_{i}^{T}\right)-E\left(Y_{i} \mid F_{i}=0, x_{i}^{T}\right) \\
& =\beta_{0}+\left(\beta_{1}+\eta_{1}\right) X_{\mathrm{i} 1}+\left(\beta_{2}+\eta_{2}\right) X_{\mathrm{i} 2}+\lambda_{\mathrm{f}}+\left(\pi_{2}+\kappa_{2}\right) \operatorname{IN} 2_{\mathrm{i}}+\left(\pi_{3}+\kappa_{3}\right) \mathrm{IN}_{\mathrm{i}}+\left(\pi_{4}+\kappa_{4}\right) \operatorname{IN} 4_{\mathrm{i}} \\
& -\left(\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}}\right) \\
& =\beta_{0}+\left(\beta_{1}+\eta_{1}\right) X_{i 1}+\left(\beta_{2}+\eta_{2}\right) X_{i 2}+\lambda_{\mathrm{f}}+\left(\pi_{2}+\kappa_{2}\right) \operatorname{IN} 2_{i}+\left(\pi_{3}+\kappa_{3}\right) \operatorname{IN} 3_{i}+\left(\pi_{4}+\kappa_{4}\right) \operatorname{IN} 4_{i} \\
& -\beta_{0}-\beta_{1} \mathrm{X}_{\mathrm{i} 1}-\beta_{2} \mathrm{X}_{\mathrm{i} 2}-\pi_{2} \mathrm{IN} 2_{\mathrm{i}}-\pi_{3} \mathrm{IN} 3_{\mathrm{i}}-\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& =\beta_{0}+\lambda_{\mathrm{f}}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\eta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\eta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{2} \mathrm{IN}_{\mathrm{i}}+\pi_{3} \mathrm{IN}_{\mathrm{i}}+\kappa_{3} \mathrm{IN}_{\mathrm{i}}+\pi_{4} \mathrm{IN}_{\mathrm{i}}+\kappa_{4} \mathrm{IN}_{\mathrm{i}} \\
& -\beta_{0}-\beta_{1} X_{i 1}-\beta_{2} X_{i 2}-\pi_{2} \operatorname{IN} 2_{i}-\pi_{3} \mathrm{IN}_{\mathrm{i}}-\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& =\lambda_{f}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2}+\kappa_{2} I N 2_{i}+\kappa_{3} \mathrm{IN}_{\mathrm{i}}+\kappa_{4} \mathrm{IN} 4_{\mathrm{i}} \tag{5.4*}
\end{align*}
$$

- Rewrite equation (5.4*) for the female-male difference in conditional mean Y in Model 5.4 for given values of the regressors $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{IN} 2$, IN3, and IN4:

$$
\begin{equation*}
E\left(Y_{i} \mid F_{i}=1, x_{i}^{T}\right)-E\left(Y_{i} \mid F_{i}=0, x_{i}^{T}\right)=\lambda_{f}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2}+\kappa_{2} I N 2_{i}+\kappa_{3} I N 3_{i}+\kappa_{4} I N 4_{i} \tag{*}
\end{equation*}
$$

1. The female-male difference in conditional mean Y for industry 1 for given values of X_{1} and X_{2} is obtained by setting $\mathrm{IN} 2_{\mathrm{i}}=0$ and $\mathrm{IN}_{\mathrm{i}}=0$ and $\mathrm{IN} 4_{\mathrm{i}}=0$ in (5.4*):

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{IN} 2_{i}=0, \mathrm{IN} 3_{i}=0, \mathrm{IN} 4_{i}=0\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{IN} 2_{i}=0, \mathrm{IN} 3_{i}=0, \mathrm{IN} 4_{\mathrm{i}}=0\right) \\
& \quad=\lambda_{f}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2}
\end{aligned}
$$

2. The female-male difference in conditional mean Y for industry 2 for given values of X_{1} and X_{2} is obtained by setting $\mathrm{IN} 2_{\mathrm{i}}=1$ and $\mathrm{IN} 3_{\mathrm{i}}=0$ and $\mathrm{IN} 4_{\mathrm{i}}=0$ in (5.4*):

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{IN} 2_{i}=1, \mathrm{IN} 3_{i}=0, \mathrm{IN}_{\mathrm{i}}=0\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{IN} 2_{\mathrm{i}}=1, \mathrm{IN} 3_{i}=0, \mathrm{IN} 4_{\mathrm{i}}=0\right) \\
& \quad=\lambda_{f}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2}+\kappa_{2}
\end{aligned}
$$

3. The female-male difference in conditional mean Y for industry 3 for given values of X_{1} and X_{2} is obtained by setting $\mathrm{IN} 2_{\mathrm{i}}=0$ and $\mathrm{IN} 3_{\mathrm{i}}=1$ and $\mathrm{IN} 4_{\mathrm{i}}=0$ in (5.4*):

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{IN} 2_{i}=0, \mathrm{IN}_{\mathrm{i}}=1, \mathrm{IN} 4_{i}=0\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{IN} 2_{i}=0, \mathrm{IN} 3_{i}=1, \mathrm{IN} 4_{i}=0\right) \\
& \quad=\lambda_{f}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2}+\kappa_{3}
\end{aligned}
$$

$$
\begin{equation*}
E\left(Y_{i} \mid F_{i}=1, x_{i}^{T}\right)-E\left(Y_{i} \mid F_{i}=0, x_{i}^{T}\right)=\lambda_{f}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2}+\kappa_{2} I N 2_{i}+\kappa_{3} I N 3_{i}+\kappa_{4} I N 4_{i} \tag{*}
\end{equation*}
$$

4. The female-male difference in conditional mean Y for industry 4 for given values of X_{1} and X_{2} is obtained by setting $\operatorname{IN} 2_{i}=0$ and $\operatorname{IN} 3_{i}=0$ and $\operatorname{IN} 4_{i}=1$ in (5.4*):

$$
\begin{aligned}
& E\left(Y_{i} \mid F_{i}=1, I N 2_{i}=0, \operatorname{IN} 3_{i}=0, \operatorname{IN} 4_{i}=1\right)-E\left(Y_{i} \mid F_{i}=0, \operatorname{IN} 2_{i}=0, I N 3_{i}=0, \operatorname{IN} 4_{i}=1\right) \\
& \quad=\lambda_{f}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2}+\kappa_{4}
\end{aligned}
$$

Propositions to Test in Model 5.4 Respecting Female-Male Differences in Conditional Mean Y

- The female-male difference in conditional mean Y in Model 5.4 for given values of the regressors X_{1}, X_{2}, IN2, IN3, and IN4:

$$
\begin{equation*}
E\left(Y_{i} \mid F_{i}=1, x_{i}^{T}\right)-E\left(Y_{i} \mid F_{i}=0, x_{i}^{T}\right)=\lambda_{f}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2}+\kappa_{2} I N 2_{i}+\kappa_{3} I N 3_{i}+\kappa_{4} I N 4_{i} \tag{*}
\end{equation*}
$$

Test 1: The female-male difference in conditional mean Y equals zero for all observations.
$\mathrm{H}_{0}: \quad \lambda_{\mathrm{f}}=0$ and $\eta_{1}=0$ and $\eta_{2}=0$ and $\kappa_{2}=0$ and $\kappa_{3}=0$ and $\kappa_{4}=0$
$\mathrm{H}_{1}: \quad \lambda_{\mathrm{f}} \neq 0$ and/or $\eta_{1} \neq 0$ and/or $\eta_{2} \neq 0$ and/or $\kappa_{2} \neq 0$ and/or $\kappa_{3} \neq 0$ and/or $\kappa_{4} \neq 0$

Test 2: The female-male difference in conditional mean Y equals a constant, i.e., it does not depend on industry or on the values of X_{1} and X_{2}.
$\mathrm{H}_{0}: \quad \eta_{1}=0$ and $\eta_{2}=0$ and $\kappa_{2}=0$ and $\kappa_{3}=0$ and $\kappa_{4}=0$
$\mathrm{H}_{1}: \quad \eta_{1} \neq 0$ and/or $\eta_{2} \neq 0$ and/or $\kappa_{2} \neq 0$ and/or $\kappa_{3} \neq 0$ and/or $\kappa_{4} \neq 0$

- The female-male difference in conditional mean Y in Model 5.4 for given values of the regressors X_{1}, X_{2}, IN2, IN3, and IN4:

$$
\begin{equation*}
E\left(Y_{i} \mid F_{i}=1, x_{i}^{T}\right)-E\left(Y_{i} \mid F_{i}=0, x_{i}^{T}\right)=\lambda_{f}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2}+\kappa_{2} I N 2_{i}+\kappa_{3} I N 3_{i}+\kappa_{4} I N 4_{i} \tag{*}
\end{equation*}
$$

Test 3: The female-male difference in conditional mean Y does not depend on industry - i.e., industry effects are identical for females and males.

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \kappa_{2}=0 \text { and } \kappa_{3}=0 \text { and } \kappa_{4}=0 \\
\mathrm{H}_{1}: & \kappa_{2} \neq 0 \text { and/or } \kappa_{3} \neq 0 \text { and/or } \kappa_{4} \neq 0
\end{array}
$$

Test 4: The female-male difference in conditional mean Y does not depend on the values of the regressors X_{1} and X_{2}.

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \eta_{1}=0 \text { and } \eta_{2}=0 \\
\mathrm{H}_{1}: & \eta_{1} \neq 0 \text { and/or } \eta_{2} \neq 0
\end{array}
$$

Tests for Industry Effects in Model 5.4

Test 1: Test for Industry Effects for Females in Model 5.4

- The population regression function for Model 5.4 gives the conditional mean value of Y for any given values of the regressors $X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}$, and $\operatorname{IN} 4_{i}$:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{i}+\pi_{3} \mathrm{IN}_{i}+\pi_{4} \mathrm{IN} 4_{i} \\
& \tag{5.4'}\\
& \quad+\eta_{1} \mathrm{~F}_{\mathrm{i}} X_{i 1}+\eta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{i}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{i}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4
\end{align*}
$$

- The female population regression function for Model 5.4 is obtained by setting the female indicator $\mathbf{F}_{\mathbf{i}}=\mathbf{1}$ in (5.4'):

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& \quad=\beta_{0}+\lambda_{f}+\left(\beta_{1}+\eta_{1}\right) X_{i 1}+\left(\beta_{2}+\eta_{2}\right) X_{i 2}+\left(\pi_{2}+\kappa_{2}\right) I N 2_{i}+\left(\pi_{3}+\kappa_{3}\right) I N 3_{i}+\left(\pi_{4}+\kappa_{4}\right) \operatorname{IN} 4_{i} \tag{5.4f}
\end{align*}
$$

Hypothesis Test: Test the proposition of no industry effects for females - i.e., the proposition that there are no inter-industry differences in conditional mean Y values for females.
$\mathrm{H}_{0}: \quad \pi_{2}+\kappa_{2}=0$ and $\pi_{3}+\kappa_{3}=0$ and $\pi_{4}+\kappa_{4}=0$
$\mathrm{H}_{1}: \quad \pi_{2}+\kappa_{2} \neq 0$ and/or $\pi_{3}+\kappa_{3} \neq 0$ and/or $\pi_{4}+\kappa_{4} \neq 0$

Restricted Model for Females: Substitute the three restrictions specified by H_{0} into the unrestricted female regression function (5.4f) to get the restricted female regression function with no industry effects.

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\lambda_{\mathrm{f}}+\left(\beta_{1}+\eta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\eta_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\pi_{2}+\kappa_{2}\right) \mathrm{IN} 2_{i}+\left(\pi_{3}+\kappa_{3}\right) \mathrm{IN} 3_{\mathrm{i}}+\left(\pi_{4}+\kappa_{4}\right) \operatorname{IN} 4_{\mathrm{i}} \tag{5.4f}
\end{align*}
$$

Setting $\pi_{2}+\kappa_{2}=0$ and $\pi_{3}+\kappa_{3}=0$ and $\pi_{4}+\kappa_{4}=0$ in (5.4f) yields the restricted female regression function with no industry effects:

$$
E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right)=\beta_{0}+\lambda_{f}+\left(\beta_{1}+\eta_{1}\right) X_{i 1}+\left(\beta_{2}+\eta_{2}\right) X_{i 2}
$$

Test 2: Test for Industry Effects for Males in Model 5.4

- The male population regression function for Model 5.4 is obtained by setting the female indicator $\mathbf{F}_{\mathbf{i}}=\mathbf{0}$ in (5.4'):

$$
\begin{align*}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}, I N 4{ }_{i}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& +\eta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\eta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.4'}\\
& E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\pi_{2} \operatorname{IN} 2_{i}+\pi_{3} \text { IN3 }_{i}+\pi_{4} \operatorname{IN} 4_{i} \tag{5.4m}
\end{align*}
$$

Hypothesis Test: Test the proposition of no industry effects for males - i.e., the proposition that there are no inter-industry differences in conditional mean Y values for males.

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \pi_{2}=0 \text { and } \pi_{3}=0 \text { and } \pi_{4}=0 \\
\mathrm{H}_{1}: & \pi_{2} \neq 0 \text { and/or } \pi_{3} \neq 0 \text { and/or } \pi_{4} \neq 0
\end{array}
$$

Restricted Model for Males: Substitute the three restrictions specified by H_{0} into the unrestricted male regression function (5.4f) to get the restricted male regression function with no industry effects.

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& \quad=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\pi_{2} I N 2_{i}+\pi_{3} \mathrm{IN}_{i}+\pi_{4} I N 4_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2} \tag{5.3m}
\end{align*}
$$

Test 3: Test for Female-Male Differences in Industry Effects in Model 5.4

Proposition: Test the proposition of equal industry effects for females and males - i.e., the proposition that the inter-industry differences in conditional mean Y values for females are identical to the inter-industry differences in conditional mean Y values for males.

Null and Alternative Hypotheses:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \kappa_{2}=0 \text { and } \kappa_{3}=0 \text { and } \kappa_{4}=0 \\
\mathrm{H}_{1}: & \kappa_{2} \neq 0 \text { and/or } \kappa_{3} \neq 0 \text { and/or } \kappa_{4} \neq 0
\end{array}
$$

Restricted Model: Substitute the three restrictions specified by H_{0} into the unrestricted pooled regression function (5.4') for Model 5.4.

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN}_{\mathrm{i}}+\pi_{3} \mathrm{IN}_{i}+\pi_{4} \mathrm{IN} 4_{i} \\
& \tag{5.4'}\\
& \quad+\eta_{1} \mathrm{~F}_{\mathrm{i}} X_{i 1}+\eta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{i}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN}_{\mathrm{i}}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4
\end{align*}
$$

The restricted pooled regression function under H_{0} is therefore:

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{i}+\pi_{4} \mathrm{IN} 4_{i}+\eta_{1} F_{i} X_{i 1}+\eta_{2} F_{i} X_{i 2}
\end{aligned}
$$

- Interpretation of the coefficients in Model 5.4 for which the PRF (population regression function) is:

$$
\begin{align*}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& +\eta_{1} F_{i} X_{i 1}+\eta_{2} F_{i} X_{i 2}+\kappa_{2} F_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.4'}\\
& \beta_{0} \quad=\text { intercept for males in industry } 1 \\
& \beta_{0}+\lambda_{\mathrm{f}} \quad=\text { intercept for females in industry } 1 \\
& \lambda_{\mathrm{f}} \quad=\text { female industry } \mathbf{1} \text { intercept - male industry } 1 \text { intercept } \\
& \beta_{0}+\pi_{2} \quad=\text { intercept for males in industry } 2 \\
& \beta_{0}+\lambda_{\mathrm{f}}+\pi_{2}+\kappa_{2}=\text { intercept for females in industry } 2 \\
& \lambda_{f}+\kappa_{2} \quad=\text { female industry } 2 \text { intercept - male industry } 2 \text { intercept } \\
& \beta_{0}+\pi_{3} \quad=\text { intercept for males in industry } 3 \\
& \beta_{0}+\lambda_{\mathrm{f}}+\pi_{3}+\kappa_{3}=\text { intercept for females in industry } 3 \\
& \lambda_{f}+\kappa_{3} \quad=\text { female industry } \mathbf{3} \text { intercept - male industry } \mathbf{3} \text { intercept } \\
& \beta_{0}+\pi_{4} \quad=\text { intercept for males in industry } 4 \\
& \beta_{0}+\lambda_{\mathrm{f}}+\pi_{4}+\kappa_{4}=\text { intercept for females in industry } 4 \\
& \lambda_{f}+\kappa_{4} \quad=\text { female industry } 4 \text { intercept - male industry } 4 \text { intercept }
\end{align*}
$$

- Interpretation of the coefficients in Model 5.4 for which the PRF (population regression function) is:

$$
\begin{align*}
& E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{\mathrm{i}}+\pi_{3} \mathrm{IN} 3_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& +\eta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\eta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4{ }_{\mathrm{i}} \tag{5.4'}\\
& \beta_{1} \quad=\text { the marginal effect of } \mathbf{X}_{1} \text { for males } \\
& \beta_{1}+\eta_{1} \quad=\text { the marginal effect of } \mathbf{X}_{1} \text { for } \text { females } \\
& \eta_{1} \quad=\text { the female-male difference in the marginal effect of } \mathbf{X}_{1} \\
& \beta_{2} \quad=\text { the marginal effect of } \mathbf{X}_{2} \text { for males } \\
& \beta_{2}+\eta_{2} \quad=\text { the marginal effect of } \mathbf{X}_{2} \text { for females } \\
& \eta_{2} \quad=\text { the female-male difference in the marginal effect of } \mathbf{X}_{2} \\
& \beta_{3} \quad=\text { the marginal effect of } \mathbf{X}_{\mathbf{3}} \text { for males } \\
& \beta_{3}+\eta_{3} \quad=\text { the marginal effect of } \mathbf{X}_{3} \text { for females } \\
& \eta_{3} \quad=\text { the female-male difference in the marginal effect of } \mathbf{X}_{3}
\end{align*}
$$

- Interpretation of the coefficients κ_{2}, κ_{3} and κ_{4} in Model 5.4, for which the PRF is

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \operatorname{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\lambda_{\mathrm{f}} \mathrm{~F}_{\mathrm{i}}+\pi_{2} \mathrm{IN} 2_{i}+\pi_{3} \mathrm{IN}_{\mathrm{i}}+\pi_{4} \mathrm{IN} 4_{\mathrm{i}} \\
& \quad+\eta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\eta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\kappa_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\kappa_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\kappa_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}} \tag{5.4'}
\end{align*}
$$

Two alternative interpretations of the coefficient κ_{2} in Model 5.4
Both use the conditional mean values of \mathbf{Y} for four subgroups:

1. The conditional mean value of \mathbf{Y} for females in industry 2: set $\mathrm{F}_{\mathrm{i}}=1, \operatorname{IN} 2_{i}=1, \operatorname{IN} 3_{i}=0, \operatorname{IN} 4_{i}=0$ in (5.4')

$$
E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, \text { IN } 2_{i}=1, \text { IN3 }=0_{i}, I N 4_{i}=0\right)=\left(\beta_{0}+\lambda_{f}\right)+\left(\beta_{1}+\eta_{1}\right) X_{i 1}+\left(\beta_{2}+\eta_{2}\right) X_{i 2}+\left(\pi_{2}+\kappa_{2}\right)
$$

2. The conditional mean value of \mathbf{Y} for males in industry 2: set $\mathrm{F}_{\mathrm{i}}=0, \operatorname{IN} 2_{i}=1, \operatorname{IN} 3_{i}=0, \operatorname{IN} 4_{i}=0$ in (5.4')

$$
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \operatorname{IN} 2_{\mathrm{i}}=1, \mathrm{IN} 3=0_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}=0\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\pi_{2}
$$

3. The conditional mean value of \mathbf{Y} for females in industry 1: set $\mathrm{F}_{\mathrm{i}}=1, \operatorname{IN} 2_{i}=0, \operatorname{IN} 3_{i}=0, \operatorname{IN} 4_{i}=0$ in (5.4')

$$
E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=1, I N 2_{i}=0, I N 3_{i}=0, I N 4_{i}=0\right)=\left(\beta_{0}+\lambda_{f}\right)+\left(\beta_{1}+\eta_{1}\right) X_{i 1}+\left(\beta_{2}+\eta_{2}\right) X_{i 2}
$$

4. The conditional mean value of \mathbf{Y} for males in industry 1 : set $\mathrm{F}_{\mathrm{i}}=0, \operatorname{IN} 2_{i}=0, \operatorname{IN} 3_{i}=0, \operatorname{IN} 4_{i}=0$ in (5.4'),

$$
E\left(Y_{i} \mid X_{i 1}, X_{i 2}, F_{i}=0, I N 2_{i}=0, I N 3_{i}=0, I N 4_{i}=0\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}
$$

Interpretation 1 of κ_{2} in Model 5.4

(1) Female-male difference in conditional mean Y for industry 2:

$$
\begin{aligned}
= & \beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\lambda_{\mathrm{f}}+\pi_{2}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2}+\kappa_{2} \\
& -\beta_{0}-\beta_{1} X_{i 1}-\beta_{2} X_{i 2}-\pi_{2} \\
= & \lambda_{\mathrm{f}}+\eta_{1} X_{i 1}+\eta_{2} X_{\mathrm{i} 2}+\kappa_{2}
\end{aligned}
$$

(2) Female-male difference in conditional mean Y for industry 1:

$$
\begin{aligned}
= & \beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\lambda_{\mathrm{f}}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2} \\
& -\beta_{0}-\beta_{1} X_{i 1}-\beta_{2} X_{i 2} \\
= & \lambda_{\mathrm{f}}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2}
\end{aligned}
$$

Subtract (2) from (1):
Difference-in-differences $=$ female-male difference in conditional mean Y for industry $\mathbf{2}$ minus female-male difference in conditional mean Y for industry 1:

$$
=\lambda_{\mathrm{f}}+\eta_{1} X_{\mathrm{i} 1}+\eta_{2} X_{i 2}+\kappa_{2}-\lambda_{\mathrm{f}}-\eta_{1} X_{\mathrm{i} 1}-\eta_{2} X_{i 2}=\kappa_{2}
$$

Interpretation 2 of κ_{2} in Model 5.4

(1) Industry 2-industry 1 difference in conditional mean Y for females:

$$
\begin{aligned}
= & \beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\lambda_{f}+\pi_{2}+\eta_{1} X_{i 1}+\eta_{2} X_{i 2}+\kappa_{2} \\
& -\beta_{0}-\beta_{1} X_{i 1}-\beta_{2} X_{i 2}-\lambda_{\mathrm{f}}-\eta_{1} X_{i 1}-\eta_{2} X_{i 2} \\
= & \pi_{2}+\kappa_{2}
\end{aligned}
$$

(2) Industry 2-industry 1 difference in conditional mean Y for males:

$$
=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\pi_{2}-\beta_{0}-\beta_{1} X_{i 1}-\beta_{2} X_{i 2}=\pi_{2}
$$

Subtract (2) from (1):
Difference-in-differences = industry 2-industry 1 difference in conditional mean Y for females minus industry 2-industry 1 difference in conditional mean Y for males:

$$
=\pi_{2}+\kappa_{2}-\pi_{2}=\kappa_{2}
$$

Standard Notation for Model 5.4

We now reformulate Model 5.4, developed in the previous section, in much cleaner and more conventional notation.

- The population regression equation for Model 5.4 can be written in more standard notation as:

$$
\begin{align*}
\mathrm{Y}_{\mathrm{i}}=\beta_{0} & +\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{IN} 2_{\mathrm{i}}+\beta_{4} \mathrm{IN} 3_{\mathrm{i}}+\beta_{5} \mathrm{IN} 4_{\mathrm{i}}+\delta_{0} \mathrm{~F}_{\mathrm{i}} \\
& +\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{\mathrm{i}}+\mathrm{u}_{\mathrm{i}} \tag{5.4}
\end{align*}
$$

- The population regression function for Model 5.4 is:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4 \mathrm{i}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{IN} 2_{i}+\beta_{4} \mathrm{IN} 3_{\mathrm{i}}+\beta_{5} \mathrm{IN} 4_{\mathrm{i}}+\delta_{0} \mathrm{~F}_{\mathrm{i}} \\
& \quad+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4 \mathrm{i} \tag{5.4'}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{IN} 2_{\mathrm{i}}+\beta_{4} \mathrm{IN} 3_{\mathrm{i}}+\beta_{5} \mathrm{IN} 4_{\mathrm{i}}+\delta_{0} \mathrm{~F}_{\mathrm{i}} \\
& \quad+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{\mathrm{i}}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4_{i} \tag{5.4'}
\end{align*}
$$

- The female population regression function for Model 5.4 is obtained by setting the female indicator $\mathrm{F}_{\mathrm{i}}=1$ in (5.4'):

$$
\begin{align*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid\right. & \left.\mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
= & \beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{IN} 2_{\mathrm{i}}+\beta_{4} \mathrm{IN} 3_{\mathrm{i}}+\beta_{5} \mathrm{IN} 4_{\mathrm{i}} \\
& +\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{IN} 2_{\mathrm{i}}+\delta_{4} \mathrm{IN} 3_{\mathrm{i}}+\delta_{5} \mathrm{IN} 4_{\mathrm{i}} \tag{5.4f}\\
= & \left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\beta_{4}+\delta_{4}\right) \mathrm{IN} 3_{\mathrm{i}}+\left(\beta_{5}+\delta_{5}\right) \mathrm{IN} 4_{\mathrm{i}} \tag{5.4f}
\end{align*}
$$

- The male population regression function for Model 5.4 is obtained by setting the female indicator $\mathrm{F}_{\mathrm{i}}=0$ in (5.4'):

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{IN} 2_{i}+\beta_{4} \mathrm{IN} 3_{\mathrm{i}}+\beta_{5} \mathrm{IN} 4_{\mathrm{i}} \tag{5.4m}
\end{equation*}
$$

- The female-male difference in conditional mean Y for Model 5.4 is obtained by subtracting the male regression function (5.4 m) from the female regression function (5.4f):

The female population regression function for Model 5.4 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}, \operatorname{IN3}_{i}, \operatorname{IN4}_{i}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{IN} 2_{\mathrm{i}}+\beta_{4} \mathrm{IN}_{\mathrm{i}}+\beta_{5} \mathrm{IN} 4_{\mathrm{i}} \\
& +\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{IN} 2_{\mathrm{i}}+\delta_{4} \mathrm{IN}_{\mathrm{i}}+\delta_{5} \mathrm{IN} 4_{\mathrm{i}} \tag{5.4f}\\
& =\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) X_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{3}+\delta_{3}\right) \operatorname{IN} 2_{\mathrm{i}}+\left(\beta_{4}+\delta_{4}\right) \mathrm{IN}_{\mathrm{i}}+\left(\beta_{5}+\delta_{5}\right) \operatorname{IN} 4_{\mathrm{i}} \tag{5.4f}
\end{align*}
$$

The male population regression function for Model 5.4 is:

$$
\begin{equation*}
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, \operatorname{IN} 4_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} I N 2_{i}+\beta_{4} I N 3_{i}+\beta_{5} I N 4_{i} \tag{5.4m}
\end{equation*}
$$

The female-male difference in conditional mean \mathbf{Y} for Model 5.4 is therefore:

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid\right.\left.\mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right) \\
&=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{IN} 2_{\mathrm{i}}+\beta_{4} \mathrm{IN} 3_{\mathrm{i}}+\beta_{5} \mathrm{IN} 4_{\mathrm{i}} \\
& \quad+\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{IN} 2_{i}+\delta_{4} \mathrm{IN} 3_{\mathrm{i}}+\delta_{5} \mathrm{IN} 4_{\mathrm{i}} \\
&-\beta_{0}-\beta_{1} \mathrm{X}_{\mathrm{i} 1}-\beta_{2} \mathrm{X}_{\mathrm{i} 2}-\beta_{3} \mathrm{IN} 2_{\mathrm{i}}-\beta_{4} \mathrm{IN} 3_{\mathrm{i}}-\beta_{5} \mathrm{IN} 4_{\mathrm{i}} \\
&= \delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{IN} 2_{\mathrm{i}}+\delta_{4} \mathrm{IN} 3_{\mathrm{i}}+\delta_{5} \mathrm{IN} 4_{\mathrm{i}}
\end{aligned}
$$

- Interpretation of regression coefficients in the pooled regression function for Model 5.4 given by (5.4'):

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{~F}_{\mathrm{i}}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{IN} 2_{\mathrm{i}}+\beta_{4} \mathrm{IN} 3_{i}+\beta_{5} \mathrm{IN} 4_{i}+\delta_{0} \mathrm{~F}_{\mathrm{i}} \\
& \quad+\delta_{1} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{~F}_{\mathrm{i}} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 2_{\mathrm{i}}+\delta_{4} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 3_{i}+\delta_{5} \mathrm{~F}_{\mathrm{i}} \mathrm{IN} 4 \tag{5.4'}
\end{align*}
$$

The female population regression function for Model 5.4 is:

$$
\begin{align*}
& E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, I N 4_{i}\right) \\
& \quad=\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) X_{i 1}+\left(\beta_{2}+\delta_{2}\right) X_{i 2}+\left(\beta_{3}+\delta_{3}\right) I N 2_{i}+\left(\beta_{4}+\delta_{4}\right) I N 3_{i}+\left(\beta_{5}+\delta_{5}\right) I N 4_{i} \tag{5.4f}\\
& \quad \beta_{j}+\delta_{j}=\text { the female regression coefficient on regressor } j(j=0,1, \ldots, 5)
\end{align*}
$$

The male population regression function for Model 5.4 is:

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right)=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{IN} 2_{\mathrm{i}}+\beta_{4} \mathrm{IN} 3_{\mathrm{i}}+\beta_{5} \mathrm{IN} 4_{\mathrm{i}} \tag{5.4m}
\end{equation*}
$$

$\beta_{j}=$ the male regression coefficient on regressor $j(j=0,1, \ldots, 5)$

The female-male difference in conditional mean \mathbf{Y} for Model 5.4 is:
$\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)-\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{x}_{\mathrm{i}}^{\mathrm{T}}\right)=\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{IN} 2_{\mathrm{i}}+\delta_{4} \mathrm{IN} 3_{\mathrm{i}}+\delta_{5} \mathrm{IN} 4_{\mathrm{i}}$
$\delta_{j}=$ the female regression coefficient on regressor j
minus
the male regression coefficient on regressor j
$=$ the female-male coefficient difference for regressor $\mathrm{j}(\mathrm{j}=0,1, \ldots, 6)$

- Stata commands for computing the female coefficient estimates in Model 5.4

The female OLS sample regression function for Model 5.4 is:

$$
\begin{aligned}
& \hat{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\left(\hat{\beta}_{0}+\hat{\delta}_{0}\right)+\left(\hat{\beta}_{1}+\hat{\delta}_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\hat{\beta}_{2}+\hat{\delta}_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\hat{\beta}_{3}+\hat{\delta}_{3}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\hat{\beta}_{4}+\hat{\delta}_{4}\right) \mathrm{IN}_{\mathrm{i}}+\left(\hat{\beta}_{5}+\hat{\delta}_{5}\right) \mathrm{IN} 4_{\mathrm{i}}
\end{aligned}
$$

The following Stata commands compute the OLS female coefficient estimates for Model 5.4:

```
lincom _b[_cons] + _b[f] computes }\mp@subsup{\hat{\beta}}{0}{}+\mp@subsup{\hat{\delta}}{0}{
lincom _b[x1] + _b[fx1] computes }\mp@subsup{\hat{\beta}}{1}{}+\mp@subsup{\hat{\delta}}{1}{
lincom _b[x2] + _b[fx2] computes }\mp@subsup{\hat{\beta}}{2}{}+\mp@subsup{\hat{\delta}}{2}{
lincom _b[in2] + _b[fin2] computes }\mp@subsup{\hat{\beta}}{3}{}+\mp@subsup{\hat{\delta}}{3}{
lincom _b[in3] + _b[fin3] computes }\mp@subsup{\hat{\beta}}{4}{}+\mp@subsup{\hat{\delta}}{4}{
lincom _b[in4] + _b[fin4] computes }\mp@subsup{\hat{\beta}}{5}{}+\mp@subsup{\hat{\delta}}{5}{
```

- The female population regression function for Model 5.4 gives the conditional mean value of Y for females with given values of the regressors:

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN}_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{IN} 2_{\mathrm{i}}+\beta_{4} \mathrm{IN} 3_{\mathrm{i}}+\beta_{5} \mathrm{IN} 4_{\mathrm{i}}+\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{IN} 2_{\mathrm{i}}+\delta_{4} \mathrm{IN} 3_{\mathrm{i}}+\delta_{5} \mathrm{IN} 4_{\mathrm{i}} \tag{5.4f}\\
& \quad=\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\beta_{4}+\delta_{4}\right) \mathrm{IN} 3_{i}+\left(\beta_{5}+\delta_{5}\right) \mathrm{IN} 4_{\mathrm{i}} \tag{5.4f}
\end{align*}
$$

(1) Conditional mean Y for females in industry $\mathbf{1}$ is:

$$
\begin{aligned}
& E\left(Y_{i} \mid F_{i}=1, X_{i 1}, X_{i 2}, I N 2_{i}=0, I N 3_{i}=0, I N 4_{i}=0\right) \\
& \quad=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\delta_{0}+\delta_{1} X_{i 1}+\delta_{2} X_{i 2} \\
& \quad=\beta_{0}+\delta_{0}+\left(\beta_{1}+\delta_{1}\right) X_{i 1}+\left(\beta_{2}+\delta_{2}\right) X_{i 2}
\end{aligned}
$$

(2) Conditional mean Y for females in industry 2 is:

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}=1, \mathrm{IN} 3_{\mathrm{i}}=0, \mathrm{IN} 4_{\mathrm{i}}=0\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3}+\delta_{0}+\delta_{1} X_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \\
& \quad=\beta_{0}+\delta_{0}+\left(\beta_{1}+\delta_{1}\right) X_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{3}+\delta_{3}\right)
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}, \mathrm{IN} 3_{\mathrm{i}}, \mathrm{IN} 4_{\mathrm{i}}\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{3} \mathrm{IN} 2_{\mathrm{i}}+\beta_{4} \mathrm{IN} 3_{\mathrm{i}}+\beta_{5} \mathrm{IN} 4_{\mathrm{i}}+\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{3} \mathrm{IN} 2_{\mathrm{i}}+\delta_{4} \mathrm{IN} 3_{\mathrm{i}}+\delta_{5} \mathrm{IN} 4_{\mathrm{i}} \tag{5.4f}\\
& \quad=\left(\beta_{0}+\delta_{0}\right)+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{3}+\delta_{3}\right) \mathrm{IN} 2_{\mathrm{i}}+\left(\beta_{4}+\delta_{4}\right) \mathrm{IN} 3_{i}+\left(\beta_{5}+\delta_{5}\right) \mathrm{IN} 4_{\mathrm{i}} \tag{5.4f}
\end{align*}
$$

(3) Conditional mean Y for females in industry 3 is:

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \operatorname{IN} 2_{i}=0, \mathrm{IN} 3_{\mathrm{i}}=1, \operatorname{IN} 4_{i}=0\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{4}+\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{4} \\
& \quad=\beta_{0}+\delta_{0}+\left(\beta_{1}+\delta_{1}\right) \mathrm{X}_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{4}+\delta_{4}\right)
\end{aligned}
$$

(4) Conditional mean Y for females in industry 4 is:

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=1, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}=0, \mathrm{IN} 3_{\mathrm{i}}=0, \mathrm{IN} 4_{\mathrm{i}}=1\right) \\
& \quad=\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{5}+\delta_{0}+\delta_{1} \mathrm{X}_{\mathrm{i} 1}+\delta_{2} \mathrm{X}_{\mathrm{i} 2}+\delta_{5} \\
& \quad=\beta_{0}+\delta_{0}+\left(\beta_{1}+\delta_{1}\right) X_{\mathrm{i} 1}+\left(\beta_{2}+\delta_{2}\right) \mathrm{X}_{\mathrm{i} 2}+\left(\beta_{5}+\delta_{5}\right)
\end{aligned}
$$

- The male population regression function for Model 5.4 gives the conditional mean value of Y for males with given values of the regressors:

$$
\begin{equation*}
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}, I N 3_{i}, \operatorname{IN} 4_{i}\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\beta_{3} I N 2_{i}+\beta_{4} I N 3_{i}+\beta_{5} I N 4_{i} \tag{5.4m}
\end{equation*}
$$

(1) Conditional mean Y for males in industry 1 is:

$$
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}=0, I N 3_{i}=0, I N 4_{i}=0\right)=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}
$$

(2) Conditional mean Y for males in industry 2 is:

$$
\begin{aligned}
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, \mathrm{IN}_{\mathrm{i}}=1, \mathrm{IN}_{\mathrm{i}}=0, \mathrm{IN} 4_{\mathrm{i}}=0\right) & =\beta_{0}+\beta_{1} X_{\mathrm{i} 1}+\beta_{2} X_{i 2}+\beta_{3} \\
& =\left(\beta_{0}+\beta_{3}\right)+\beta_{1} X_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

(3) Conditional mean Y for males in industry 3 is:

$$
\begin{aligned}
E\left(Y_{i} \mid F_{i}=0, X_{i 1}, X_{i 2}, I N 2_{i}=0, \mathrm{IN}_{\mathrm{i}}=1, \mathrm{IN} 4_{\mathrm{i}}=0\right) & =\beta_{0}+\beta_{1} X_{\mathrm{i} 1}+\beta_{2} X_{\mathrm{i} 2}+\beta_{4} \\
& =\left(\beta_{0}+\beta_{4}\right)+\beta_{1} X_{\mathrm{i} 1}+\beta_{2} X_{\mathrm{i} 2}
\end{aligned}
$$

(4) Conditional mean Y for males in industry 4 is:

$$
\begin{aligned}
\mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{F}_{\mathrm{i}}=0, \mathrm{X}_{\mathrm{i} 1}, \mathrm{X}_{\mathrm{i} 2}, \mathrm{IN} 2_{\mathrm{i}}=0, \mathrm{IN}_{\mathrm{i}}=0, \mathrm{IN} 4_{\mathrm{i}}=1\right) & =\beta_{0}+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}+\beta_{5} \\
& =\left(\beta_{0}+\beta_{5}\right)+\beta_{1} \mathrm{X}_{\mathrm{i} 1}+\beta_{2} \mathrm{X}_{\mathrm{i} 2}
\end{aligned}
$$

